"Modern Methods in Heterogeneous Catalysis Research" - WS 04/05 **Time-resolved Studies of Surface Reactions**

> *Martin Wolf Department of Physics, Freie Universität Berlin*

Goal: Microscopic understanding of coupling between electronic excitations and nuclear degrees of freedom

Application of femtosecond laser spectroscopy

Timescales of chemical reactions

Key concept: Dynamics on Born-Oppenheimer potential energy surface

Non-adiabatic coupling between electronic states near (avoided) crossings

Example: CO Oxidation on Ru(001) competes with CO desorption (UHV conditions)

 \blacktriangleright New reaction pathway is "switched on" upon fs excitation

Outline

Introduction

Non-adiabatic processes at surfaces

Electron thermalization in metals

 \blacktriangleright Test of the two-temperature model

Surface femtochemistry

- Electron and phonon mediated pathways
	- Isotope effects and electronic friction model

Non-linear optics as a probe of surface dynamics

Vibrational sum-frequency generation spectroscopy

Electron dynamics thin ice layers on metals

Role of non-adiabatic processes in surface reactions ?

Example: Adsorption at a metal surface

E

Question: Coupling between nuclear (vibrational) motion of adsorbate and electronic excitations ?

Chemicurrents

See review article by H. Nienhaus, Surf. Sci. Rep. **45**, 3 (2002)

Chemicurrents: Mechanism

Newns-Anderson model

- Unoccupied affinity level is pulled down by adsorbate surface interaction
	- **broadening of** resonance linewidth
	- adsorbate substrate charge transfer

- Filling of hole below E_{Fermi} by substrate electrons
	- *e-h* excitation: - chemicurrent - exoemission

luminescence

Electronic excitations at surfaces

Gergen *et.al.,* Science **294**, 2521 (2001)

- Chemicurrent observed for various adsorbates
	- electronic excitations play maior role in gas surface interaction
- Energy dissipation via e-h pair excitation ("electronic friction")
- Feasibility of reverse process?

chemical reactions driven by electronic excitations

Laser induced surface dynamics

Question: How does laser excitation induce surface reactions ?

Thermal activation

Phonon driven process (in electronic ground state)

Electronic excitations and charge transfer

- Chemical bonding implies electronic coupling between "adsorbate" and substrate
- Electron stimulated desorption and surface photochemistry
	- Vibrational relaxation at metals by electron-hole pair excitation
- Energy transfer by coupling between electronic and nuclear degrees of freedom

Optical excitation of metal surfaces

Mechanism and timescales of energy transfer after optical excitation

Photoabsorption in a metal substrate creates a transient non-equilibrium electron distribution

Relaxation to phonon and adsorbate vibrational excitation

Primary step: Electron thermalization and cooling

Electron thermalization dynamics in metals: Test of the two-temperature model using 2PPE

Electron dynamics in metals following optical excitation

W.S. Fann, R. Storz, H.W. K. Tom, J. Bokor PRB 46 (1992), 13592

The two-temperature model

Model assumes two heat baths for electrons and phonons: C_{el} >> C_{ph}

Time-resolved two-photon photoemission

How to probe electron thermalization and cooling ?

Experimental setup

Femtosecond time-resolved two-photon photoemission spectroscopy

Electron thermalization in gold

Pump fluence: 120 μJ/cm²

Method:

time-resolved photoemission with $h\nu_{\text{probe}} > \Phi$ E $E_{\rm{Vac}}$ Probe E_F Pump

W. S. Fann, R. Storz, H.W.K. Tom, J. Bokor, *Electron thermalization in gold*, Phys. Rev. **B 46**, 13592 (1992)

Electron thermailization occurs faster with increasing excitation density

Time-resolved 2PPE from Ru(001)

Analysis of electron distribution

Dynamics of electrons and holes

Pump induced changes of electron distribution:

Highly symmetric electron and hole distributions for *all* delays due to nearly constant DOS around E_F

Dynamics of electrons and holes can be treated equivalently

Ultrafast relaxation (much faster compared to noble metals, e.g Au: 1-2 ps)

Extended heat bath model

Femtochemistry at metal surfaces

Mechanism and timescales of energy transfer after optical excitation

substrate-mediated excitation mechanism dominates

new reaction mechanism?

- by non-thermal activation
- by separation of time scales of energy flow

Surface femtochemistry

Systems

- \cdot **NO** and O_2 /Pd
- **CO/Cu**
- **CO/Pt**
- \cdot O₂/Pt
- •**CO/NiO**
- \cdot **CO** + **O**₂/**Pt**
- **CO + O/Ru, H+H/Ru**

Misewich, Loy, Heinz Tom, Prybyla Ho Mazur Stephenson, Richter, Cavanagh Bonn, Wolf, Ertl Zacharias, Al-Shamery Domen

Experimental Investigations

Yield Fluence dependence Translational energy Vibrational energy Rotational energy Ultrafast dynamics Influence of laser pulse duration Influence of photon energy Dependence on adsorption site Dependence on coverage Competitive reaction pathways

Example I: Desorption and oxidation of CO on Ru(001)

Oxidation of CO impossible under equlilibrium conditions

New reaction pathway upon fs excitation

Example II: Recombinative desorption of H² on Ru(001)

H2 formation induced by fs laser excitation of H/Ru(001)

- High translational temperature of desorbing species
- Pronounced isotope effects in $\mathsf{H}_2\mathsf{\mathsf{/D}}_2$ yield

Reaction mechanisms

Phonon-mediated Electron-mediated

Desorption Inducded by Multiple Electronic Transitions **DIMET -**

How to distinguish?

Temperature profiles and 2-pulse correlation

Two-pulse correlation measurement of the reaction yield allows to distinguish between the two reaction mechanisms!

Experimental setup

2-pulse correlation measurements

Goal: discriminate between electron and phonon mediated mechanism

DFT calculations

C. Stampfl, M. Scheffler, FHI Berlin

Hot electron mediated vibrational excitation of the O-Ru bond

Non-adiabatic energy transfer from electronic excitations to adsorbate coordinate

M. Bonn et al, Science **285**, 1042 (1999)

Discussion

Reaction pathways for thermal versus femtosecond excitation

reaction coordinate

Under thermal excitation the CO has desorbed before oxygen is activated

Seperation of time scales opens new reaction pathway

2PC of laser-induced H² formation

- Ultrafast response indicates coupling to hot electron transient
- $\tau_{\rm el}^{1}$, $\tau_{\rm ph}^{-1}$, $\tau_{\rm el-ph}^{-1}$. • Coupled heat baths: T_{el} , T_{ph} , T_{ads}

Electronic friction model yields: E_a = 1.35 eV and τ_{el} = 180 fs for H₂ $(\tau_{\text{el}} = 360 \text{ fs for } D_2)$

Isotope effect in recombinative desorption

H2 formation induced by fs laser excitation of H/Ru(001)

Pronounced isotope effects in $\mathsf{H}_2\mathsf{D}_2$ yield

Isotope effect and electronic friction model

Origin:

- mass-dependent distance traversed on excited PES
- lighter adsorbate starts moving more rapidly

• Electronic friction:

E

Energy transfer by coupling between adsorbate vibration and metal electrons

Brandbyge *et al*., PRB **52**, 6042 (1995)

Fluence dependence: isotope ratio and first shot yield

Real-time probing of vibrational dynamics

Goal: Probe suface reactions directly in the time domain

So far probed only the (desorbing) reaction products

◆ Use surface sensitive non-linear optics (SHG, SFG) to obtain a direct look inside the excited adlayer

Principle of sum-frequency generation (SFG):

Second order non-linear optical process

$$
\mathbf{P}_{\omega_{\text{SFG}}}^{(2)} = \chi_{\omega_{\text{SFG}}}^{(2)} \mathbf{E}_{\omega_{\text{IR}}} \mathbf{E}_{\omega_{\text{VIS}}}
$$

Surface sensitive method: SFG is symmetry forbidden in isotropic (bulk) media (in dipole approximation)

Time-resolved SFG as molecule specific probe of surface reactions

Broadband IR vibrational SFG spectroscopy

Vibrational spectroscopy without tuning the IR frequency

Use spectrally broad fs- IR pulse with spectrally narrow VIS upconversion pulse

L.J. Richter *et al.*, Opt. Lett. **23**, 1594 (1998).

SFG spectrum $(\sqrt{3}x\sqrt{3})$ -CO/Ru(001)

SFG experimental setup

Time-resolved SFG of CO/Ru during desorption

Spectroscopic snapshots of the CO stretch mode

Pronounced transient red shift, linewidth broadening and decrease of intensity

Problems:

Dipole-dipole coupling in the adlayer and small concentration of "products"

M. Bonn *et al,* Phys. Rev. Lett , **84** (2000) 4653

Real-time probing of surface reactions: 2PPE

Snapshots of excited electronic states during evoltution of wavepacket

Time-resolved 2PPE of Cs 6s-6p, state:

- (Long) lifetime $\tau_r = 50$ fs
- Shift in 150 fs: $\Delta E = -0.2$ eV
- Cs-Desorption: $\Delta R_{Cu-Cs} = 0.3$ Å

[Petek, Weida, Nagano & Ogawa, SCIENCE 88, 1402 (2000)]

Electron localization in adsorbate layers

[Ge, Harris et al., SCIENCE 279, 202 (1998)]

Dynamics of "small polaron"

- Classical theory problem
	- **Landau** (1933)
	- Pekar (1954)
	- Holstein (1955)
	- Marcus (1956)
- Related phanomena:
	- Solvatated Electron
	- Conducting polymers
	- High- T_c superconductors
	- Photosynthesis

Electron localization and solvation in polar adsorbate overlayers

Solvated electrons in polar liquids

Brief history:

- Davy (1808) reports blue ammonia containing compounds
- Weyl (1863) discovers a blue solution of Na in liquid ammonia
- Kraus (1908) attributes the blue color to trapped electrons surrounded by $NH₃$ molecules
- Ogg (1940) develops first model for solvated electrons
- Hart & Boag (1962) discover the hydrated electron in water

Optical absortion spectrum Schindewolf, Angew. Chemie **80**, (1968) 165

Courtesy: C.P. Schulz, MBI Berlin

Time-resolved two-photon photoemission

2PPE spectra as a function of time delay

-

2PPE experiment

Part I: Electron transfer dynamics in D2O/Cu(111)

Dynamics of photoinjected electrons in multilayers of amorphous ice

Ultrafast relaxation within experimental time resolution ($e_{CB} \rightarrow e_S$)

Stabilisation of localized electronic state ($e_{\rm S}$) on time scale of 0.1-1 ps

Energetic stabilization and population decay

3.0 F [eV] Coverage 5.0 BL 3.8 BL $\frac{\Box}{\Box}$ e_speak maximum: E - E 3.0 BL e_gpeak maximum: E 2.9 BL 2.8 e_{s} 2.6 0 500 1000 1500 delay [fs]

isotope effect

peak shift

 e_{CB} : population decay within pulse width

e_s: energetic stabilization 300 meV/ps, non-exponential decay t >100fs

Isotope effects:

very similar stabilization rate for H_2O and D_2O

~50 meV shift due to different band gap/ orientational disorder

Dispersion and localization dynamics

Mechanism

Electron transfer, localization and solvation dynamics in H2O/Cu(111)

- Electron transfer into the conduction band (CB) of the ice layer
- Relaxation to the bottom of CB $(\tau$ <50 fs)
- Localization into precursor states of the ice

Solvation: Stabilization and energy transfer into collective solvent modes; + increasing localization

Competing process: Electron transfer back to the metal substrate

Open Questions

Influence of structure and coverage on solvation dynamics ?

Nature of the solvation site: internal versus surface states ?

Summary

Introduction

Non-adiabatic processes at surfaces: Chemicurrents

Electron thermalization in metals

 \rightarrow Test of the two-temperature model

Surface femtochemistry

- Electron and phonon mediated pathways
- Isotope effects and electronic friction model
- Vibrational sum-frequency generation spectroscopy

Electron dynamics thin ice layers on metals

Electron injection, localization and solvation

thanks to

C. Gahl, U. Bovensiepen, J. Stähler, M. Lisowski, P. Loukakos, D. Denzler, S. Funk, C. Hess, and G. Ertl, Fritz-Haber-Institut Berlin M. Bonn, AMOLF, The Netherlands S. Wagner, and C. Frischkorn, Freie Universität Berlin

Literature:

H. L. Dai and W. Ho, *Laser Spectroscopy and Photochemistry at Metal Surfaces* World Scientific (1995).

H. Petek and S. Ogawa, *Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals* Progress in Surface Science **56**, 239-311 (1998).

H. Nienhaus *Electronic excitations by chemical reactions at metal surfaces* Surface Science Reports **45**, 1-78 (2002).

P.M. Echenique, R. Berndt, E.V. Chulkov, Th. Fauster and U. Höfer, *Decay of electronic excitations at metal surfaces* Surface Science Reports **52**, 219-318 (2004).