Contrast Formation in (S)TEM
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e Electron Scattering

e Amplitude contrast (mass-thickness contrast and
diffraction contrast)

e Phase contrast
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Electron Scattering

o elastic, inelastic, coherent, mcoherent forward
(<90° ), back (>90° ) scattering..» —

- «@
.

o Scatféring (particles) VS. Diffraction (wave)
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Huygen “s principle

Plane wave Atoms

Oth order




Cross section for scattering at the nucleus (Rutherford):

et 72 dO After the scattering process
oRr(0) = 2. 40
16(4negEy)” sin” 2 rikr
2 o €
lIls;c - lI’(}f(e) r
Atomic scattering factor:
Ey ) .
() (o Vit = W + 1Y
T do Sin~5
Incident beam:
V= q;oeznik” New amplitude and phase
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The electron wave can change both its
amplitude and phase as it traverses the specimen

. |

contrast

We select imaging conditions so
that one of them dominates.




Bright Field (BF), Dark Field (DF) High Resolution EM (HREM)
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The eyes can only see intensity differences >5 - 10 %
In images: contrast enhancement digitally



kness Contra

e amorphous samples

o Crystalline samples - also: diffraction contrast

- Peaked in the forward direction in thin
samples

- thickness and Z-dependent

et 7> dQ
16(4neoEy)” sin

GR(G) —

bIID

1. Cross-section for elastic scattering is a function of Z
2. As thickness increases, more elastic scattering
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Parameters that improve mass-thickness
contrast

Small objective aperture size (large -- bad).
low high tension of the TEM (small -- good)



Latex on Amorphous carbon

examples Ao
Contrast is thickness dependent

What is the shape?

Solution: Metal shadowing

The effect of different apertures

d=70 um d=10 uym

Similar effect as reducing the HT of the microscope i, z?fg
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thickness i

Imaging electron scattering at:

1. Low angles (<~5°) : - Mass-thickness contrast + Bragg diffraction

2. Higher angles: - Only mass-thickness contrast

SN

(low intensity scattered beams)
- Intensity only depends on Z (and on thickness)

Only mass-thickness contrast:
A) Amorphous samples: All contrast is mass contrast
B) Crystalline samples: ADF/HAADF mode
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Batson, P.E. Nature Materials 2011, 10, 270. _
Otten- Journal of Electron Microscopy Technigue 1991, 17, 221. T. Lunkenbein, FHI
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Z-contrast (STEM)

e Less noisy than DF-TEM: gathers all scattered
electrons, not just electrons scattered from one

atomic plane

e No lenses are used to make the image - less
chromatic aberration

e More contrast than DF-TEM: Adjust L to optimize

the ratio of the number of scattered electrons
hitting the detector
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ple of HR Z-co
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Atomic structures are visible in both
HREM and HAADF images.

HAADF image:
noisier but Z-contrast.

Relate the intensity differences to an
absolute measure of the Si concentration:

Contrast Cross-section for elastic scattered by matrix A

1.0 Fraction of the alloying element that sub.
L — For matrix atoms

C= (E _ FE).:—B (22.10)
HREM-TEM HR Z-contrast STEM OB

Alloying/dopant B Atomic concentration of alloying element



Bragg diffraction contrast

o Controlled by crystal structure and orientation of
the sample -

e Scattering at special angles

e Elastic coherent scattering

e Contrast can be enhanced by two beam
conditions



ffraction Contr

Two beam conditions

e Strong diffraction contrast in BF and DF images
e >one diffracted beam is strong
e +direct beam

e Deviation parameter (s>0)

BF DF




A
(A) Incident
electrons

Specimen

Diffusely scattered

7N

205

7
o/

(hkl)
Kossel

Projection
of (hkl)

4
‘

Excess Deficient - h})tgc

line line

(C) Incident )
beam | (hkl) Regz;téng
In the / 90-0g

specimen\

(hkl) /

Kossel (izl_cl_)
cone
*~_/ Kossel
(hkl) Kossel colle

cone intersects

Ewald sphere \

(7;7(7) Kossel
(hkl) cone intersects
Kikuchi line Ewald sphere
‘I%d— In the
Projection . ( .) _ DP
of (hkl) ——" Kikuchi line



S: small and positive

The excess (bright) hkl Kikuchi line, just
outside the hkl spot;




action Co

Variation in the diffraction contrast when s is varied

from
0 125 nm

zero small + larger +

TEM always shows better contrast than STEM images




\&C diffraction Contra
Thickness and bending effects

e TEM specimens are thin but their thickness
Invariably changes

- elastic bending, i.e physical rotation of lattice
Planes

Planes also bend when lattice defects are introduced

- Diffraction contrast due to thickness or diffraction
conditions variations

i
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Mass-thickness contrast

-Areas of greater Z and or t scatter more strongly

-TEM images are better quality (lower noise and higher resolution) than
STEM images, but digital STEM images can be processed to show higher
contrast than analog TEM images.

-STEM mass-thickness contrast images are most useful for thick and/or
beam-sensitive specimens.

-Z-contrast (HAADF) images can show atomic-level resolution.

Diffraction contrast

-Arises when the electrons are Bragg scattered.

-In TEM, the objective aperture selects one Bragg scattered beam.
-Often, the STEM detectors gather several Bragg beams which reduce
diffraction contrast.

-TEM always shows better contrast than STEM images (noisier and almost
never used)

- Contrast improvement by setting the two beam conditions
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Amplitude

Phase contrast
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Mass-thickness Diffraction
contrast contrast




Bright Field (BF), Dark Field (DF) High Resolution EM (HREM)
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Contrast I

Incident
electron
wave

Sample
(very thin!)

Transmitted
&
Diffracted
waves

Transmitted & diffracted waves each have a different
phase

Result is an interference pattern - our ‘phase contrast’ or
HREM image




?

- Transmitted and diffracted waves travel l(
through different distances in the crystal
- Each diffracted wave will have its own v AN
phase — X —
- Each diffracted wave represents a ___\_ . _7/___
different solution to the Schrodinger
equation

When several waves are allowed to interact, the phase differences manifest
themselves in the 2-D interference pattern in the image plane
--- Phase contrast image

Factors that contribute to the phase shift:
Thickness, orientation, scattering factor, focus and astigmatism.

|:> Be careful when interpreting them



Not even this “simple”

The TEM has very poor lenses

— Spherical aberration in
particular

This aberration causes
diffracted waves to be ‘phase
shifted’ by the objective lens

- Complex dependence on
wavelength, C, diffraction
vector and defocus

— Magnitude of phase shift varies
with distance from optic axis
« And thus diffraction angle

« Thus each diffracted wave
undergoes a different phase
shift

Complicates image
interpretation

when interpret

Spherical aberration

39
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Phase Contrast

e Imaging of atomic structures (proper control of
instrument parameters).

e Normally: BF or DF image - selection of a
single beam

e Phase contrast: more than one beam (the more
beams collected, the higher the resolution)
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The intensity in the image: I = w*y

]:A2+BQ +AB[€i(2ng*-r+§}+€—f(2ng'-r—l—5):|

Now g, is effectively perpendicular to the beam so we’ll set it parallel to x and replace d giving

[=A>+B*+2ABcos(2ng'r + ) tekegtobe

parallel to x
[ =A"+B* -2A4Bsin(2ng'x + 751)

Therefore, the intensity is a sinusoidal oscillation (this is the lattice
fringe!) normal to g’, with a periodicity that depends on excitation error
(s) and thickness ()

42
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off-axis lattice on-axis 3-beam on-axis many-
fringe imaging imaging beam imaging

X ®
0

FRINGES NOT PLANES

So lattice fringes are not direct images of the struc-
ture, but just give you information on lattice spacing
and orientation.

= D

Resist the temptation of interpreting the spots in the image as atoms!

All this is a some of the individual fringes. Proof on the next slide.
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mage - Interpreting the image Constructive interference
simulation - Easy change of instrumental parameters (e.g. high A T

voltage, focus...) A \ s
- Two methods: Bloch wave eigenstates or multi-slice
methods

e

Image -Improve interpretability
processing -Recover additional information
(image restoration deconvolve transfer function of
the instrument from a single image vs.
image reconstruction combination of several images
into one image)

Broad research field

Record the data and to control the instrument
Digital storage vs. Photographs (degrading time)
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