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High Temperature Catalysis = Catalysis on Glowing Catalysts
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1. What is 1. What is „„High Temperature CatalysisHigh Temperature Catalysis““



o when a solid body is heated its surface emits radiation of wavelengths 
in the range 0.1-10µm called thermal radiation

o heating raises some of the atoms and molecules of which the solid 
body consists of to higher energy levels from which they return 
spontaneously to lower energy states emitting electromagnetic 
radiation

o electromagnetic radiation can be either thought off as waves with a 
wavelength λ=c/ν

 

or as a bunch of photons with an energy ε=hν

o absorptivity and emissivity of an (opaque) body are defined as 
follows:

2. Why can solid bodies glow ?2. Why can solid bodies glow ?
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and qν
(i)dν

 

are the absorbed and incident radiation energy per 
unit area per unit time in the frequency range ν

 

to ν+dν



Some comments on that:

o for any real body, aν

 

will be less than unity and will vary considerably 
with ν

 

and temperature

o a hypothetical body for which aν

 

will be less than unity but 
independent of ν

 

and temperature is called a gray body

o the limiting case of a gray body with aν

 

=1 defines a black body

o the emissivity eν

 

is also a quantity less than unity for real, non- 
fluorescing surfaces and is equal to unity for black bodies 
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KcmT ⋅⋅= 2884.0maxλWien‘s Displacement Law:

2. Why can solid bodies glow ?2. Why can solid bodies glow ?

Stefan-Boltzmann Law: 4
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emissivities of different materials 
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carbon calibration body @ 1060 °C
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high temperature catalysis plays an important role in industry

industrial high temperature processes

4NH3 + 5O2 → 4NO + 6H2 O (900°C, Pt/Rh)

NH3 + CH4 + 1.5O2 → HCN + 3H2 O (1200°C, Pt/Rh)

NH3 + CH4 → HCN + 3H2 (1200°C, Pt/Rh)

CH4 + H2 O → CO + 3H2 (700-1100°C, Ni)

CH3 OH + ½ O2 → HCHO + H2 O (600-720°C, Ag) 

catalytic combustion (noble metals)

fuel reforming (noble metals)

solid oxide fuel cells (800-1000°C, Ni cermet / YSZ / (La,Sr)MnO3 ) 

3. 3. High Temperature Catalytic High Temperature Catalytic 
Processes in Industry and ResearchProcesses in Industry and Research



high temperature processes at the research stage

CH4 + ½ O2 → CO + 2H2 (>1000°C, e.g. Rh)

2CH4 + O2 → C2 H4 + 2H2 O (600-800°C, e.g. Li/MgO)

CH4 + ½ O2 → HCHO + H2 O (>600°C, e.g. VOx )

C2 H6 + ½ O2 → C2 H4 + H2 O (700-1100°C, e.g. Pt/Sn)

C2 H6 + ½ O2 → CH3 CHO + H2 O (>500°C, VOx ) 

3. 3. High Temperature Catalytic High Temperature Catalytic 
Processes in Industry and ResearchProcesses in Industry and Research



3.1 „Bookkeeping“

domains: 
e.g. gaseous domain (3D), bulk domain (3D), interphase domain (2D)

phases:
o gas phase (usually 1 per domain)
o surface phase (1 or more per domain e.g. steps, terraces…)
o bulk phase (1 or more per domain, e.g. CuO, Cu2 S )

species:
o gas species Kg

f - Kg
l, surface species Ks

f(n)-Ks
l(n), bulk 

species Kb
f(n)-Kb

l(n)

example: corrosion of copper

4. 4. Surface and Gas Phase Reaction Surface and Gas Phase Reaction 
KineticsKinetics



4.2 Concentration within phases important for catalysis:

o for gas phase species (3D domain) the molar concentration is written
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4.3 Surface reaction kinetics:

o classic expressions for adsorption (Langmuir adsorption, competitive 
adsorption, dissociative adsorption) and surface reaction rates (Langmuir 
Hinshelwood Hougen Watson) can be used to describe surface kinetics in high 
temperature catalytic reactions

o these type of rate expressions are comparably ease to determine 
experimentally but every catalyst will have a unique rate expression

o for example, Pt on alumina catalysts for CO oxidation may have a similar 
general form of the rate expression by the numerical values of the constants will 
vary among formulations. Even catalysts with the same composition may have 
different rate expressions due to differences in the manufacturing method

o if the mechanism changes with experimental conditions, e.g. change of rate 
limiting step at changing temperatures, the general form of the rate law might 
change

o elementary step mechanisms do not have these drawbacks but are difficult to 
determine  

4. 4. Surface and Gas Phase Reaction KineticsSurface and Gas Phase Reaction Kinetics



example 1: Langmuir adsorption isotherm for a single component A

o the usual form of the Langmuir adsorption isotherm is 

[ ]

)/(1
)/(

)/()/(1
)/()/(

][1
][

])[(
][)]([

)](])[[(][
)]([)]([

)]([)](][[0)(
)()(

0

0

10

10

11

1

111

11

, 11

ppK
ppK

RTpRTpK
RTpRTpK

AK
AK

Akk
AksA

sAAkkAk
sAsO

sAksOAk
dt

sAd
sAsOA

Ap

Ap

ap

ap
A

c

c
A

kk

+
=

⋅+

⋅
=

+
=

+
=

Γ
=

+=Γ
−Γ=

−==

⎯⎯ →←+

−

−

−

−

−

−

θ

θ

A

A
A bp

bp
+

=
1

θ

o this general form is readily derived from an elementary step 
mechanism applying mass action kinetics 
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example 2: competitive adsorption of two species A and B

o empirical expression 
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o an analogues treatment of the following elementary step mechanism 
using mass action kinetics as for the Langmuir adsorption leads to 

4. 4. Surface and Gas Phase Reaction Surface and Gas Phase Reaction 
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example 3: Langmuir-Hinshelwood Rate Expressions  

o Langmuir-Hinshelwood (Hougen Watson) rate expressions are often 
used to describe surface reactions such as e.g. A(s)+B(s)→C(s)
o in this mechanism it is assumed that A and B adsorb competitively 
onto the surface and undergo a bimolecular surface reaction to C
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example 3: literature results on CO oxidation on supported Pt catalysts  

Can. J. Chem. Eng. 61 1983 194 

4. 4. Surface and Gas Phase Reaction Surface and Gas Phase Reaction 
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example 4: elementary step kinetic model:
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4.4 Gas phase reaction kinetics:
o gas phase reactions proceed via radicals, often in chain reactions
o radical chain reactions consist of initiation, branching and 
termination reactions
o gas phase reactions are typically strongly pressure dependent and 
the kinetics are highly nonliner

example: H2 + O2 → H2 O

Initiation Branching Termination
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o gas phase reactions are typically strongly pressure dependent and 
the kinetics are highly nonliner
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Pressure dependence of gas phase reactions:
o for surface reactions k is a function of T
o for gas phase reactions, k can be a function of T and p
o a simple explaination follows from the Lindemann mechanism 
(Frederick Lindemann 1921) 
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Limiting cases: 
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Example: rate 
constant for the 
association 
reaction

CCl3 +O2 →CCl2 O2



4. 4. Surface and Gas Phase Reaction KineticsSurface and Gas Phase Reaction Kinetics

example for non-linear behaviour and pressure dependence of gas phase 
reactions

explosion diagram for H2 /O2 system
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5. 5. Physical Transport Processes of Physical Transport Processes of 
Momentum, Heat and MassMomentum, Heat and Mass

5.1 Momentum transport
o pair of parralel plates in rest with area A separated by distance Y
o t=0 lower plate is set in motion in positive x direction with V=constant

dy
dv

A
F

A
Y
VF

x
yx μτ

μ

−==

=

τyx =flux of x momentum in y direction in (kg⋅m/s)/m2/s=N/m2

o the x-momentum flows from a region of high momentum to a region of 
low momentum (similar to heat and mass)
o the proportionality constant µ is called the (dynamic) viscosity, has the 
unit Pa⋅s=kg/m/s and is material specific (air 1.8E-5 Pa⋅s, glycerol 1 Pa⋅s)

Newton‘s law of 
viscosity



5. 5. Physical Transport Processes of Physical Transport Processes of 
Momentum, Heat and MassMomentum, Heat and Mass

5.2 Heat transport:

o q=heat flux in z direction in J/m2/s
o heat flows from a region of high temperature to low temperature
o the proportionality constant λ

 

is called the thermal conductivity, has 
the unit W/m/s and is material specific (air=0.025, stainless steel=16, 
Al=250)

Fourier‘s law of 
heat conduction



5. 5. Physical Transport Processes of Physical Transport Processes of 
Momentum, Heat and MassMomentum, Heat and Mass

5.3 Mass transport:

o J=molar flux in z direction in mol/m2/s
o mass (atoms, molecules) flow from a region with high concentration to 

a region with low concentration
o the proportionality constant D is called the diffusion coefficient, has 

the unit m2/s and is material specific (H2 in N2 =7.79E-5)

Fick‘s law of 
diffusion



6. 6. Interaction of Chemistry and TransportInteraction of Chemistry and Transport

Example: instantaneous reaction 2A → B (e.g. dimerization)
o catalyst surrounded by a stagnant film through which A has to diffuse 
to reach the catalyst surface
o at the surface, 2A → B react instanteneously
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Gas (Surface) Species Thermodynamics

Kinetic Model of Surface Chemistry

Kinetic Model of Gas Phase Chemistry

Gas Species Transport Data

Mathematical Model of Momentum, Heat and Mass Transport 
(Reactor Model)
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7. 7. Numerical Simulation of High Numerical Simulation of High 
Temperature Catalytic ReactionsTemperature Catalytic Reactions



Example: Plug Flow Model – Species Balance

Example: Plug Flow Model – Energy Balance
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o gas-phase and surface chemical rate expressions:
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o typical Arrhenius expression for the forward rate constant:
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o in first approximation thermodynamic properties of species 
(regardless of phase) are functions of temperature only

o thermodynamic data are neeeded to calculate the reverse rate 
constant for gas phase reactions even if no energy balance is solved

∑
=

−=
M

m

m
kmkpk TaC

1

)1(0

k

kM
M

m

m
kmk

k

k
T

kpkk T
a

m
Ta

RT
HHdTCH

k
,1

1

)1(0

0

000 )0( +

=

−

+=⇒+= ∑∫

kM

M

m

m
kmk

kk
k

T

k
pk

k a
m
TaTa

R
SSdT

T
C

S
k

,2
2

)1(

1

0

298

0
0

0

)1(
ln)0( +

=

−

+
−

+=⇒+= ∑∫

7. 7. Numerical Simulation of High Numerical Simulation of High 
Temperature Catalytic ReactionsTemperature Catalytic Reactions



∑
=

=
Δ K

k

k
ki

i

R
S

R
S

1

00

ν ∑
=

=
Δ K

k

k
ki

i

RT
H

RT
H

1

00

ν

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

Δ
=

RT
H

R
SK ii

pi

00

exp

∑
⎟
⎠
⎞

⎜
⎝
⎛= =

K

k
ki

RT
pKK atm

pici
1

ν

ci

fi
ri K

k
k =

calculation of the reverse rate constant from the forward rate constant 
and the equilibrium constant

if thermodynamic information for surface species are not available (which 
is usually the case), reverse rate parameters have to be specified

7. 7. Numerical Simulation of High Numerical Simulation of High 
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