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1.1. Molecular vibrations and normal modes

IR and Raman spectroscopy - vibrational spectroscopy:

= probing well-defined vibrations of atoms within a molecule

Hildebrandt, 2007)

Motions of the atoms in a molecule are not random!
= well-defined number of vibrational degrees of freedom

= 3N-6 and 3N-5 for non-linear and linear molecules, respectively

What controls the molecular vibrations and how are they characterized?




1.1. Molecular vibrations and normal modes

Definition of the molecular vibrations: = Eigenwert problem = normal modes

for a non-linear N-atomic molecule: = 3N-6 normal modes

example: benzene

in each normal mode:

all atoms vibrate with the
same frequency but
different amplitudes

v

vi(Ayy): 3062 cmt v14(E;,): 1037 cmt

Thus:
» normal modes are characterised by frequencies (given in cm)
» and the extent by which individual atoms (or coordinates) are involved.




1.1. Molecular vibrations and normal modes

Determination of normal modes — a problem of classical physics

Approach:
¢ Point masses connected with springs
* Harmonic motion

P

Hildebrandt, 2007)

Crucial parameters determining the normal modes:
- Geometry of the molecule (spatial arrangement of the spheres)
- strength of the springs (force constants)

& very sensitive fingerprint of the molecular structure




1.2. Normal mode analysis

A. Describing the movement of the atoms in terms of mass-weighted
Cartesian displacement coordinates

e.g. Ax; = x; — a; (i: all atoms)

Mass-weighted Cartesian displacement

coordinates 4 N Cewemn N
0, =+ MmAX, 0, =4MAYy, 0Q;= M, Az, 0, =My AX, etc.




1.2. Normal mode analysis

B. Expressing the kinetic and potential energy

3N
kinetic energy T T = EZ q_z

potential energy V for small 1
displacements (harmonic V =— fijqiqj
approximation) 2

Total energy: E=T+V

Newton’s equation 3N
of motion 0= qj 4+ 1‘ijqi




1.2. Normal mode analysis

C. Solving the eigenwert problem

Set of 3N linear second-order differential equations

3N
g, = A cos(ﬁ“zt+5) 0=> f.A-AZ
1=1

Secular determinant:

f11'7¥ f12 f13 ----- f1,3|\|

f21 f22'7V f23 ----- f2,3|\|
0= fy fs fgh . f3an

f3N,1 f3N,2 f3N,3 ----- f3N,3N_7”

3N solutions, 3N frequencies
Removal of 6 solutions fir f;=0 (translation, rotation)

3N-6 non-zero solutions for frequencies




1.2. Normal mode analysis

D. Coordinate transformation:

Cartesian coordinates to normal coordinates

3N
Qk — Zlkixi
i=1

One normal mode accounts for one normal mode — unique relationship!

Simplifies the mathematical and theoretical treatment of molecular vibrations
but is not illustrative!

Intuitive coordinates — internal coordinates:

3N
Sr = Z Bri Axi
i=1

% Stretching
% Bending
% Out-of-plane deformation

» Torsion




1.2. Normal mode analysis

E. Solving the eigenwert problem

Constructing the G- und F-Matrix and inserting into Newton’s equation of motion

Gt,t’ = Zist,ast‘,a I > ‘G -F _1/1‘ =0

Example: three-atomic molecule
Gll G12 G13
G=|Gy Gy, Gy
G31 G32 G33

G-Matrix known, if the structure is known
F11 l:12 F13

F=|Fa Fo By Solving the FG-matrix
Fyp Fyp o Fy leads to (3N-6) A solutions

F-Matrix a priori unknown




1.2. Normal mode analysis

\J

Main problem:

How to determine the force constant matrix?

— Quantum chemical calculations

Objectives of the theoretical treatment of the vibrational problem:
Calculating vibrational spectra rather than analysing vibrational spectra

Comparing the experimental vibrational spectra with spectra calculated for
different structures

Quantum chemical methods
Optimizing the geometry for a molecule
Calculating the force field

Solving the normal mode problem




1.2. Normal mode analysis

experimental
» presumed structure

spectra
geometry
optimization
l \ 4
spectra _
calculation comparison
poor agreement: good agreement:
new structure assumption presumed structure
Is the true one




1.3. Probing molecular vibrations

_ P

Infrared spectroscopy
direct absorption of photons

inelastic scattering of photons

.

Ly Do

# - /_Ra> —j. Raman spectroscopy
—

Siebert &
Hildebrandt, 2007)




1.3. Probing molecular vibrations

Infrared spectroscopy
direct absorption of photons

Raman spectroscopy
inelastic scattering of photons

white white light
light v
n

hv,

v, - hormal mode frequency




1.3.1. Fourier-Transform IR spectroscopy

— detected intensity
= interferogram: I=f(x)

source

fixed mirror

I
!
| beam >
| /)splltter

A

a - H OPTICAL

| movable mirror PRy
sample | . | _ _
: — Fourier transformation
7 = spectrum: | = f(v)
detector

A




1.3.2. Raman Spectroscopy

laser,
monochromatic light

cw laser from

240 — 1064 nm

pulsed laser from
180 — 1064 nm

detector

monochromator,

spectrograph




1.4. Infrared intensities

_ m
n
| (Q ) ¢ [:umn ]>2<y2
[t ], = (Wl )

A :

y

N5 A )
mn X m n + m
[t ], = (v Z(GQKJO<W

2

=0, = 0, if dipole =0, ifm
orthogonality moment varies =nzx1l
with Q,

;




1.5. Raman intensities

—

. Oszillating EM radiation —» E = E, cos(2zv,t)

induces dipole in the _
molecule T, lu'”d = ok

Xyz

—|2

Raman intensity |0 (Q) o [ﬂmd ]xyz = ])2(yz E‘

| /

Calculating the scattering tensor by second—order perturbation theory

[, zlz[<m'\/'pr><r'\/'an>+<m'\/'af><f'\/'pn>]

h<\ v,—v, —v,+I, v, —v, +v,+I[,
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2. Special approaches

Intrinsic problem of Raman and IR spectroscopy:
—low sensitivity and selectivity

Therefore:

- Resonance Raman spectroscopy

- surface enhanced resonance Raman spectroscopy

- IR difference spectroscopy

- surface enhanced infrared absorption difference spectroscopy




2.1. IR difference spectroscopy

A historical example: Bacteriorhodopsin

hy
CBRWO‘_ K590)
- -

BRSTO
1.5 : ; ; e —— 0.027
[H0] hid T
o H.Q
1.1 \ Amid T 0.012
: | i :
c - c
] /\ | & o
2 | |
5 07| | :
0 0
< / 2 I b
& y . <]
0.3 | : 1 -0.01
-J'\“
L . \\w“‘—/\-/\l 0.03
4000 3000 2000 1000 . 1600 1400 1200 1000
wavenumbers (cm-1) wavenumbers (cm-1)

Siebert et al. 1985 IR difference spectra: structural changes induced by a reaction



2.2. Resonance Raman spectroscopy

Raman VS. resonance Raman Resonance Raman (RR):
|| = enhancement of the
electronically excited state vibrational bands of a
N chromophore upon
excitation in resonance
with an electronic
transition
A
Vo —V
Vi o 'n Vo Vo — Vp
A 4 \ 4
hv, hv,
electronic ground state
|




2.2. Resonance Raman spectroscopy

Resonance Raman intensities

E . r
| (Q,) x|, iyz E‘Z Raman intensity
b ] -1y (MM, [r)(r[M,[n) {m|M,|r)r|M,[n)
L ¢ Kl (R VA A A | Y v, —v,+v,+Il,

m for vy = vgg

n
approximation for ‘ [axyz] _ EZ( Meg ,M EG,G<m} r)r| ”>j
strong transitions > ™ h=7 Veg —Vo +1I,




2.2. Resonance Raman spectroscopy

AS

Non-zero Franck-Condon factor

1 Mg Mg, m\r><r\n
[axyz ]mn _ h Z[ VEG —VO + IT—’r
R,r R,r

products only for modes including
: : : Gm Gm
coordinates with an excited state \ \ y
Gn Gn
displacement

o o
Siebert & . .
Hildebrandt, 2007) internal coordinate

M EG,pM £6.0 ASVy

Vee — Vo +11 )(VEG —V,+V, + iFr)

[axyz mn x (



2.2. Resonance Raman spectroscopy

500 1000 1500
A/ nm

bacteriorhodopsin J\\

resonant excitation non-resonant excitation

Resonance Raman

selectively probes the
vibrational bands of a | [ | . | |
chromophore in a 800 1000 1200 1400 1600 1500 1600 1700 1800

macromolecular matrix Av/cm? Av /cmt

Althaus et al. 1995




2.3. Surface enhanced (resonance) Raman and infrared absorption
spectroscopy

Observation:
molecules adsorbed on rough (nm-scale) Ag or Au surface experience an enhancement of
the Raman scattering — surface enhanced Raman (SER) effect.

SER-active systems:

- Electrochemically roughened electrodes

- Colloidal metal particles

- Evaporated (sputtered) or (electro-)chemically deposited metal films




2.3. Surface enhanced Raman and IR effect

Theorie - SER;:

» Delocalised electrons in metals can undergo collective oscillations (plasmons) that
can be excited by electromagnetic radiation

» Eigenfrequencies of plasmons are determined by boundary conditions
- Morphology
- Dielectric properties

Upon resonant excitation, the oscnlatlng electric field of the radiation field E (V )
Induces an electric field in the metal
Eln (VO)

E.(v,)=E,(v,)+E. ., (v,) Total electric field
‘Eo (Vo) + Eind (Vo)‘ Enhancement factor for the
FE (Vo) = — ‘1+ 290‘ field at the incident frequency

‘Eo (Vo)‘




2.3. Surface enhanced Raman and IR effect

The magnitude of the enhancement depends on the frequency-dependent dielectric properties of
the metal

_ Er (VO)_l

= g, (v,) complex dielectric constant
gr (VO) + 2

0

+ igim (Vo) If real part = -2 and imaginary part = 0,
largest enhancement

gr (Vo) — gre (VO)

n2

solv

In a similar way, one may derive a field enhancement for the Raman scattered light ERa (vo £v,)
which depends on Etot v,)

Since the intensity is proportional to the square of the electric field strength, the
SER enhancement factor is given by:

Foer (Vo £V ) = [(1"' 290)(1"' 20z, )]2

Total enhancement ca. 10° - 106




2.3. Surface enhanced Raman and IR effect

SERR and SEIRA:

» all photophysical processes at metal surfaces can be enhanced via the frequency-
dependent electric field enhancement

> combination of RR and SER: surface enhanced resonance Raman — SERR:
excitation in resonance with both

=» an electronic transition of the adsorbate and
=>» the surface plasmon eigenfrequency of the metal
Single-molecule sensitivity!

> IR - Absorption: surface enhanced infrared absorption — SEIRA
enhancement of the incident electric field in the infrared! (Au, Ag)

Etot (Vo) = Eo (VO) + Eind (Vo) Total electric field

Total enhancement thus ca. less than the square root of the SER effect:100 — 1000




2.3. Surface enhanced Raman and IR effect

12

Pyramid

enhancement

| I |
300 350 400 450 500 550 600 650 700

Wavelength/nm

Calculations of the enhancement factor for
various geometric shapes (AQ)




2.3. Surface enhanced Raman and IR effect

. — 1.0
| 0.5
\\\ p 0.0
P S O pm
|!/ ao
\ p
\\ d
Siebert\&\ - = ' '
Hildebrandt, 2007) 0.0 2.5 5.0 7.5 10.0
1.04
Distance-dependence of the SER and SEIRA effect 0_8_'
a 12 0.6—-
_ F(d)/F(0) -
FSER (d) — FSER (O) ) 0.4-
a+d _
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0.0
FSEIRA(d):FSEIRA(O)' d o 2 4 & 8 10
a-+ d/nm

Siebert &
Hildebrandt, 2007)




2.4. Limitations of Surface enhanced vibrational spectroscopies

... and how to overcome them

Plasmon resonance of polydisperse nanostructures

300  la00 500 00|
A/lnm l

Y

700 800

Preferred spectral range for
combining RR and SER

But: Au displays a much
broader electrochemical
potential range and is
chemically more stable




2.4. Limitations of Surface enhanced vibrational spectroscopies

Layered hybrid devices

Electrochemical roughening of Ag Coating by a dielectric layer (SAM, Deposition of a metal film or
electrode Si0,) semiconductor film (Au, Pt, TiO,)

Functionalisation of the outer
metal layer for protein binding

<—| Metal film: ca. 20 nm

dielectric layer: 2 — 30 nm |—>

N "I




2.4. Limitations of Surface enhanced vibrational spectroscopies

Layered hybrid devices
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2.4. Limitations of Surface enhanced vibrational spectroscopies

Layered hybrid devices

1372

1584

1503 1637 iﬁiiﬂﬁsﬁ%ﬁsg&zﬁm

—

. | ’ | L) |
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2.4. Limitations of Surface enhanced vibrational spectroscopies

Layered devices

Distance-dependence of the enhancement

experimental

. Q.o
oo -
3 Ag-spacer-Au
Ag-spacer g
Cyt 4.
413nm - S
0 ! ' ' 0%
S T
dAg Cyt /nm

9

theoretical

90 = | =g

E(r w) ‘2

254

204

154

104

Ag

14




2.4. Limitations of Surface enhanced vibrational spectroscopies

Layered devices

Potential application for in-situ studies in heterogeneous catalysis

A S
———t Pt

e

1800 1900 2000 2100 2200 2300
Avicm™




2.5. SERR and SEIRA spectroelectrochemistry

probing electron transfer processes

SERR

SEIRA

Sample
Buffer \/

Gasket

——— Goldfilm

IR-Beam

Mippes IR-Source

Detector

o X ot

Prism
Siebert &
Hildebrandt, 2007)

«—— motor shaft
<« insulating

E flexible joint

rotating stainless C

steel shaft ——

slip ing ——

"\

insulating

—

teflon sleeve

laser beam - <« Ag ring working

/ electrode

laser
beam

eccentric
rotating .
Ag disk
shaft working
EC cell electrode

to potentiostat

=

Siebert &
Hildebrandt, 2007)

spring



2.5. SERR and SEIRA spectroelectrochemistry

SERR: applicable to proteins bound to biocompatibly coated metal surfaces

Immobilization of cytochrome ¢ on “membrane models*

Electrostatic (CO,,, PO3%, NH;*) Hydrophobic (e.g. CH,) Polar (e.g. OH)

Covalent (cross linking)

G—S\/\/e
S~ ©




2.5. SERR and SEIRA spectroelectrochemistry

Example: redox processes of cytochrome c His3s 3

Potential-dependent
SERR measurements ..
to probe the redox ..
equilibrium of the "-.,_.
immobilised protein ‘o
-
o
"
.
.
09 03 +03
log(B1red/B1ox)
I\/llet I\/Ilet
1350 1400 1450 1500 His His

Av/cm’
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3. Time-resolved methods

Principle approaches:

Time scale | Method comments
Resonance Raman |> 100 ns Cw excitation Low photon flux
> 10 ps Pulsed excitation High photon flux
> 100 fs Stimulated Raman Very demanding
set-up
IR >1ms Rapid scan
>10ns Step scan
> 100 fs transient absorption Very demanding

set-up




3.1. Principles of time-resolved IR and RR experiments

probe .
light source —» sample —» detection
B z z
- trigger
I perturbation
synchronisation synchronisation

Triggering the processes to be studied by

— light (photo-processes or photoinduced release of reactands)
— temperature, pressure, or potential jump

—> rapid mixing with the reaction partner



3.2. Time-resolved pump-probe Raman spectroscopy

Pump-probe experiments with cw excitation

t4 t, t;
A 4__> B > C —Pp e > —p P
flowing
sample (v)
7‘“pump 7Lprobe
*pump
pump laser f——px—7>
detector
AS
prObe Iaser I:I—v-b‘.-."_'.':.“"' --.....,,,,:‘:‘.‘g Spectrometer
Mprobe| | Tl [
- AS
Time At =— or  As_. ~d_. At_. ~100ns

resolution V




3.2. Time-resolved pump-probe Raman spectroscopy

Pump-probe experiments with pulsed excitation

dye laser

- -—--- —/_Al: pump laser

sample

Time At = ==
resolution C

delay line
detector
spectrometer
~1mm At . ~3ps



3.2. Time-resolved pump-probe Raman spectroscopy

Sensory rhodopsin Il from Natronobacterium pharaonis

0535 K51D

Asp75 M2 2ms Moo / 4
=_—= SBRLS
-./6; y "".3_;
o v ¥ T 9%
-’ - ‘

extracellular medium

Le“““"\ Tyr174
Thr204
Ph986‘ -

cytoplasm




3.2. Time-resolved pump-probe Raman spectroscopy

Challenge:

Time-resolved approach must cover a
dynamic range of more than six decades

— Gated-cw pump probe experiments H:\

Sensory rhodopsin Il from Natronobacterium pharaonis

NpSRIl.,,

56

0535

485

Asp75

N
SB .\\fOOms

fo-

M2400

2ms

N

K51D

1ps\

L495

M14oo

PSB

J

Asp75



3.2. Time-resolved pump-probe Raman spectroscopy

tp tr
+ + pump
Ar Kr
beam ] 2
pulse V/4
amplifier e}
|- - pulse-delay probe
generator beam
pulse I ///
amplifier
LM LM
+ IF —+ IF
M3 CCD i,
My
Ly== spectrograph
cuvette II__EI::::‘.Z" D u [ NpSRll,,,
Lol
./1.;5 m
S T Osss Ksio
L= |
: » [ Siebert &
M1 : Mo ! Hildebrandt, 2007) //‘400’“3 1H5\ prObe
N455 L495

H+

sa\ .\\‘200ms

Asp75

M2400

2ms

15p:‘/ PSB

M14OU

e

Asp75




3.2. Time-resolved pump-probe Raman spectroscopy

1546
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3.2. Time-resolved pump-probe Raman spectroscopy

Intensity / a.u.

Moo fOrmation

10

20

30 40 50 60 70

80

Intensity / a.u.

M,qo decay

500

1000 1500 2000
dlus

dlus

Intensity / a.u.

Moo Kinetics

10° 10t 10° 10°

dlus

10*

10°

10°

107

2500

3000

Same results as for
transient absorption
spectroscopy

3500




3.3. Time-resolved IR techniques

MM
€| EZZzzzza
6L M

SaMPLE ‘_A

- Rapid scan
. . . = L
measuring consecutive mterferograms (Ca. \\\/// ﬁ g
10 ms) . . — P E
ATE(1)
- Step scan

Measuring signal decays after each mirror

step (< 100 ns)

/
. /r”/,{ /.
i Z
/

Siebert &
Hildebrandt, 2007)




3.3. Time-resolved IR techniques

Example: photocycle of bacteriorhodopsin

T i T E T |
o & -
~— w) “:
2 3 | i
AN |
//_/_,,.fy BR578 . - | -
-
Os.0 Kseo o
« ‘ 2
/ \\. _E:“
> .150°C \ o
3-10 ms 150°C L1 ps ®
| Q)
1 &
@ 3
’ 3
N550 L <
550
A >-65°C
\ 40 ps
2-3ms | > .25°C ‘/
M2 .10 M1
A S 410
[<a]
500 ps 3
| | \/ | | i | |

1800 1600 1400 1200 1000

wavenumber (cm’)

Gerwert et al.)




3.3. Time-resolved IR techniques

Example: photocycle of bacteriorhodopsin

5%

0~
(w")A
=
@

)
141
=
(3]

6-104
s
Q
£

1] -15'-.

-20

time (s)

]

"]
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Gerwert et al.)




3.4. Rapid mixing techniques and time-resolved spectroscopy

mixing I t,
A+ B »(C —» D —»etc

Rapid mixing of components A and B with
ti~ 01-5ms...
| |

- o

A — chamber

e

... and monitoring the reaction using the ....

«— B




3.4. Rapid mixing techniques and time-resolved spectroscopy

....stopped-flow method
time resolution: At=t_;, + o

A—>

_/6\_

—

rapid scan RR and FT IR (6= 10 ms)

mixing
chamber

<«—B

S

—

1l
stop

... continuous-flow method ... freeze-quench method
time resolution: At=t_. + o with time resolution: At=t_. +t., witht,, = 2 ms
chrgiri(witr:gr ck?;ir)ﬂggr
A—> —@)—<«B A—> —/ @\ «B
As AS
l isopentane
-120C —>»

— RR spectroscopy (Iin < tmiy) — RR spectroscopy




3.4. Rapid mixing techniques and time-resolved spectroscopy

Example: re-folding of cytochrome ¢

— rapid mixing of unfolded cytochrome c in GuHCI with a GuHCl-free
solution
- continuous-flow method with RR detection
¢
08}
% 06k
1372 (a) O 04} H,O-Fe H,O-Fe-His
0.2 A His-Fe-His @ His-Fe-His
| 1584 0.0
A 15()2‘| 3: 163|5
Native 1311 g | .‘\ 148.2: !
t=14ms ! I | : : : :
t=10ms ' /| | A : |
t=5ms : : \
A | et
t=3ms ! ; '\\ | Fo I\I/:L
1 ] - 9 e
' @ His His
Unfolded 1 | His | | |
1200 1300 1400 1500 1600 :
Raman Shift (cm -1) par“a”y folded
unfolded

Rousseau et al. 1998




3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

for probing the dynamics of interfacial processes

- Rapid potential jump to perturb the equilibrium of protein immobilised on an electrode
- probing the relaxation process by TR SERR or step-scan or rapid scan SEIRA
- time resolution limited by the reorganisation of the electrical double layer

At(E;) At(Es)

~

& ~
T~ T S

v v v

potential

concentration

measurement




3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

d=w

E =+0.25V

1350 1400 1450 1500
A
Avicm

Example: interfacial redox process of cytochrome c

— one-step relaxation process

B1

Me
I

B1

red 0X

t I\/Ilet

His

His

IN[Cr.4(8)/Crea(0)]

0.0+

-0.5-

-1.0+

-1.5
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3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

d=w

E =+0.25V

1350 1400 1450 1500
A
Avicm

Example: interfacial redox process of cytochrome c

— one-step relaxation process

B1

Me
I

B1

red 0X

t I\/Ilet

His
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IN[Cr.4(8)/Crea(0)]

0.0+

-0.5-

-1.0+
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| ! | b
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3.5. Potential-jump time-resolved SERR and SEIRA spectroscopy

Protein structural changes monitored
by SEIRA spectroscopy

1800 1700 1600 1500 1400
wavenumber / cm™

E— E

integrated intensity

Amide | band changes of the B-turn Il
segment 67-70 occur simultaneously
10 0 10 20 30 40 30 80 with electron transfer




3.6. Time-resolved techniques — summary

RR Photoinduced cw (> 100 ns) Photoreceptors
Processes pulsed (> 10 ps) Ligand binding
Pump-probe ; i i

IR P-P rapid scan (> 10 ms) blmolecular reactions

with caged compounds
step scan (> 100 ns)

RR Bimolecular reactions | cw (> 100 us) Protein folding
Rapid mixing Enzymatic reactions

IR rapid scan (> 10 ms) Ligand binding

SERR | Potential-dependent cw (> 10 us) Re-orientation
processes at Conformational

Soma | EETenES rapid scan (> 10 ms) | transitions

Potential-jump

step scan (> 10 us)

electron transfer
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Most of the figures shown in this presentation have been taken from this book
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