

# Electron Microscopy in Catalysis

Di Wang



D. Wang, 28 Oct. 2005







D. Wang, 28 Oct. 2005

**Department of Inorganic Chemistry** 



D. Wang, 28 Oct. 2005



# Field emission gun





An FEG tip, showing the extraordinarily fine W needle

D. Wang, 28 Oct. 2005



# Lens



D. Wang, 28 Oct. 2005







### What can TEM do?

TEM

Bright field and dark field imaging

**High-resolution imaging** 

**Electron diffraction** 

**Convergent-beam diffraction** 

**Energy-dispersive X-ray spectroscopy (EDX)** 

**Electron-energy loss spectroscopy (EELS)** 

**Energy-filtered TEM (EFTEM)** 

SEM

STEM

Morphology

Defects, Phases

Defects, Interfaces, Surfaces

Structure

Symmetry, Strain Lattice parameter

Element analysis

Electronic structures

Imaging the distribution of elements and even chemical states

Morphology, surfaces

Morphology, Z-contrast

D. Wang, 28 Oct. 2005

#### **Image and diffraction mode**



D. Wang, 28 Oct. 2005





#### I. Mass-thickness contrast





D. Wang, 28 Oct. 2005



### **Image contrast in TEM**

#### II. Diffraction contrast



D. Wang, 28 Oct. 2005

# **Image contrast in TEM**



III. Lattice fringes in pictures







D. Wang, 28 Oct. 2005



# **High-resolution imaging**



**Abbe Interpretation of imaging** 

D. Wang, 28 Oct. 2005



# **Abbe Interpretation of imaging**



D. Wang, 28 Oct. 2005



D. Wang, 28 Oct. 2005



### **Bragg condition and Ewald sphere**



D. Wang, 28 Oct. 2005



**Shape factor** 



D. Wang, 28 Oct. 2005

## **Exciting the lens strength - focus**



Phase shift factor in back focal plane

$$\exp\{i\pi\lambda\Delta f(u^2+v^2)\}=\exp(i\chi_1)$$

D. Wang, 28 Oct. 2005



#### The electromagnetic lenses are not perfect

Spherical aberration of lenses



Phase shift in back focal plane due to spherical aberration

$$\chi_2 = \frac{1}{2}\pi C_s \lambda^3 (u^2 + v^2)^2 = \exp(i\chi_2)$$

D. Wang, 28 Oct. 2005



#### Chromatic aberration

Faster electrons are brought to a focus beyond the Gaussian image plane. L1  $v + \Delta V$   $v + \Delta V$   $\theta_i$   $r_i$   $\Delta V$ Gaussian image

**D:** Standard deviation of Gaussian distribution due to the chromatic aberration

Envelope in back focal plane ex

$$\exp(-\chi_3)$$

$$\chi_3 = \frac{1}{2}\pi^2\lambda^2 D^2 \mathbf{H}^2$$

D. Wang, 28 Oct. 2005



#### Beam divergence

Paralell incident beam (ideal condition) Divergence angle α~ 0.5 mrad (real condition)

Envelope in back focal plane



D. Wang, 28 Oct. 2005



# **Transfer function** $W(\mathbf{H}) = \exp(i\chi_I)\exp(-\chi_{II})$

#### Electron wave function and intensity in the image plane

$$\psi_{image} = \mathbf{F}^{-1} \{ \mathbf{F} [\psi_{exit}] \cdot W(\mathbf{H}) \}$$
$$I = \psi_{image} \cdot \psi_{image}^{*}$$

D. Wang, 28 Oct. 2005



**Contrast Transfer Function (CTF)** 



D. Wang, 28 Oct. 2005



### **Phase contrast in TEM**



Ψ

Exit wave:

$$_{e}(\mathbf{r}) = e^{-i\sigma V_{p}(\mathbf{r})} \approx 1 - i\sigma V_{p}(\mathbf{r})$$

Assuming weak-phase object approximation  $V_p$  : scattering potential

Final intensity:  $I(\mathbf{r}) \approx 1 + 2\sigma V_p(\mathbf{r}) * \mathbf{F}^{-1} \{CTF\}$ 

D. Wang, 28 Oct. 2005



# **Picturing the Contrast Transfer Function**

Amorphous Thin Carbon Film



Real Space  $I(\mathbf{r}) \approx 1 + 2\sigma V_p(\mathbf{r}) * \mathbf{F}^{-1} \{CTF\}$ 

#### **Reciprocal Space**

D. Wang, 28 Oct. 2005

# **Image interpretation**

Only for thin crystal (WPOA) and the focus value close to Scherzer focus, the contrast of HREM image can be interprated as crystal structure up to point resolution.

In general, the black or white dots in HREM image **DO NOT** correspond to atoms or atom groups.



Si [110] image with different defocus values

D. Wang, 28 Oct. 2005

# **Simulated HRTEM images**



D. Wang, 28 Oct. 2005



#### **Image contrast matching**





 $Mo_8O_{23}$ 



D. Wang, 28 Oct. 2005



# **HRTEM-profile imaging**



D. Wang, 28 Oct. 2005



#### **Electron diffraction**



 $[u,v,w] \perp (h,k,l)$ 

Example: cubic structure, (100), (110), (120), (340)..... planes belong to [001] zone axis

D. Wang, 28 Oct. 2005







D. Wang, 28 Oct. 2005



D. Wang, 28 Oct. 2005



### **Electron diffraction**



D. Wang, 28 Oct. 2005

### **Electron diffraction**



#### Calibration by a known structure



If a  $h_0 k_0 l_0$  diffraction from a known structure can be determined in a diffraction pattern and its distance to the center is measured as  $u_0$ , for any other diffraction with distance u to the center, the lattice spacing *d* is given by:

 $d = \mathbf{u}_0 d_{h0k0l0} / \mathbf{u}$ 

D. Wang, 28 Oct. 2005



# **Electron diffraction**

#### Indexing of a ring pattern



D. Wang, 28 Oct. 2005

# **Electron diffraction**



#### Indexing of a single crystal pattern



- Two sets of lattice planes and the angle in between
- Using extinction rules
- Using diffraction pattern on other zone axis
- Simulation

Cubic ZrO<sub>2</sub> (fluorite structure) on [110] projection

D. Wang, 28 Oct. 2005



# **Electron Energy Loss Spectroscopy (EELS)**



D. Wang, 28 Oct. 2005



# **EELS**



-zero-loss peak

-plasmon peak

-Inner-shell ionization edges, low intensity

- -Near edge structure on top of edges
- -background
- -Plural scattering

D. Wang, 28 Oct. 2005

**EELS** 



Department of Inorganic Chemistry Fritz-Haber-Institut der MPG

ELNES as "fingerprints"



#### ELNES of Vanadium Oxides

Correlation of peak positions of the vanadium L-edges with the oxidation sates of vanadium atoms in various vanadium oxides



D. Wang, 28 Oct. 2005

### EELS

Element mapping



TEM image of ZrN/ZrO<sub>2</sub>



Oxygen map

D. Wang, 28 Oct. 2005



# SEM



D. Wang, 28 Oct. 2005



# SEM



#### Secondary electron

#### Back scattered electron

D. Wang, 28 Oct. 2005



D. Wang, 28 Oct. 2005



# **STEM**



D. Wang, 28 Oct. 2005

### **STEM+EDX**



#### Department of Inorganic Chemistry Fritz-Haber-Institut der MPG





# **Application in catalytic systems**

| Important heterogeneous c   | atalysts Information of interests                                                                  |
|-----------------------------|----------------------------------------------------------------------------------------------------|
| Supported metal             | particle size effects; metal-substrate interaction;<br>structural change under chemical treatments |
| Transition metal oxide      | reduction behavior; defects structures                                                             |
| Zeolites (porous structure) | 3D structure; intergrowth of different zeolitic structures; guest species inside a zeolitic host   |

Carbon nanofibers as support

structure and growing mechanisms

D. Wang, 28 Oct. 2005



### **Application in catalytic systems**

# **Reduction of MoO<sub>3</sub> induced by** electron beam irradiation

D. Wang, 28 Oct. 2005

# **Reduction of MoO<sub>3</sub> by electron beam irradiation**



Department of Inorganic Chemistry Fritz-Haber-Institut der MPG





Diffraction of MoO<sub>3</sub> on [010] projection

D. Wang, 28 Oct. 2005

#### Low electron current density



After irradiation of 10 min



#### 60 min





#### 360 min

#### Department of Inorganic Chemistry Fritz-Haber-Institut der MPG



120 min

Frame 1 and 2: diffractions can be attributed to  $MoO_2$  on [-111] projection. Frame3: Diffractions can be attributed to  $MoO_2$  on [-122] projection.

D. Wang, 28 Oct. 2005



HRTEM image showing contrast from CS structure, formed at the early stage of reduction.



D. Wang, 28 Oct. 2005



#### ELNES on O K-edge



 $MoO_3$ :  $(MoO_6)^{6-}$  octahedral configuration

 $MoO_2$ :  $(MoO_6)^{8-}$  octahedral configuration  $t_{2g}$  anti-bonding orbitals are partially filled High electron current density



#### Department of Inorganic Chemistry Fritz-Haber-Institut der MPG



After irradiation of 10 min

40 min

*MoO* (a = b = c = 4.08 Å) with NaCl structure?  $\rightarrow$  Simulation

D. Wang, 28 Oct. 2005

# High electron current density



HRTEM images for evolution of Mo oxide under electron irradiation



2 nm

D. Wang, 28 Oct. 2005

Lecture Series



#### ELNES on O K-edge





## Summary

- Importance of model catalyst simplifying complex system; facilitating analytic techniques; aware of the gap between the TEM environment and the "real" condition.
- Be sure that TEM observation on the *local* structure is representative to the whole catalyst.
- Distinguish electron induced effect from intrinsic features of catalyst



### Literature

Reimer, Ludwig; Pfefferkorn, Gerhard. Scanning Electron Microscopy

Reimer, Ludwig; Transmission electron microscopy : physics of image formation and microanalysis

Williams, David B. Carter, C. Barry Transmission electron microscopy : a textbook for materials science

Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope

Spence, John C. H. Experimental high-resolution electron microscopy

Spence, John C. H.; Zuo, J. M. Electron microdiffraction

D. Wang, 28 Oct. 2005