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Crystal structures

Crystal  
material whose measurable 

properties are periodic in 
space 

Crystal structure 
is one that can fill all space 

by the regular stacking of 
identical blocks or unit cells 
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Crystal structures

Crystal lattice
If we put a mark on the same 

spot on the surface of each 
block
these spots would form a 
crystal lattice 
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Lattice vectors

The set of lattice vectors 
consists of all of the vectors 

with integer n1, n2, and n3

linking the same point in 
two different “unit cells”

“Translating” (moving) by a 
lattice vector makes no 
difference

“translational symmetry”
a1

a2

R

1 1 2 2 3 3L n n n  R a a a



Lattice vectors

In 

a1, a2, and a3 are the three 
linearly independent 
vectors that take us 
from a point in one unit 
cell 
to the equivalent 

point in the adjacent 
unit cell 
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Bravais lattices

In a given dimensionality, e.g., 1D, 2D, 3D
there are only specific finite numbers of different 
types or symmetries of lattices of points

Bravais lattices
1D – only one kind of lattice is possible

equally spaced points
2D – 5 are possible

note no 5-sided object can be repeated to fill 
all space in a plane, for example

3D – 14 are possible



Diamond and zinc-blende lattices

A large fraction of the 
semiconductor materials of 
practical interest
such as silicon, germanium, 

and most of the III-V (e.g., 
GaAs) and II-VI (e.g., ZnSe) 
materials 

have a specific form of cubic 
lattice 



Diamond and zinc-blende lattices

The Bravais lattice for these
is “face-centered cubic”

The actual physical lattice
has two interlocking face-

centered cubic lattices
which is the Bravais lattice 
with a pair of atoms 
associated with each 
lattice point



Diamond and zinc-blende lattices

“Zinc-blende” is the crystal 
structure for  
most III-V and II-VI materials

The group III (or II) atoms 
lie on one such face-
centered cubic lattice
and the group V (or VI) lie 

on the interlocking face-
centered cubic lattice



Diamond and zinc-blende lattices

“Diamond” is the lattice for 
some group IV materials 

e.g., silicon, germanium
some forms of carbon 
(diamond itself) and tin

Both interlocking lattices 
have the same kinds of atoms 

on them



Other important semiconductor lattice structures

Hexagonal
as in the graphite form of carbon

also graphene
a single sheet of hexagonal carbon atoms

and the basis of carbon nanotubes
rolled up sheets of hexagonal carbon atoms

Wurtzite
a form of hexagonal lattice with two atoms per lattice 
point
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One electron approximation

In this approximation, we presume that we can write 
an effective periodic potential

periodic with the crystal lattice periodicity
and therefore

an effective, approximate Schrödinger equation 
for the one electron in which we are interested

giving our one-electron approximation
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Periodicity of ||2

In one dimension
the crystal is periodic with “repeat length” a

having the same potential at x + sa
as it has at x

Here 
s is an integer 

Similarly, any observable quantity must also have the 
same periodicity 

because the crystal must look the same in every unit 
cell 



Consequences of periodicity of ||2

For example charge density   
must be periodic in the same way

Hence
which means

where C is a unit amplitude complex number
Note that there is no requirement that the wavefunction

itself is periodic with the crystal periodicity 
since it is not apparently an observable or 
measurable quantity

2 
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Periodic boundary conditions

In one dimension, we could 
argue as follows 
Suppose we have a long 

chain of N equally spaced 
atoms 
and that we join the two 
ends of the chain together 

a

12N 



Periodic boundary conditions

With x as the distance along 
this loop
then on this loop, the 

potential can be written 

where m is any integer 
even possibly an integer 

much larger than N

a

   P PV x ma V x 

12N 



Periodic boundary conditions

This expression 
is just like the one for the infinite 

crystal
If this chain is very long 

its internal properties will not be 
substantially different from an 
infinitely long chain
so this is a good model

that gives us a finite system
while keeping it periodic

a   P PV x ma V x 

12N 



Periodic boundary conditions

This loop gives a boundary condition
We do want the wavefunction to be 

single-valued
otherwise how could we 
differentiate it, evaluate its 
squared modulus, etc. 

So, going round the loop, we must 
get back to where we started

a “periodic boundary condition” 

a

12N ( ) ( )x x Na  
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Bloch theorem derivation

If we take this “single value” requirement
and combine it with the required periodicity of a 
measureable quantity like probability density

which we deduced implied that
where C is a unit complex number

then
so

Hence, C is one of the N “Nth roots of unity”, e.g.,  

( ) ( )x x Na  
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Bloch theorem derivation

Substituting C from 

in

gives 

where

 exp 2 / ; 0,1, 2, 1C is N s N  

( ) ( ) ( )Nx x Na C x    

 ( ) exp ( )x a ika x  

2 ; 0,1, 2, 1sk s N
Na


  



Bloch theorem derivation

Though the form 
for C is mathematically common, it is not unique

We can choose any consecutive set of N values of 
the integer s

and end up with the same set of possible values 
for C, just in a different order 

Remember, for any integer m

so the values for C just keep cycling round 
as we keep increasing s

 exp 2 / ; 0,1, 2, 1C is N s N  

     exp 0 exp 2 exp 2 1m   



Bloch theorem derivation

We can therefore end up with correspondingly different 
sets of values for k

all of which are physically equivalent

Instead of

we more conventionally use a symmetrical version

which strictly has one too many values
We should omit one of the “end values” here

2 ; 0,1, 2, 1sk s N
Na
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Bloch theorem derivation

Note also that it makes no difference in our expression

if we add              (where m is any integer) to k
The set of allowed values of

remains the same
So we can use

or

This point will have a specific significance later in 
“extended zone” schemes 

 ( ) exp ( )x a ika x  
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Bloch theorem – one statement

The wavefunction in a (one-dimensional) crystal with N
unit cells of length a can be written in the form 

subject to the condition 

Note the allowed k values are evenly spaced by  
where             is the length of the crystal (loop)

regardless of the detailed form of the periodic 
potential

 ( ) exp ( )x a ika x  
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Bloch theorem – alternative (equivalent) statement

Multiply 
by   

to obtain
Hence if we define a function 

we have
Hence          is periodic with the lattice periodicity

Equivalently,         is a function that is the same 
in every unit cell 

Rearranging gives 

 ( ) exp ( )x a ika x  
  exp ik x a 

        exp expx a ik x a x ikx     

     expu x x ikx 
   u x a u x 
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Bloch theorem – equivalent statement

The wavefunction in a (one-dimensional) crystal with N
unit cells of length a can be written in the form 

where         is the same in every unit cell 
subject to the condition 

2 ... 0, 1, 2,... / 2nk n N
Na


    

     expx u x ikx 
 u x



Bloch theorem –equivalence of statements

Note that the two forms 
and 

are entirely equivalent 
We derived the “left” from the “right” one

and we can derive the “right” one from the “left” one
From the “left” form, we have

which is the “right” form

     expx u x ikx   ( ) exp ( )x a ika x  

     expx a u x a ik x a          expu x ik x a   
     exp expika u x ikx    exp ika x



Bloch theorem visualization

We can think of the               as an “envelope” 
function multiplying the unit cell function 

envelope

unit cell function

Bloch function

 exp ikx
 u x

Visualization of 
the real part of 

the wavefunction
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Bloch theorem in three dimensions

To construct the Bloch theorem in three dimensions
we propose a straightforward extension from 1-D

We have

where a is any crystal lattice vector 
or equivalently

and         is the same in every unit cell, i.e.,  

 ( ) exp ( )i   r a k a r

     expu i  r r k r
 u r
   u u r a r



Bloch theorem in three dimensions

With the three crystal basis vector directions 1, 2, and 3
with lattice constants (repeat distances)  a1,  a2, and  a3

and numbers of atoms  N1, N2, and N3

and similarly for the other two components of k in 
the other two crystal basis vector directions

Note that the number of possible values of k is the same as 
the number of unit cells in the crystal

(formally dropping the k values at one end or the other)

1
1 1 1
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Reciprocal lattice

We see that the allowed values of  k1, k2, and k3 are each 
equally spaced, with separations 

,                           , and  

respectively along the three axes 
where the lengths of the crystal along the three 

axes are respectively 
,                ,  

1
1 1 1
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Reciprocal lattice

We could draw a three-
dimensional diagram
with axes k1, k2, and k3

and mark the allowed 
values of k

This set of dots themselves 
constitutes a mathematical 
lattice
This kind of lattice is one 

kind of “reciprocal lattice” 

1
1

2
L

k 


2

2

2
L

k






1

Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 
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Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 

For our cubic lattices, we can 
define
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Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 

For our cubic lattices, we can 
define
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Density of states in k-space

We imagine each point has a 
volume surrounding it
with these volumes touching 

one another to completely 
fill all the space 

For our cubic lattices, we can 
define
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Density of states in k-space

For our cuboidal lattices
these volumes in k-space will 

be of size

i.e., 

Since the crystal is
the k-space “volume” round 

each point is 

1 2 3kV k k k   
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Density of states in k-space

With this specific k-space 
“volume”                         

round each point in k-space 
we could define 

a “density of states in k-
space”
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Density of states in k-space

This density of states in k-space 

is  crystal volume V
So, more commonly, we define

a “density of states in k-space 
per unit (real space) volume”

for quantum mechanical 
calculations in crystals 

 31/ / 2kV V 
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The Bravais Lattices Song 
Walter F. Smith 1-22-02 

 
If you have to fill a volume with a structure that’s repetitive, 
Just keep your wits about you, you don’t need to take a sedative! 
Don’t freeze with indecision, there’s no need for you to bust a seam! 
Although the options may seem endless, really there are just f urteen! 
There’s cubic, orthorhombic, monoclinic, and tetragonal, 
There’s trigonal, triclinic, and then finally hexagonal! 
There’s only seven families, but kindly set your mind at ease—
‘Cause four have sub-varieties, so there’s no improprieties! 
(Chorus:   
‘Cause four have sub-varieties, so there’s no improprieties. 
‘Cause four have sub-varieties, so there’s no improprieties. 
‘Cause four have sub-varieties, so there’s no impropri-e, priet
These seven crystal systems form the fourteen Bravais lattices
They’ve hardly anything to do with artichokes or radishes –  
They’re great for metals, minerals, conductors of the semi-kin
The Bravais lattices describe all objects that are crystalline! 
 
The cubic is the most important one in my “exparience”, 
It comes in simple and in face- and body-centered variants. 
And next in line’s tetragonal, it’s not at all diagonal, 
Just squished in one dimension, so it’s really quite rectagonal!
The orthorhombic system has one less degree of symmetry 
Because an extra squish ensures that a not equals b or c. 
If angle gamma isn’t square, the side lengths give the “sig-o-n
For monoclinic if they’re different, or, if equal, trigonal! 
(Chorus (reprovingly): 
Of course for trigonal, recall that alpha, beta, gamma all 
Are angles that are equal but don’t equal ninety, tut, tut, tut! 
Are angles that are equal but don’t equal ninety, tut, tut, tut, tu
If you squish the lattice up in every way that is conceivable, 
You’ll get the least amount of symmetry that is achievable – 
It’s called triclinic, then remains the one that really self explai
Hexagonal gives us no pains, and so we now may rest our bra
 

o

 

ies!) 
. 

d – 

 

al” 

Figure from  
Elementary Solid State Physics,  

by M. Ali Omar (Addison Wesley, 1993) 

t tut!) 
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Band structure

If we knew the periodic potential  
we could solve the resulting one-electron Schrödinger 
equation 

using the Bloch function form
calculating the energies E of all the possible states 

These calculations give a “band structure” 
There are various band structure calculation methods 

Many methods “guess”          , adjusting it to fit data   

 PV r
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Band structure diagrams

To construct a band structure
presuming we know 

we choose one of the 
allowed values of k

For simplicity we restrict to one 
dimension for the moment

Solving the equation
gives energy eigensolutions

We continue with the other 
allowed values of k

 PV r

0 p/a-p/a
k

E



Band structure diagrams

A larger crystal gives more allowed 
values of k

For a large crystal
the sets of “dots” effectively 

become like lines
We refer to the group of dots on a 

line as a “band”
The number of k-states in a band

is the number of unit cells in 
the crystal

In practice, we just show the lines

0 p/a-p/a
k

E



Band structure diagrams

There are multiple bands in a 
band structure 
in fact an infinite number 

but usually only a few are 
important for the 
properties of a material

In each band, we only have to 
plot k-values from –/a to /a
This range is known as 

the (first) Brillouin zone
0 p/a-p/a

k

E



Extended Brillouin zone scheme

If we continue to 
larger k
the band structure 
just repeats 
in multiple 
Brillouin zones
an “extended 
zone scheme”

so we only need 
to plot one 
Brillouin zone

k

E

0
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 2

a
 3

a
3

a



2
a



a








Band structure diagrams

Each band loosely corresponds 
to a different atomic state in 
the constituent atoms 
or at least orthogonal 

combinations of atomic 
states

The bands are formed from the 
atomic states 
as the atoms are “pushed 

together” to make the crystal 0 p/a-p/a
k

E



Kramers degeneracy

The band structure is drawn to 
be symmetric about k = 0
This common symmetry is 

easily proved
Suppose that the Bloch function 

satisfies the Schrödinger 
equation for a specific k

Note the unit cell function        
may be different for different k

0 p/a-p/a
k

E

     expu i  kr r k r

 uk r



Kramers degeneracy

Hence we have

where Ek is the eigenenergy
associated with this specific k
in this specific band

and

0 p/a-p/a
k

E

   , ,H E  kk r k r

   2 2/ 2 e PH m V    r



Kramers degeneracy

Taking the complex conjugate of 
both sides of 

noting that
and that Ek is necessarily real

But

which is also a wavefunction in 
Bloch form
but for -k

0 p/a-p/a
k

E
   , ,H E  kk r k r

H H 

   , ,H E   kk r k r

     , expu i    kk r r k r



Kramers degeneracy

Hence we are saying that 
for every solution with 

wavevector k and energy Ek
there is one with wavevector 

-k with the same energy
Hence the band structure is 

symmetric about k = 0
We can choose to write

0 p/a-p/a
k

E

     
     
, exp

exp ,

u i

u i
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Kramers degeneracy

This equivalence of the energies 
for k and -k is known as 
Kramers degeneracy

Note that, once we include spin
these two states will have 

opposite spin
but often the spin makes no 
difference to the energy

Hence bands often have minima 
or maxima at k = 0

0 p/a-p/a
k

E
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Semiconductors and insulators

Semiconductors and insulators 
have an (almost) completely 

full band
the valence band

separated by a “bandgap” 
energy EG
from an (almost) completely 

empty band
the conduction band 0 p/a-p/a

k

E
EGvalence 

band

conduction 
band

empty 
states

full states



Semiconductors and insulators

Note that
an empty band does not 

conduct electricity
There are no mobile electrons

Also
a full band does not conduct 

electricity
The electrons cannot change 
states within the band
because all the states are full

0 p/a-p/a
k

E
EGvalence 

band

conduction 
band

empty 
states

full states



Semiconductors and insulators

The difference between 
semiconductors and 
insulators is primarily that
insulators have such a large 

bandgap energy
that there is negligible 
thermal excitation of 
electrons 
from the valence band 

to the conduction band
0 p/a-p/a

k

E
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band
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states

full states



Semiconductors

At finite temperatures in a 
semiconductor
a small number of electrons 

are excited
from the valence band

to the conduction band

0 p/a-p/a
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Semiconductors

These electrons in the 
conduction band
and

absences of electrons or “holes”
in the valence band

can conduct electricity within 
their bands

So semiconductor materials 
conduct electricity weakly
hence the name

0 p/a-p/a
k

E
EGvalence 

band

conduction 
band

empty 
states
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Doping semiconductors

Substituting a few atoms with 
more electrons
e.g., a Group V element like 

phosphorus in a Group IV 
semiconductor like silicon
known as n-type doping

makes the material conduct 
more
using these additional 
electrons

0 p/a-p/a
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EGvalence 
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states
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Doping semiconductors

Substituting a few atoms with 
fewer electrons
e.g., a Group III element like 

boron in a Group IV 
semiconductor like silicon
known as p-type doping

makes the material conduct 
more
using these additional 
“holes”

0 p/a-p/a
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Direct gap semiconductor

If the lowest minimum in the  
conduction band
lies directly above

the highest maximum in the 
valence band
the semiconductor is said to 

have a 
“direct gap”

0 p/a-p/a
k

E
EGvalence 

band

conduction 
band



Direct gap semiconductor

Direct gaps are important for 
light emitters
Electrons “pumped” into the 

conduction band gather in 
the lowest minimum

“Holes” pumped into the 
valence band gather in the 
highest maximum

An electron can fall “vertically” 
to fill in a hole beneath it 0 p/a-p/a

k

E

valence 
band

conduction 
band



Direct gap semiconductor

Direct gaps are important for 
light emitters
Electrons “pumped” into the 

conduction band gather in 
the lowest minimum

“Holes” pumped into the 
valence band gather in the 
highest maximum

An electron can fall “vertically” 
to fill in a hole beneath it
emitting light

0 p/a-p/a
k

E

valence 
band

conduction 
band

photon



Indirect gap semiconductor

In an indirect gap semiconductor
e.g., silicon, germanium

the lowest conduction band 
minimum (or minima)

is not directly above the 
highest valence band 
maximum

Light emission is weak
“non-vertical” transitions by 

emission of photons are weak
0 p/a-p/a

k

E

valence 
band

conduction 
band



Metals

Because of the number of 
electrons in the metal atoms
the lowest conduction band 

is partially full of electrons
e.g., half-full

even at zero temperature
Hence metals conduct 

electricity well

conduction 
band

0 p/a-p/a
k

E
EGvalence 

band

empty 
states

full states
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Brillouin zone in 3D

This Brillouin zone for the 
diamond or zinc-blende lattice
is itself a 3D object

in k-space (or reciprocal space)
Two important directions are

X – along one of the x, y, or z
coordinate directions

L – along one of the cube space 
diagonals

The center is the  (gamma) point

X

L

kx

ky

kz





Band structures for 3D crystals

At least as a first useful 
representation of band structure
typically the band structure is 

calculated only along a few 
directions
such as along the lines from 
the  point (at the center of 
the Brillouin zone)
to the X point and the L

point

X

L

kx

ky

kz



Si band structure

Sketch of major valence and 
conduction bands
with the conduction band 

minimum at the  point
By Kramers degeneracy

we need only show one half 
of the band structure
so we can use the other 
half of the figure 
for the band structure in 

another direction after K. S. Sieh and P. V. Smith, Phys. 
Status Solidi (b) 129, 259 (1985)
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GaAs band structure

Sketch of major valence and 
conduction bands
with the conduction band 

minimum at the  point
Note that GaAs is a direct gap 

semiconductor
unlike Si

which is indirect
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after M. Rohlfing, P. Krüger and J. 
Pollmann, Phys. Rev. B 48, 17791 (1993)



Extended zones in 3D

In 3D
additional Brillouin zones 

repeat the same band 
structure

These zones form “unit 
cells” in k-space
filling all k-space 

(reciprocal space)



Extended zones in 3D

Marking the same “reciprocal 
lattice point” in each cell



Extended zones in 3D

Marking the same “reciprocal 
lattice point” in each cell
and erasing the “unit cells” 

(Brillouin zone shapes) 
themselves for clarity



Extended zones in 3D

Marking the same “reciprocal 
lattice point” in each cell
and erasing the “unit cells” 

(Brillouin zone shapes) 
themselves for clarity
and adding guide lines

shows these extended 
Brillouin zones give a 
body centered cubic 
“reciprocal lattice”



Extended zones in 3D

This particular reciprocal lattice
with one mathematical lattice 

point for each Brillouin zone
is typically the one meant

when talking about 
“the reciprocal lattice”

The vectors in k-space between 
these lattice points are called
reciprocal lattice vectors
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Effective mass approximation

Near a minimum or maximum, 
energy E should vary  k2 in a 
given direction 

For simplicity we presume 
the variation is isotropic and 
the minimum or maximum of 

interest is located at k = 0
Neither of these simplifications 

is necessary for this effective 
mass approach

0 p/a-p/a
k

E

valence 
band

conduction 
band



Effective mass approximation

This isotropic k = 0 minimum or 
maximum is a good first 
approximation for 
the lowest conduction band

and 
the highest valence bands 

in the direct gap 
semiconductors important 
in optoelectronics 
e.g., GaAs, InGaAs

0 p/a-p/a
k

E

valence 
band

conduction 
band



conduction 
band

Effective mass approximation

For the lowest conduction 
bands in indirect gap 
semiconductors
like silicon, germanium, AlAs

the minima are not at k = 0
and they are not isotropic

The theory is easily extended to 
cover these cases
though we will not do this 

here
0 p/a-p/a

k

E

valence 
band



Effective mass approximation

If the energy at the minimum or maximum itself is 
some amount V

then, by assumption, the energy Ek of the state 
in the band at wavevector k is 

For reasons that will become obvious, we choose 
to write this as

where the “effective mass” meff is a parameter 
that sets the appropriate proportionality

2E V k k

2 2

2 eff

kE V
m

 k




Effective mass approximation

A relation such as 

between energy and k-value is called a 
is called a dispersion relation 

This particular approximation for the behavior 
of the energies in a band is called 

an isotropic parabolic band

2 2

2 eff

kE V
m

 k






11.2 Effective mass theory

Slides: Video 11.2.3 Wavepackets and 
effective mass theory  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 8.6 (from ~ Eq. 8.29 to 
“Effective mass approximation …” 
subsection)
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Behavior of a wavepacket

Consider a wave packet 
a linear superposition of different Bloch states 

Since we are going to consider the time evolution
we will also include the time-varying factor 
for each component in the superposition 

Hence we consider a wavefunction

where ck are the coefficients of the different Bloch 
states in this superposition

 exp /iE t k 

       , exp exp /t c u i iE t    k k k
k

r r k r 



Behavior of a wavepacket

We have restricted this superposition 

to states within only one band 
We will make the further assumption that 

this superposition is only from a small range of k-
states (near k = 0) 

This is what can be called 
a slowly varying envelope approximation 

since it means that the resulting wavepacket does 
not vary rapidly in space 

       , exp exp /t c u i iE t    k k k
k

r r k r 



Behavior of a wavepacket

Because of this restriction to a small range of k
we can presume that, for all the k of interest to us 

all of the unit cell functions
are approximately the same 

Hence we presume  
for the range of interest to us

Hence we can factor out this unit cell part, writing

where the envelope function can be written

 uk r

   0u uk r r

     0, ,envt u t  r r r

     , exp exp /env t c i iE t    k k
k

r k r 



Behavior of a wavepacket

Now, differentiating with respect to time, we construct 
a Schrödinger equation for this envelope function 

since 

   exp exp /envi i c i iE t
t t

 
  

   k k
k

k r  

   2 2exp expi k i    k r k r

   exp exp /c E i iE t   k k k
k

k r 
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Effective mass approximation

Taking        outside the sum, we have

Hence, we have managed to construct a Schrödinger 
equation for this envelope function

So we can approximately treat the electron
as a particle with an effective mass meff and a 
wavefunction given by the envelope function
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2 env env env
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t V t i t
m t
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Effective mass approximation

In

all of the details of the periodic potential and the unit 
cell wavefunction 

have been suppressed
Their consequences are all contained in the 

single parameter, the effective mass meff
This effective mass model is a very powerful 
for modeling processes in semiconductors
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Use of V(r)

Note in the Schrödinger equation we are now writing 
for the envelope function

we have allowed the energy of the band at k = 0 i.e., 
the potential V(r), to vary with position r

We can argue this is allowable if the changes in that 
potential are very small compared to  

over the scale of a unit cell and over the wavelength

2 2 / 2 effk m
2 / k
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Slides: Video 11.2.5 Semiconductor 
heterostructures  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 8.6 (“Effective mass 
approximation …” subsection)
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Semiconductor heterostructures

Structures involving more than one kind of material are 
called heterostructures

e.g., changing x in the semiconductor AlxGa1-xAs. 
Such changes are made routinely in modern 

semiconductor structures 
especially abrupt changes in material concentration 

e.g., the interface between GaAs and Al0.3Ga0.7As in 
laser diodes

quantum well structures involving very thin layers 
(e.g., 10 nm) 



Analyzing heterostructures with effective mass theory

Note that the effective mass is in general different in 
different materials 

It is then better to write the envelope function equation 
as

and to use boundary conditions such as
continuous

and                  continuous

to handle abrupt changes in material and/or potential 
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2 env env env
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Semiconductor heterostructures

We treat the “band offsets” 
between the different 
materials as 
abrupt changes in potential 

energy V as we go from one 
material to the other

Offsets are usually determined 
empirically for given materials

conduction band offset
valence band offset

EC

EV

EG1
EG 2

narrow band 
gap material 1

CE
VE

wide band gap 
material 2



Classes of band line-up in heterostructures

Nearly all devices use “Type I” heterostructures 
Electrons and holes have “lowest” energy in the same material

Remember holes “bubble up” to the top, where they have 
“lowest” energy

conduction
band

valence
band

Type I Type II
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Density of states in energy

The density of states in k-space 
(per unit real volume) is

which is constant 
independent of the form of 
the band structure 

Here for simplicity we presume 
the crystal is a cube
of side L

kx

ky 2
L
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g


k



Density of states in energy

Now we want the density of 
states in energy per unit real 
volume
which depends on band 

structure
so we need the relation 
between the electron 
energy,  E, and k

Now we work out that density 
of states for an isotropic 
parabolic band 

kx

ky 2
L


 g E



Density of states in energy

Since by assumption in our 
isotropic parabolic band

the number of states between 
energies E
and E+dE

i.e.,  
is the number of states in k-

space in the “shell” between 
the two spherical surfaces

kx

ky 2
L


Sphere for 
energy E

2 2

2 eff

kE V
m

 k


 g E dE

Sphere for 
energy
E+dE



Density of states in energy

The radius of the inner sphere 

from                           

is

The radius of the outer sphere 
is k+dk, where

kx

ky 2
L


k

dk
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2 eff

kE V
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2 effm
k E V 



dkdk dE
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Density of states in energy

From

we deduce

so the volume of the spherical 
shell in k-space is                            

kx

ky 2
L


dk

k
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k E V 
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Density of states in energy

Since the density of states in k-
space is

the total number of k-states 
in this spherical shell is kx

ky 2
L


dk

k
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Density of states in energy

We now introduce the idea that 
the electron has two possible 
spin states, so
the number of states between 

energy E and E+dE is 

i.e., 
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ky 2
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dk
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Density of states in energy

This gives the classic “E1/2” 
density of states

As the energy E rises above the 
energy of the bottom of the 
“parabola” 
the density of states rises as 

the square root of the extra 
energy
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Quantum well structures

Electrons and holes both see “lower” energies in the well
“particle in a box” quantum confinement in one 
direction

substrate 
(GaAs)

AlGaAs “barrier”
GaAs “well”
e.g., 10 nm

valence 
band

well barrierbarrier

conduction 
band



Separation of the quantum well problem

The eigenstates of a particle (electron or hole) 
will be “particle in a box” states in the z
direction

with envelope wavefunction
and unconstrained "free" plane-wave 

motion 
in the two directions in the plane of 
the quantum well layer

with wavevector kxy
We see this by formal separation of the problem 

( )n z



Separation of the quantum well problem

The Schrödinger equation for the envelope function is

where          is only a function of z
For quantum-confined structures such as 

quantum wires or 
quantum boxes or “dots” 

the potential would be a function of  
two directions or 

three directions, respectively
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Separation of the quantum well problem

We formally rewrite the envelope function equation as

where 

We postulate a separation

where                   is the electron position in the 
quantum well plane
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2
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Separation of the quantum well problem

Substituting this form
into the envelope function Schrödinger equation

and dividing by this form throughout, leads to

     n xy xyz  r r
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Separation of the quantum well problem

We can formally separate this equation 

as

with a separation constant we have chosen as Exy
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Separation of the quantum well problem

The left part of 

gives

which is simply solved for the “in-plane” motion

with
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Separation of the quantum well problem
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The right part of

with the choice 

gives

which is a simple “particle in a box” equation for 
a particle of effective mass meff in an effective 
potential V(z)

n xyE E E 

       
2 2

22 n n n n
eff

d z V z z E z
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Subbands

The total allowed energies are 
the energies En for the 

particle in a box energies 
plus the additional energy   
associated with the in-
plane motion

Instead of discrete energy 
levels
we have so called "subbands"

Note that the bottom of each 
subband has the energy En

kx

ky
E

n = 1

n = 2

n = 3
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Quantum well density of states

Just as for the bulk case
we formally impose periodic boundary conditions in 
the x and y directions 

This gives us allowed values of the wavevector 
in the x direction, kx, spaced by 2/Lx
in the y direction, ky, spaced by 2/Ly

Each kxy state occupies a kxy space “area” of (2)2/Aqw
where Aqw = LxLy

and there is one allowed value of kxy for each unit 
cell in the x-y plane of the quantum well



Quantum well density of states

Since each kxy state occupies a kxy space “area” of 
(2)2/Aqw

the number of states in a small area d2kxy of kxy space 
is (Aqw/(2)2) d2kxy

Hence we can usefully define a (kxy space) density of 
states per unit (real) area, g2D(kxy), given by
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1
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D xyg


k



Quantum well density of states

The number of k states 
between energies Exy and 
Exy + dExy, i.e., g2D(Exy)dExy
is the number of states in 

kxy-space in the annular ring
of area 2kxydkxy

between kxy and kxy + dkxy

where

kx

ky 2
L


dkxy

kxy

xy
xy xy

xy

dk
dk dE

dE
 

   
 



Quantum well density of states

Using the assumed parabolic relation between Exy and 
kxy, we have therefore, 

now multiplying by 2 to include the different spins 

i.e., 
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Quantum well density of states

This relation 

means that the density of 
states in energy within a 
given subband
is a constant, independent 
of energy
within that subband

for all Exy > 0
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Quantum well density of states

It is therefore a "step" density 
of states
starting at Exy = 0

i.e., starting at E = En
Hence, the total density of 

states as a function of the 
energy E 
rises as a series of steps

with a new step starting as 
we reach each En
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Quantum well density of states

Plotting the quantum well 
density of states (per unit 
volume)
for a quantum well with 

infinitely high walls 
it "touches" the bulk 
density of states (per unit 
volume) 
at the edge of the first 

step
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Quantum well density of states

Furthermore, since the steps 
are spaced quadratically in 
energy 
and the bulk density of states 

is a "parabola on its side" 
the quantum well (volume) 
density of states touches 
the bulk (volume) density 
of states 
at the corner of each step 
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Quantum well density of states

If we started to increase the 
thickness of the quantum well
the steps would get closer 

and closer together 
but their corners would still 
touch the bulk curve
so that, as the quantum 

well became very thick 
its density of states 

would tend to that of 
the bulk material
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12.1 Optical absorption in 
semiconductors

Slides: Video 12.1.2 Perturbing 
Hamiltonian 
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for Scientists and Engineers 

Section 8.10 through “Form of the 
perturbing …” (with Appendix E 
for optional background)
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Direct optical absorption

The transition rate for absorption
from an initial electron state    

with energy Ei
to a final state         with energy Ef

with an oscillating perturbation of 
angular frequency 
is, from Fermi’s Golden Rule

0
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Direct optical absorption

In Fermi’s Golden Rule

is the amplitude of a perturbation oscillating in 
time at (angular) frequency , such as is defined in 

where E is the electric field in the z direction
We are also now interested in the spatial variation of  

through the spatial dependence of the 
electromagnetic wave amplitude, as explicitly in
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Direct optical absorption

The matrix element in Fermi’s Golden Rule, 
can now be written explicitly as

where          and           are, respectively, 
the wave functions of the initial and final states

and we explicitly allow             to vary in space 
because the electromagnetic field at 
(angular) frequency  will vary in space

ˆ
f po iH 

     * 3ˆ ˆ
f po i f po iH H d     r r r r

 ˆ
poH r

( )i r ( )f r



Perturbing Hamiltonian for electromagnetic field

Though we could continue with the “electric dipole” 
version of the perturbing Hamiltonian

we can connect to other semiconductor phenomena 
if we switch to using the magnetic vector potential 

A instead of the electric field, and write

where mo is the usual free electron mass and 
is the momentum operator

(Note: both the electric and magnetic fields can be 
deduced from the vector potential A)

   ˆ , ,pH t e t zr rE

 ˆ ˆ,p
o

eH t
m

  r A p

ˆ i  p 



Perturbing Hamiltonian for electromagnetic field

Now we write the vector potential of a wave at 
frequency 

Here kop is the wave vector of the optical field inside 
the material, and 

we take the field to be linearly polarized 
with its electric vector in the direction of the unit 

vector e

   0 0exp exp
2 2op op
A Ai t i t                

A e k r k r



Perturbing Hamiltonian for electromagnetic field

Now in

we are going to keep only the term in
because we know from our previous discussion of 

Fermi’s Golden Rule that this term
corresponds to absorption rather than emission

So the spatial part of our perturbing Hamiltonian is

and the total perturbing Hamiltonian is 

   0 0exp exp
2 2op op
A Ai t i t                

A e k r k r

 exp i t
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ˆ ˆ/ 2 exppo o opH e m A i   r k r e p
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Direct optical absorption

To proceed, we need to know 
the initial and final wavefunctions 

We are most interested in the 
transitions between 
an initial valence band state        and  
a final conduction band state

We presume that we can write them 
as “single-electron” Bloch states
and to calculate matrix elements

we must normalize them 
0
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Normalizing Bloch functions

With normalization constants Bi and Bf, we have

and

Here, and below, for simplicity
we presume uv and uc do not depend on k

a good approximation for an “allowed” process
so we omit the “k” subscripts on uv and uc

We do, however, now explicitly allow the conduction (uv) 
and valence (uc) unit cell functions to be different

     expi i v vB u i  r r k r

     expf f c cB u i  r r k r



Normalizing Bloch functions

We choose         and         to be normalized over a unit cell 
and similarly for  

Hence, normalizing          and          , we have, e.g., for  

where V is the volume of the crystal
where N is the number of unit cells and

Hence we have 
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Matrix element for Fermi’s Golden Rule

With

and

the matrix element for Fermi’s Golden Rule is

     1 expi v vu i
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Matrix element for Fermi’s Golden Rule

We are interested in transitions involving states near the 
center of the Brillouin zone, so 

and      are both    
Though strictly               operates on all of  

with these small values of kv
changes very slowly compared to the 

rate of change of  
so, at least as a first approximation, we take

vk ck / a
ˆ i  p     expv vu i r k r

 exp vi k r
 vu r
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Matrix element for Fermi’s Golden Rule

For definiteness, we choose the polarization direction 
(i.e., unit vector e) in the x direction 

x will be one of the directions perpendicular to the 
propagation of the electromagnetic wave

With this choice and our approximations so far
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Matrix element for Fermi’s Golden Rule

The optical wave vector kop corresponds to wavelengths
of 100's of nm or more (even inside the material) 

A typical crystal unit cell size is, e.g., a ~ 0.5 nm
so                    is slowly varying over a unit cell 

Hence, since we have already restricted       and       to 
being small by assumption   

then the entire factor   

varies slowly over the length scale, a, of a unit cell

 exp opi k r

 exp v c opi    k k k r

vk ck



Matrix element for Fermi’s Golden Rule

As a result, we can approximately separate the integral 

into a sum of integrals over a unit cell
treating the value of   
as approximately constant within a unit cell, i.e.,

where Rm is the position of (the center of) the mth unit cell

and 
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Matrix element for Fermi’s Golden Rule

The summation in

will average approximately to zero unless
because otherwise 

the function                                     is oscillatory 
(Note this condition                           can be seen to 

correspond to conservation of crystal momentum     )
In this case, the sum becomes
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Fermi’s Golden Rule transition rate

Hence

becomes

and Fermi’s Golden Rule gives a transition rate 
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Direct valence to conduction band absorption

Hence, for an incident optical wave of frequency , 
wavevector kop and magnetic vector potential 
amplitude Ao

for an initial state of energy Ei and Bloch wavevector 
kv in the valence band

and a final state of energy Ef and Bloch wavevector kc
in the conduction band

if and only if                          , we have a “direct 
transition rate”
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Direct valence to conduction band absorption

Note also that the transition rate 

is proportional to 
a (squared) matrix element,  
the optical intensity (which is proportional to     ) 

and hence to the average arrival rate of photons 
in the semiconductor (per unit area)
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12.1 Optical absorption in 
semiconductors

Slides: Video 12.1.6 Transitioning 
from sums to integrals  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 5.3
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Transitioning from sums to integrals

Suppose we have some states
indexed by an integer q

For each of these states
some quantity 

such as energy
has a value fq

Hence, summing all of these quantities would 
give a result

q
q

S f



Transitioning from sums to integrals

It could be that  fq can also equivalently be 
written as a function of some parameter u

such as momentum
that takes on some value uq for each q

i.e.,
e.g., fq might be the energy 
associated with momentum uq

and q might be indexing all the 
allowed values of k

So, we could write 

( )q qf f u

( )q
q

S f u



Transitioning from sums to integrals

Suppose now that the uq and the fq
are very closely spaced as we change q

and vary relatively smoothly with q
We suppose that this smooth change of uq with q is 

such that 
we can approximately represent u as some 
smooth and differentiable function of a 
continuous variable q

i.e.,
that is the same as uq for all integer values of q

 u q



Transitioning from sums to integrals

We can define the difference between two specific 
adjacent values as

With
then, trivially

Because of the presumed “smoothness” of 

where in the last step we use the fact

1q q
u du duu u u q q
q dq dq

  
    

1q qu u u  

 1q q q   
uu q
q

 




 u q

 1 1q q q    



Transitioning from sums to integrals

So, considering some small range u
within which the separation u between 
adjacent values of u

was approximately constant
the number of different terms in the 

sum that would lie within that range 
is 

 / / /u u u du dq 



Transitioning from sums to integrals

Equivalently, defining a density of states

we could say, equivalently, that the number of terms 

in the sum that lie within u is

Hence, instead of summing over q  we could instead 
consider a set of values of u each separated by u

and spanning the same range
and write the sum over all those values

i.e.,  

   
1
/

g u
du dq
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u u g u u
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Transitioning from sums to integrals

Finally we formally let u in 
become very small

so we can approximate the sum by an integral
to obtain

So in going from a sum to an integral, we
insert the density of states in the integration variable into 
the integrand

i.e., 

(The integral limits must correspond to the limits in the sum)

   
u

S f u g u u

   S f u g u du

 ... ...
q

g u du 





12.1 Optical absorption in 
semiconductors

Slides: Video 12.1.8 Total transition 
rate  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 8.10 subsection “Direct 
valence …” starting above Eq. 
8.99 through Eq. 8.107
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Total transition rate

is transition rate from 
an initial valence band state with Bloch wavevector kv
to the conduction band state with wave vector

To get the total transition rate
and hence the optical absorption rate of photons

we need to sum over all the possible initial and 
final states 

 
2 2

2
2

2
4

o
abs cv f i

o

e Aw p E E
m

     


c v op k k k



Total transition rate

The total transition rate WTOT is formally 

where we presume         is ~ independent of k
We have shown above that 

for a given initial state with wave vector kv
the only final state possible is the conduction band 

state with
With this knowledge

we can drop the separate sum over final states
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Total transition rate

Since        is generally a very small fraction of the size of the 
Brillouin zone

we will now neglect it for simplicity, taking  
This negligible size of the optical wavevector means that 

the direct optical transitions are essentially “vertical” on 
the energy-momentum diagram 

Hence, for a given initial state kv
only one term remains in the sum over the final states 

namely, the one with
From now on, we drop the suffixes “v” and “c”, using just k

opk

c vk k

c vk k



Total transition rate

Hence the total transition rate becomes

now including a sum over the two possible spin states
Now we formally rewrite (considering unit volume)

where          is the density of states in k space 
We will next change variables in the integral 

to the energy  
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Direct optical absorption

Assuming parabolic bands
with meffe and meffh as the hole 
and electron effective masses
both positive by convention

we can define the transition 
energy

0 k

valence 
band

conduction 
band

a


a
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Dense sets of possible transitions

Now we can think of a set of possible 
transitions
corresponding to transitions 

between a specific k-state in the 
valence band 
and the corresponding k-state in 
the conduction band
as sketched here for some 

portion of the Brillouin zone



Dense sets of possible transitions

Here, in a one-dimensional 
visualization
the transition energy EJ goes from 

at one end, to 
at the other

 1JE k
 1JE k k   1JE k  1JE k k 

1k 1k k 



Dense sets of possible transitions

In what follows, we are interested in
the number of different transitions 

possible 
in a range of photon energies

from            to 
that is, within a range

in the vicinity of 

 1JE k  1JE k k 

   1 1J J JE E k k E k    

 1JE k

 1JE k  1JE k k 

1k 1k k 



Dense sets of possible transitions

The difference in transition energies 
from one side of this diagram to the 
other 
is the sum of two parts

one from

the other from 

 1JE k  1JE k k 

1k 1k k 
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Dense sets of possible transitions

We presume this set of possible 
transitions is very dense
with density              per unit 

energy near photon energy
giving                   transitions 
within energy range E

is known as a 
“joint density of states” 

since it refers to transitions 
between states


 Jg 

 Jg 

 Jg E   1JE k
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Joint density of states

So, we can write the transition energies as 

where we have introduced a convenient parameter
a “reduced effective mass”
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Joint density of states

We can then define a “joint density of states”
the number of transitions per unit (photon) energy

where we view EJ as being a function of k
Like the energy density of states in a band, we can write

including a factor of 2 for spin
where          is the density of states in k-space

just as before 

 J Jg E

3( ) 2 ( )J J Jg E dE g d k k

 g k



Joint density of states

Because our expression for the transition energy 

has exactly the same form as the energy of k-states in 
a given parabolic band

we now follow mathematically identical arguments 
to those used to deduce 

the density of states in energy 
from the density of states in k-space

2 2
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2J g
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kE E


 k 



Joint density of states

Now we deduce
the density of transitions per unit photon energy

now called the “joint density of states”
obtaining, for photon energy greater than the 

bandgap energy
i.e.,

the “joint density of states”  
J gE E
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Total transition rate

So, from

using

with

then 
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Total transition rate

Integrating to eliminate the delta function in

we finally obtain, for

Hence we finally see how Fermi’s Golden Rule can be 
used with an appropriate density of states 

to give a total transition rate 
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12.1 Optical absorption in 
semiconductors

Slides: Video 12.1.10 Absorption 
coefficient  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 8.10 starting just above 
Eq. 8.108
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Absorption coefficient

The final step is to relate the absorption coefficient, 
the probability of absorption of a photon per unit length

to the total transition rate per unit volume WTOT
With photon energy 

the number of photons incident per unit area per second 
is, by definition

where I is the optical intensity (power per unit area)
So the probability a photon is absorbed per unit length is 

/pn I  



TOT TOT

p

W W
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Absorption coefficient

From electromagnetism, we can deduce the intensity 
from the vector potential amplitude through

where
nr is the refractive index
c is the velocity of light, and   
o is the permittivity of free space (electric constant)
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Absorption coefficient

Hence

The parameter                             (~ 20 eV in many 
semiconductors) is often used in calculations      

in which case we can rewrite
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Optical absorption

In direct gap semiconductors
the optical absorption in this 

model 
rises as                   above 
the bandgap energy Eg

This model is used as the 
starting point for optical 
calculations in 
semiconductors 
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12.2 Methods for one-dimensional 
problems

Slides: Video 12.2.1 Introduction to 
methods for one-dimensional 
problems  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section Chapter 11 introduction
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12.2 Methods for one-dimensional 
problems

Slides: Video 12.2.2 Tunneling 
currents  

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 11.1
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Tunneling rates

Consider a simple rectangular 
barrier
with incident electron 

energy E
below the (peak) barrier 

height Vo
i.e., E < Vo

We also presume no electrons 
incident from the right
so there are only transmitted 

electrons there

reflected 
electrons

incident 
electrons transmitted 

electrons

–Lz/2 Lz/2

Vo

( )L
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Tunneling rates

We could have a more 
complicated barrier
still with E < Vo

but possibly with a 
different potential on 
the right 
and different 

wavevector kR

reflected 
electrons

Vo

( )L
ikz ikz

z
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   Rik z
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electrons transmitted 
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Tunneling rates

Suppose we have found the 
relations between the 
amplitudes of the
incident, A, 
reflected, B, and 
transmitted, F, waves

reflected 
electrons
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ikz ikz
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z z
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  ikz
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Tunneling rates

Suppose we have found the 
relations between the 
amplitudes of the
incident, A, 
reflected, B, and 
transmitted, F, waves

in either case
How do we relate these to 

actual electron currents?

reflected 
electrons

Vo
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R z Fe 

incident 
electrons transmitted 

electrons



Evaluation of tunneling current

The particle current density in quantum mechanics is

where                   is the time-dependent wavefunction
If we consider particles of well-defined energy E

the wavefunction is of the form 
In the products            and           ,  

the term                     is multiplied by its complex 
conjugate to give 1, so we then have

 2p
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Evaluation of tunneling current

If we consider only a one-dimensional problem
e.g., for a potential varying only in the z direction

we only need to calculate the current in the z direction
which we can call jp

so we simplify
to just

where                 is now just a spatial 
wavefunction varying in z

 2p
i
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 2p
ij
m

       


 z 



Evaluation of tunneling current

For a simple barrier
with the same potential on 

the left and the right
which we take to be zero 
for simplicity
for a particle of mass m

and energy E
we have, as usual
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Evaluation of tunneling current

With the wave on the right in 
the form

from

noting that

and similarly

we have 

reflected 
electrons
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Evaluation of tunneling current

On the left, with
from

we have

Note that all the spatially oscillating terms cancel
The net current is not varying spatially on the left 
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Evaluation of tunneling current

Since we have deduced  

we can therefore consider 
as the forward 

current on the left and 
as the reflected or 

backward current
adding the two to get the 

net current
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Relation to group velocity

For
where  is the frequency 

associated with E, gives
group velocity

So the currents can be written
forward
backward
transmitted

though group velocity is not 
required for our argument
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Evaluation of tunneling current

With these currents
forward
backward

the fraction transmitted by the 
barrier can be written as
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electrons

( )L
ikz ikz

z

Ae Be








 B
z z

z

Ce De 







  ikz

R z Fe 

incident 
electrons transmitted 

electrons

–Lz/2 Lz/2

Vo
2 /k A m
2 /k B m

2 2

2

current not reflected
incident forward current
A B

A

 






Evaluation of tunneling current

It might seem more obvious to 
write, with currents
forward
transmitted

that the fraction transmitted is
reflected 
electrons
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Evaluation of tunneling current

For a barrier with the same 
potential and material on 
both sides
these two expressions

and

give the same answers
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Tunneling rates

But with different potential or 
material on the right
the group velocity may be 

different on the right
or might not be defined in 
some complicated case

While we might handle that

avoids these issues
and is often otherwise just 
as easy to calculate 
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Evaluation of tunneling current

For example
in field-emission tunneling

the barrier may continue its 
slope
giving no constant group 

velocity on the right
Here, however,

still works 
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12.2 Methods for one-dimensional 
problems

Slides: Video 12.2.4 Transfer matrix 
method   

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 11.2 up to “Calculation of 
eigenenergies …”
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Transfer matrix method

We presume that the potential 
is a series of steps
This could be an actual step-

like potential
or we could be 
approximating some 
continuously varying 
potential V

z

Step-wise 
approximation 

to V(z)

Actual V(z)



Transfer matrix method

We therefore reduce the 
problem to that of 
waves within a simple 

constant potential 
which are either sinusoidal 
or exponential
together with appropriate 

boundary conditions 
to link the solutions in 

adjacent layers

V

z

Step-wise 
approximation 

to V(z)

Actual V(z)



Transfer matrix method

Consider an electron wave incident on the structure 
from one side, with a particular energy, E

There will be reflected waves
and transmitted waves

N N+1…4321 N+2

N N+14321 N-1

layer

interface

…reflected 
wave

transmitted 
wave

incident 
wave

N layers



Transfer matrix method

For each layer in the structure, we derive a matrix that 
relates the forward and backward amplitudes

Am and Bm, just to the right of the (m-1)th interface, to
Am+1 and Bm+1, just to the right of the mth interface 

transmitted 
wave

N N+1…4321 N+2

N N+14321 N-1

layer

interface

…reflected 
wave

incident 
wave

N layers



Transfer matrix method

By multiplying those matrices together for all of the layers 
we will construct a single "transfer matrix" for the whole 
structure 

enabling us to analyze the entire multilayer structure

transmitted 
wave
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layer
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…reflected 
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Transfer matrix method

In this formalism, each layer m will have 
a potential energy Vm
a thickness dm
and possibly a mass or effective mass mfm

transmitted 
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…

…reflected 
wave
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wave
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Transfer matrix method

For interfaces 2 and higher, the position of the mth interface 
relative to interface 1, e.g., z2=d2, z3=d2+d3, etc., is

transmitted 
wave

…

…reflected 
wave

incident 
wave

N layers

d2 d4 dN dN+1d3

N N+14321 N-1interface

2

m

m q
q
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Transfer matrix method

In any given layer, if the particle energy E >Vm
we know we will have in general both 

a "forward" propagating wave 
and    

a "backward" propagating wave 
where A and B are complex numbers for 

the forward and backward wave amplitudes 
In this case

where mfm is the mass of the particle in that layer 

 1expo m mA A ik z z    

 1expo m mB B ik z z     

 2

2 fm
m m

m
k E V 





Transfer matrix method

Similarly, if the particle energy E <Vm
we know we will have in general both 

a "forward" decaying “wave” 
and    

a "backward" decaying “wave” 
where A and B are complex numbers for 

the forward and backward “wave” amplitudes 
In this case

where mfm is the mass of the particle in that layer 

 1expo m mA A z z     

 1expo m mB B z z    

 2

2 fm
m m

m
V E  





Transfer matrix method

Note that for E<Vo if we use the form
we obtain an imaginary km

As long as we choose the positive square root (either 
real or imaginary) in both cases

we can work with only this form
For example, a forward propagating “wave” can then be 

written in the form
for both cases 

E<Vo and E>Vo
and similarly for the backward propagating “wave”

 2

2 fm
m m

m
k E V 
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Transfer matrix method

Now in any layer we have a wave that we can write as

where km can be either real or imaginary 
and is given by

This can greatly simplify the algebra for this 
method

     1 1exp expm m m m m mz A ik z z B ik z z            

 2
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Boundary conditions

Now let us look at the boundary 
conditions in going from 
just inside one layer to the right of 

the boundary to 
just inside the adjacent layer on the 

left of the boundary
For a reason that will become 

apparent later
we will work from right to left in 

setting these up
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Bm

Am+1

Bm+1
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BL

layer
m

layer
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interface
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interface
m+1

dm



Boundary conditions

Using the notation of the figure
for continuity of the wavefunction

for the continuity of  
on either side of the boundary

so at the right interface

where  
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Boundary conditions

In a layered semiconductor structure
we might use continuity of 

for the second boundary condition 
in which case we would obtain  

and we would use this m in all 
subsequent algebra here
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Boundary conditions

Using                                 and

gives

and
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Boundary conditions

and

can be written in matrix form as
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m
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m m
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Propagation matrix

Now we treat the propagation that 
relates Am and Bm to AL and BL

For a minor formal reason
we calculate the matrices for going 

"backwards" through the structure
For the propagation in layer m

with thickness dm, we have

Am

Bm

Am+1

Bm+1

AL

BL

layer
m

layer
m+1

interface
m

interface
m+1

dm

 expm L m mA A ik d 

 expm L m mB B ik d



Propagation matrix

These relations

can be written in matrix form as

with

Am

Bm

Am+1

Bm+1

AL

BL

layer
m

layer
m+1

interface
m

interface
m+1

dm

 expm L m mA A ik d 

 expm L m mB B ik d

m L
m

m L

A A
B B
   

   
  

P

 
 

exp 0
0 exp

m m
m

m m

ik d
ik d

 
  
 

P



Full transfer matrix

The full transfer matrix, T, for the structure relates 
forward, A1, and backward, B1, “entrance” amplitudes

i.e., just to the left of the first interface
to forward, AN+2, and backward, BN+2, “exit” amplitudes 

i.e., just to the right of the last interface

where

Note that this transfer matrix depends on the energy E
we chose for the calculation of the k’s in each layer 

21

21

N

N

AA
BB





  
   

   
T 1 2 2 3 3 1 1N N T D P D P D P D



In                         and the product

we move progressively from right to left 

Full transfer matrix

interface

N N+1…4321 N+2

N N+14321 N-1

layer

…

propagation matrix PN PN+1…P4P3P2

D4D2 DN DN+1D3D1 DN-1boundary condition 
matrix

B1

A1

BN+2

AN+2

21

21
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N
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T 1 2 2 3 3 1 1N N T D P D P D P D



Calculation of tunneling rates

Having calculated the transfer matrix
for some structure and energy E

we now deduce the fraction of incident particles at 
that energy that are transmitted by the barrier 

We presume no wave incident from the right, so
there is no backward wave amplitude on the right

Hence, for incident forward and backward amplitudes   
A and B respectively, 

and a transmitted amplitude F

11 12

21 22

T T
T T
 

  
 

T

11 12

21 22 0
T TA F
T TB
    

     
    



Calculation of tunneling rates

From                                  we see that              and

and hence the fraction of particles transmitted by this 
barrier is

This approach is well suited for numerical calculations 
being straightforward to program 

It is a very useful practical technique for investigating one-
dimensional potentials and their behavior

11 12

21 22 0
T TA F
T TB
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Calculation of wavefunctions

Note that this method also enables us to calculate the 
wavefunction at any point in the structure

We can readily calculate forward and backward 
amplitudes, Am and Bm, at the left of each layer

Obviously, we have

and similarly, we have in general for any layer 
within the structure

1 2
1 1

1 2

N N
N N

N N

A A
B B

 
 

 

   
   

   
P D
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Calculation of wavefunctions

Given that we know the forward and backward 
amplitudes at the left of layer m from 

then the wavefunction at some point z in that layer 
is the sum of the forward and backward 

wavefunctions as in

2
1 1

2

m N
m m N N N N

m N

A A
B B


 



   
   

   
P D P D P D

     exp expm m m m m mz A ik z z B ik z z           



Calculation of wavefunctions

Note that we could calculate these forward and backward 
amplitudes as intermediate results 

if we progressively evaluate the forward and backward 
amplitudes for each successive layer as in 

rather than evaluating the transfer matrix T itself 
By choosing no inward wave on the right

we can still calculate the transmission probability from 

1
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m m
m m

m m

A A
B B
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Distance (nm)0

Tunneling through a double barrier

This structure shows a resonance in 
the tunneling probability (or 
transmission) 
where the incident energy coincides 

with the energy of a resonance in 
the structure 

If the barriers were infinitely thick 
there would be an eigenstate

approximately at the energy where 
the first resonance occurs
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12.2 Methods for one-dimensional 
problems

Slides: Video 12.2.6 Transfer matrix 
and bound states 

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 11.2 from “Calculation of 
eigenenergies …”



Methods for one-dimensional problems

Transfer matrix and bound states

Quantum mechanics for scientists and engineers David Miller



Eigenenergies of bound states

It is possible to use the transfer 
matrix itself to find eigenstates in 
cases of truly bound states

For example, if 
the first layer (layer 1) and last 
layer (layer N+2) are infinitely 
thick, and 

have potentials V1 and VN+2
there may be values of E<V1, VN+2

for which there are bound 
eigenstates

V1 VN+2

E



Eigenenergies of bound states

The wavefunctions would be 
exponentially decaying

into the first and last layers
So the forward amplitude on the left 

i.e., no exponentially growing wave 
to the left of the structure and

the  backward amplitude on the right  

i.e., no exponentially growing wave 
to the right of the structure

V1 VN+2

E
1 0A 

2 0NB  



Eigenenergies of bound states

So for a bound eigenstate, we have

This can only be the case if 

This condition can be used 
to solve analytically for 
eigenenergies in simple 
structures 

or in a numerical search for 
eigenenergies by varying E

V1 VN+2

E

11 122 2

1 21 22

0
0 0
N NT TA A

B T T
       

       
      

T
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12.2 Methods for one-dimensional 
problems

Slides: Video 12.2.8 Penetration 
factor for slowly varying barriers 

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 11.3



Methods for one-dimensional problems

Penetration factor for slowly varying 
barriers

Quantum mechanics for scientists and engineers David Miller



Penetration factor for slowly varying barriers

Consider a slowly varying potential 
approximated as a series of steps

For simplicity
we choose the “entering” and “exiting” materials 

as having the same energy

“entering” material “exiting” material
incident wave

reflected wave

transmitted wave



Penetration factor for slowly varying barriers

We presume for an energy E of interest  
for each layer inside the structure, and that 

we have chosen the layers sufficiently thin in our 
calculation so that 

at least for interfaces within the structure, 

mE V

1m mk k 

reflected wave

“entering” material “exiting” material
incident wave transmitted wave

energy E of 
interest



Penetration factor for slowly varying barriers

Then, for interfaces within the structure 
the boundary condition matrix 

with                      by assumption

can be approximated as the identity matrix

1 1
2 2

1 1
2 2

m m

m
m m
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1 0
0 1mD

 
  
 

 
 



Penetration factor for slowly varying barriers

With internal boundary condition matrices 
therefore approximated by identity matrices

we can omit them, so the transfer matrix 
becomes

We have left in the boundary condition 
matrices for the beginning and end of 
the structure

where the potential may be quite 
discontinuous

1 2 3 1 1N N N T D P P P P D



Product of diagonal matrices

Note that the product of two diagonal matrices
is simply a diagonal matrix

whose elements are the products of the 
corresponding diagonal elements

For example

0 0 0
0 0 0
a b ab

c d cd
     

     
     



Penetration factor for slowly varying barriers

Since the propagation matrices are all diagonal
and previously shown to be of the form

then 

where
2 3 1

1/ 0
0N N

G
G

 
  
 

P P P P





1 1 1

22 2

exp( ) exp( ) exp
N N N

q q q q q q
qq q

G ik d d d 
  

 

 
     

 
 

 
 

exp 0
0 exp

m m
m

m m

ik d
ik d

 
  
 

P



Penetration factor for slowly varying barriers

Now, if we have chosen the layers to be sufficiently thin 
we may take the summation to be approximately equal 

to an integral, i.e.,

where                   is the total structure thickness 
which is taken to start on the left at 

Hence

where         is the potential as a function of position z
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2 0

totzN

q q
q

d z dz 




 
1( )tot Nz z 

0z 

    2
0 0

2
exp exp

tot totz z
fm

G z dz V z E dz
  

           
 



 V z



Penetration factor for slowly varying barriers

With first and last boundary condition matrices

and

then 1 2 3 1 1

1 11 1

1 1 1 1
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Penetration factor for slowly varying barriers

So

1 11 1

1 1 1 1
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Penetration factor for slowly varying barriers

Since the barrier is presumed thick
is presumed small, so

From                                ,

so 

  1 11 11 1
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Penetration factor for slowly varying barriers

In this frequently used expression for tunneling 
probability or “penetration factor”

the prefactor contains the input and output 
boundary conditions and 

the exponential approximately expresses the 
“penetration” within the barrier 
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Transfer Matrix Calculation

David A. B. Miller, January 2015

The following sheet is technically a program written for the Mathcad software. In its
original form, it is a live sheet that will recalculate if you change the numbers, for example.
The Mathcad software is particularly good for creating active sheets that can be laid out in
relatively conventional and intelligible document-like fashions. Blocks such as this one are
simply "inactive" text that are ignored from the point of view of calculation. Simple
non-executable graphics objects can also be inserted. 

The syntax of Mathcad is mostly fairly self-evident. The characters ":=" mean that what is
on the left is assigned to be what is on the right. The "=" character on its own causes the
program to write out on the right the value or values of what is on the left.  

Now we can start the program proper, which is designed to plot out the behavior of a
double barrier "resonant tunneling" structure as a function of the incident electron energy. 

This first "ORIGIN:=1" statement below formally sets the "origin" of all arrays to start
indexing from 1 rather than 0. 
ORIGIN 1

We wish to calculate the transfer matrix for a structure with a series of steps of potential as
shown in the figure.

...
“entering”
material

“exiting”
material

...

N layers

layer 1 2 3 4 N+1N N+2

interface 1 2 3 4 N-1 N N+1

incident wave
reflected wave

transmitted
wave

Formal construction of matrices

We first define the necessary fundamental constants.

hbar 1.055 10
34

 mo 9.1095 10
31

 q 1.602 10
19



For a given layer m of potential energy Vm, mass mfm, and thickness dm, we can define

the necessary quantities required by the algebra. To allow the use of  mass units of the
free electron mass mo, thickness units of nanometers, and energy units of electron volts,

we define a units scaling parameter s by



s
2q mo 10

18


hbar
2

 which leads to the numerical value s 26.223

so we can define a function for calculating the wavevector (which may be real or
imaginary) for a given layer, formally as a function of the energy E of interest (in elecron
volts), the potential Vm in a layer (in electron volts), and the effective mass mfm (in units
of the free electron mass)

k E Vm mfm( ) s mfm E Vm( )

We can also formally define a function to calculate the quantity Δ that comes from the
algebra to set up the transfer matrix method 

Δ E Vm mfm Vm1 mfm1( ) k E Vm1 mfm1( )
mfm

k E Vm mfm( ) mfm1


where by mfm we mean mfm and by mfm1 we mean mfm+1, i.e., the quantity in the layer

m+1, and similarly for Vm and Vm1.

This leads to a boundary condition matrix, also formally defined as a function of these
parameters

D E Vm mfm Vm1 mfm1( )

1 Δ E Vm mfm Vm1 mfm1( )

1 Δ E Vm mfm Vm1 mfm1( )

1 Δ E Vm mfm Vm1 mfm1( )

1 Δ E Vm mfm Vm1 mfm1( )








2


relating the forward and backward amplitudes just inside the right side of layer m to
those just inside the layer m+1. 

We can also define the propagation matrix in layer m that also comes from the transfer
matrix algebra, again as a function of the various parameters, including now the thickness
dm of the layer of interest.  

P E Vm mfm dm( )
exp i k E Vm mfm( ) dm( )

0

0

exp i k E Vm mfm( ) dm( )











Having  set up all these functions, for a given structure, we will have to choose appropriate
parameters and proceed to calculate the tranfer matrix for a given energy E of interest.

Choice of parameters

First, we choose the number N of layers in the structure (not including the "entering" and
"exiting" layers)

N 3



Now we explicitly input the values of the parameters. For each layer, we have to choose
the potential Vm, the mass mfm, and the thickness dm. As stated before, we will use mass

units of the free electron mass mo, thickness units of nanometers, and energy units of

electron volts for inputting the parameters. 

mf
1

1 Vm
1

0

mf
2

1 Vm
2

0.9 dm
2

0.3

mf
3

1 Vm
3

0 dm
3

.7

mf
4

1 Vm
4

0.9 dm
4

0.3

mf
5

1 Vm
5

0

Now we can formally construct the overall transfer matrix by multiplying the various
constituent matrices. Incidentally, when setting such a matrix multiplication up in some
software, do make sure you understand what order the matrices are being multiplied in.
Checking this with some explicit examples may be worthwhile. It is not always obvious
otherwise what a specific piece of software will actually do. 

T E( ) D E Vm
1

 mf
1

 Vm
2

 mf
2

 
2

N 1

q

P E Vm
q

 mf
q

 dm
q

  D E Vm
q

 mf
q

 Vm
q 1 mf

q 1  




and we can define the transmission fraction by

η E( ) 1
T E( )

2 1 2

T E( )
1 1 2



To plot up the resulting transmission for a range of values of energy, we can define a
"range variable" EE

EE .0025 .0075 1.9875

Then using built-in capabilities of the Mathcad program, we can have it plot up for us the
transmission fraction as a function of that range variable.

0 0.5 1 1.5 2
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1

η EE( )

EE



Graphing the probability density

Now that we have completed the core calculation method for the transfer matrix, we can
go on to plot out the resulting probability densities. Mathcad handles animations like this
using a built-in variable FRAME. When creating an animation, at "run time" the user
selects an area of the sheet that they want to appear in the video animation, and then
chooses a range of integer values for this FRAME variable. The program will then
recalculate the sheet for each value of FRAME, saving the selected area each time as a
frame in the final video. So this FRAME variable appears here in the formula that sets the
energy value E to be used for the various frames. (Until "run time", FRAME = 0)

Here we avoid setting E equal to zero, which can sometimes cause problems with
functions, starting at the small value 0.01. Then we increment the energy by 0.0125 for
every successive frame of the final video. With 120 frames, this set of values below
would run E up to about 1.5 eV.   

We first formally choose the energy for which we wish to graph the probability density.

EG 0.01 FRAME 0.0125

We next evaluate the forward amplitude in layer 1 (the "entering" layer) on the assumption
of unit forward amplitude (and no backward amplitude) in the exiting layer.

FB1 T EG( )
1

0










Just for interest, we can see what this pair of amplitudes is for the current value of EG.
The upper value is the forward amplitude and the lower value is the backward amplitude.

FB1
23.326 100.991i

103.645i










We will capture the forward amplitude to use it as a number for renormalizing the results. 

Renorm FB1
1



For example, here the value is 

Renorm 23.326 100.991i

We will use this to normalize all other results to a unit forward amplitude in layer 1. For
future use, we start by constructing a normalized version of this first amplitude itself.

FB1norm
FB1

Renorm
 FB1norm

1

0.974 0.225i










Now we construct a function that gives us the forward and backward amplitudes on the
left of any layer with index greater than 1. Formally, this function is multiplying
progressively from the right "back" to the interface of interest, renormlaizing the result to
correspond to unit input amplitude.



FB p( )
p

N 1

q

P EG Vm
q

 mf
q

 dm
q

  D EG Vm
q

 mf
q

 Vm
q 1 mf

q 1  












1

0



















Renorm


Now we construct a vector that gives us the distance from the left of the structure (i.e.,
from the position of the first interface on the left) at the left of any layer of the structure.
For reasons of mathematical convenience in this formula, we first define dm1=0, though
we do not in fact restrict this layer to zero thickness.

dm
1

0

dp p( )

1

p 1

q

dm
q





Now we construct a function that tells us, for any given position z what layer of the
structure we are in. (In Mathcad, functions based on programs require a specific form of
syntax, though again, the should be relatively self-evident to read if not to program.) 

pp z( ) 1 z 0if

N 2( ) z dp N 2( )if

qq 2

qq qq 1

dp qq( ) zwhile

qq 1

otherwise

otherwise



Now we construct a function that gives us the wavefunction at any point z in the structure.
Note that, at any given point, the wavefunction is the sum of the forward and backward
propagating parts.



ψ z( ) FB1norm
1

exp i k EG Vm
1

 mf
1

  z  FB1norm
2

exp i k EG Vm
1

 mf
1

  z   z 0if

1

Renorm






exp i k EG Vm
N 2 mf

N 2  z dp N 2( )( )  z dp N 2( )if

jj pp z( )

kz k EG Vm
jj

 mf
jj

  z dp jj( )( )

FB jj( )
1

exp i kz( ) FB jj( )
2

exp i kz( )

otherwise

otherwise



Hence we have for the probability density

P z( ) ψ z( )


ψ z( )

Now we can graph the probability density. We define minimum and maximum values of
position z for plotting, and an appropriate range variable. We extend z to a negative
range so we can see the standing waves to the left of the input. 

zmin 2 zmax 2

zz zmin zmin 0.01 zmax

We also prepare mathematical vectors containing the potential values and the positions of
the interfaces in a form suitable for plotting the structure itself. These employ a simple
mathematical trick involving the "ceiling" function and a "doubled" range of the variable k
so that we can directly plot the potential structure for graphics purposes. 

Vp kk( ) Vm
1

kk 1if

Vm
N 2 kk 2 N 2if

Vm
ceil

kk

2







otherwise

otherwise


Ddp kk( ) zmin kk 2if

zmax kk 2 N 3if

dp ceil
kk 1

2












otherwise

otherwise



kk 1 2N 4

In the graphs below, we have shown the axes and the arguments to show exactly what is
being plotted. For final animations, these can be suppressed (see the graphics on the final
page). When running the actual animation at "run time" the FRAME variable is
incremented to generate a progression of different graphs below, each of which is
recorded as a frame in the overall animation. 
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The graphics versions below have the some of the explicit information suppressed for
clearer graphic presentation for animations. 
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Contents

Define Constants
Outermost loop through all "m" energy values
Inner Loop, Step 1: Initialize transmission boundary condition matrix for first layer
Inner Loop through all remaining layers "n" of the structure (2 through final-1)
Calculate transmission fraction given the resulting transmission matrix for energy
"m"
Create transmission-vs-energy plot
Function to compute the boundary condition matrix between layers "n" and "n+1",
using "delta" for layer n
Function to compute the propagation matrix for layer "n" using the potential,
effective mass, and thickness of this layer

function TransmissionVsEnergyPlot(MF, VM, DM, energy)

if nargin < 4 %Define defaults if no inputs to the function given
    MF = [1,1,1,1,1]; %Effective masses in each layer
    VM = [0,0.9,0,0.9,0]; %Potential in each layer
    DM = [0,0.3,0.7,0.3,0]; %Thickness of each layer

%(note: first and last values
%for infinite layers are not used)

    energy = linspace(0,2,50); %Vector of energies of interest
end

tfrac = zeros(1,length(energy)); %initialize transmission fraction vector

Define Constants

hbar = 1.055*10^-34; %reduced Planck constant
mo = 9.1095*10^-31; %electron mass
q = 1.602*10^-19; %electron charge
s = (2*q*mo*10^-18)/(hbar^2); %useful parameter

Outermost loop through all "m" energy values

for m = 1:length(energy)

Inner Loop, Step 1: Initialize transmission boundary condition matrix for first layer

    k1 = sqrt(s*MF(1)*(energy(m)-VM(1)));
%Calculate "k" for layer "1"

    k2 = sqrt(s*MF(2)*(energy(m)-VM(2)));
%Calculate "k" for layer "2"



    k2 = sqrt(s*MF(2)*(energy(m)-VM(2)));
%Calculate "k" for layer "2"

    delta1 = (k2/k1)*(MF(1)/MF(2));
%Calculate "delta" for layer "1"

    trans = Calculate_Boundary_Condition_Matrix(delta1);
%Begin to construct transmission matrix by creating boundary
%condition matrix between layer 1 and 2

Inner Loop through all remaining layers "n" of the structure (2 through final-1)

for n = 2:length(MF)-1
%Create the propagation matrix and boundary condition matrix
%for each layer and multiply to update the transmission matrix

        kn = sqrt(s*MF(n)*(energy(m)-VM(n)));
%Calculate "k" for layer "n"

        kn1 = sqrt(s*MF(n+1)*(energy(m)-VM(n+1)));
%Calculate "k" for next layer

        deltan = (kn1/kn)*(MF(n)/MF(n+1));
%Calculate "delta" for layer "n"

        LayerMatrixn = Calculate_Propagation_Matrix(kn,DM(n)) ...
            *Calculate_Boundary_Condition_Matrix(deltan);
        trans = trans*LayerMatrixn;

%Multiply to the running matrix product "trans"
%the propagation and boundary condition matrix
%for layer "n"

end

Calculate transmission fraction given the resulting transmission matrix for energy "m"

    tfrac(m) = 1 - abs(trans(2,1))^2/abs(trans(1,1))^2;

end

Create transmission-vs-energy plot

figure;plot(energy,tfrac);
xlabel('Energy');ylabel('Transmission Fraction' );



Function to compute the boundary condition matrix between layers "n" and
"n+1", using "delta" for layer n

function[bcMatrix]=Calculate_Boundary_Condition_Matrix(deltan)

bcMatrix = (1/2)*[1+deltan, 1-deltan; 1-deltan, 1+deltan];

end

Function to compute the propagation matrix for layer "n" using the potential,
effective mass, and thickness of this layer

function[propMatrix]=Calculate_Propagation_Matrix(kn,dmn)

propMatrix = [exp(-1i*kn*dmn), 0; 0, exp(1i*kn*dmn)];
%"1i" is syntax for imaginary unit in MATLAB

end

end



end

Published with MATLAB® 7.12
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Electron spin

Angular momentum and magnetic 
moments

Quantum mechanics for scientists and engineers David Miller



Magnetic moments

Charged particles with angular 
momentum have magnetic 
moments 
Classically, an electron orbiting

with velocity v
in a circular orbit of radius r

as in the Bohr model of the 
hydrogen atom 

has an angular momentum of 
magnitude

oL m vr

r

v



Magnetic moments

We can also write angular 
momentum as a vector
i.e., classically

The electron takes a time   to 
complete an orbit
so it completes             orbits/s 

so the amount of charge passing 
a point on the loop per second
i.e., the current, is 

om   L r p r v
r

v

2 /r v

/ 2I ev r 

/ 2v r



Magnetic moments

We define the magnetic dipole or 
magnetic dipole moment d

a quantity that is essentially the 
strength of a magnet

For any closed current loop

The current loop corresponding to 
the orbit has an area   

r

v

2r

2r
current aread  



Magnetic moments

So, with current   
and area  

an orbiting electron classically has 

or in vector form

pointing towards us in this 
diagram (by the right hand rule)  
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Magnetic moments in magnetic fields

If we apply a magnetic field B
classically the energy of an object with magnetic 
moment d changes by 

Applying B along the z-direction to a hydrogen atom 
will make the angular momentum quantized around 
the z-direction with eigenvalues

or in vector form 
where m goes in integer steps from -l to +l

dE   B

m
ˆm z



Magnetic moments in magnetic fields

Taking a semiclassical model for the moment
with vector angular momentum

and our classical formula
we expect magnetic moments for these electron 

orbits of

where B is called the Bohr magneton
Applying a magnetic field B

we therefore expect energy changes for these states

ˆm z
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Zeeman effect in hydrogen

So, in a hydrogen atom
we might expect an applied magnetic field to 

split the 2l + 1 degenerate energy levels
into 2l + 1 different energies – the Zeeman effect

e.g., a p state (l = 1) would split into 3 levels
We should do this calculation quantum mechanically

e.g., using degenerate perturbation theory 
with perturbing Hamiltonian operator

but the result (neglecting spin) would be 
essentially the same

 ˆ ˆ/ 2p o zH e m BL
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Spin angular momentum

To distinguish spin angular momentum from orbital 
angular momentum 

we use the quantum numbers
s rather than l, and 
 rather than m

To reconcile this with the quantum mechanics of angular 
momentum 

to get  
we need  

2 1 2s  
1/ 2s 



Spin angular momentum

Hence we assign total spin angular momentum
to the electron 

We say that  can take values 
in integer steps from -s to +s

so                 or               , and 
the corresponding z angular momentum 

component in the z direction is  

/ 2s  

1/ 2   1/ 2  





Spin angular momentum

Incidentally, and somewhat confusingly
the spin magnetic moment of the electron is not B

but is instead 
where the so-called gyromagnetic factor  

There is no radius of classical orbit of an electron that 
will give it both

an angular momentum of        and 
a magnetic moment of

further confirming that spin cannot be considered 
as corresponding to a classical orbit of any kind 

e Bg 
2.0023g 

/ 2
/ 2Bg



State vectors for spin angular momentum

Suppose for the moment that we are only 
interested in the spin properties of the 
electron 

Let us go back and consider 
how we would have described an 

angular momentum state 
in the orbital angular momentum case 

without describing it explicitly as a 
function of angle in space



State vectors for orbital angular momentum

Suppose, for example that we considered only 
states with a specific value of l

which we can write as  
In general

such a state would be some linear 
combination of the basis states

corresponding to any of the specific 
allowed values of m, i.e., 

l

,l m

,
l

m
m l

l a l m


 



State vectors for orbital angular momentum

In the case of these states

each of the states          can also be written 
as one of the spherical harmonic 

functions in space
and the resulting linear combination   

can also therefore be written as 
a function of angle in space

l

,l m

,
l

m
m l

l a l m


 



State vectors for orbital angular momentum

We could also, if we wish, write

explicitly as a vector

Note that the set of functions corresponding 
to all the possible values of m for a given l

is a complete set for describing any possible 
function with that value of l

including even the eigenfunctions of   
and     oriented around the other axes

1

1

l

l

l

l

a
a

l
a
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State vectors for spin angular momentum

In the case of the electron spin 
we cannot write the basis functions as functions of 
angle in space 

but we do expect that we can write them using 
the same kind of state and vector formalism 

as we use for other angular momenta
For electron spin that formalism becomes very simple 

Instead of l, we have s
which we know is ½ 

and instead of m we have 



State vectors for spin angular momentum

There are however, now only two basis states 
and   

corresponding to             and                respectively 
Hence, writing our general spin state as we have

where we show another common notation 
with      being the “spin-up” state                , and 

being the “spin-down” state  
The “up” and “down” conventionally refer to the z direction

1/ 2,1/ 2 1/ 2, 1/ 2
1/ 2  1/ 2  

s

1/2 1/21/ 2,1/ 2 1/ 2, 1/ 2s a a  

1/ 2,1/ 2

1/2 1/2a a    1/2

1/2

a
a
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State vectors for spin angular momentum

Any possible spin state of the electron can presumably be 
described this way 

Rather obviously
a state with its magnetic moment in the +z direction 

the “spin-up” state – will be the state  

a state with its magnetic moment in the –z direction 

the “spin-down” state – will be the state 

1
0
 
 
 

0
1
 
 
 



State vectors for spin angular momentum

The choice of unit amplitudes for these states        and  
also assures they are normalized 

Normalization here means assuring that 
the sum of the modulus squared of the two vector 
elements is equal to one

i.e., 
We could also multiply these states by any unit complex 

number 
and they would still be spin-up and spin-down states 
respectively

1
0
 
 
 

0
1
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State vectors for spin angular momentum

We might think that these vectors       and  

can represent only spin-up and spin-down states 
oriented along the z axis 

In fact, these two basis vectors can represent any 
possible spin state of the electron 

including spin states with the magnetic moment 
oriented along the x direction or 
oriented along the y direction

We can show this once we define the spin operators

1
0
 
 
 

0
1
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Commutation relations for spin operators

So now we ask the spin angular momentum operators
which we write as     ,     , and

by analogy with the orbital angular momentum 
operators     ,    , and

to obey a set of commutation relations   

ˆ
xS ˆ

yS ˆ
zS

ˆ
xL ˆ

yL ˆ
zL

ˆ ˆ ˆ,x y zS S i S    

ˆ ˆ ˆ,y z xS S i S    

ˆ ˆ ˆ,z x yS S i S    



Commutation relations for spin operators

Commonly we work with the “dimensionless” operators  
,     , and
from which the spin angular momentum 

magnitude        has been removed,  i.e.,
,                  ,  

giving the set of commutation relations

ˆ x ˆ y ˆ z

ˆˆ 2 /x xS   ˆˆ 2 /y yS   ˆˆ 2 /z zS  

ˆ ˆ ˆ, 2x y zi     
ˆ ˆ ˆ, 2y z xi     
 ˆ ˆ ˆ, 2z x yi  

/ 2



Pauli spin matrices

If we choose to represent the spin function in the vector 
format 

then the operators become represented by matrices
One set of matrix representations of these operators is

Such matrix representations are known as 
Pauli spin matrices

0 1 0 1 0
ˆ ˆ ˆ, ,

1 0 0 0 1x y z

i
i

  
     

            



Paulie spin matrices

There is more than one way we could have chosen these

In fact there is an infinite number of ways 
depending on what axis we choose for the spin 

This set, which we can call the z representation 
is such that the spin-up and spin-down vectors 
defined previously 

are eigenvectors of the     operator
These operators do obey the commutation relations 

0 1 0 1 0
ˆ ˆ ˆ, ,

1 0 0 0 1x y z

i
i

  
     

            

ˆ z



Spin operators

We can write the three Pauli spin matrices as one entity, 
which has components associated with each of the 
coordinate directions x, y, and z

For completeness, by analogy with the     operator
we can also define an     operator 

or a     operator

σ̂

0 1 0 1 0
ˆ ˆ ˆ ˆ

1 0 0 0 1x

i
i

  
     

              
y zσ i j k i j k=

2L̂
2Ŝ

2 2 2 2ˆ ˆ ˆ ˆ
x y zS S S S  

2̂
2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆx y z       σ σ



Spin operators

From the definitions for the Pauli matrices

we see that

and hence that

so any spin ½ vector is an eigenvector of 
with eigenvalue  

0 1 0 1 0
ˆ ˆ ˆ, ,

1 0 0 0 1x y z

i
i

  
     

            

2 2 2 2 1 0
ˆ ˆ ˆ ˆ 3

0 1x y z   
 

     
 

 2 2 2 2 2 21 0 1 03ˆ ˆ ˆ ˆ 1
0 1 0 14x y zS S S S s s
   

        
   

 

2Ŝ
   2 21 3 / 4s s   



Spin and orbital angular momentum operators 

Just as any spin ½ vector is an eigenvector of 
with eigenvalue   

for orbital angular momentum 
any linear combination of spherical harmonics 

corresponding to a given l value 
is an eigenfunction of the     operator

with eigenvalue  
so the spin operator behaviors are still analogous to 

the behavior of orbital angular momentum operators

2Ŝ
   2 21 3 / 4s s   

2L̂
  21l l  
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Visualizing spin states

We can therefore write the general spin state as

at least within an overall phase factor
Since   

the magnitude of this vector is correctly guaranteed 
to be unity 

and the exp(i) factor allows for 
any relative quantum-mechanical phase between the 
two components

       
   
cos / 2

cos / 2 exp sin / 2
exp sin / 2

s i
i
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The Bloch sphere

We now ask for the expectation value
of the Pauli spin operator     with such a state  

obtaining as the result
after some algebra

what we will call 
a “spin polarization” vector Ps

̂

ˆ ˆ ˆ ˆs x y zs s s s s s s s     P i j k

ˆs s
s

sin cos sin sin cos      i j k



The Bloch sphere

E.g., one term in this evaluation of Ps is, explicitly

       
   
cos / 20 1

ˆ cos / 2 exp sin / 2
exp sin / 21 0xs s i

i
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The Bloch sphere

Now

is a vector from the origin 
out to a point on a sphere 
of unit radius
with angle relative to the 

North pole of 
and azimuthal angle 

sin cos sin sin coss       P i j k



Ps

x

y

z





The Bloch sphere

The general spin state   
can be visualized 

in terms of its spin 
polarization vector 

as a vector on a unit 
sphere

The North pole corresponds to 
the state  

and the South pole to state 

x

y

z

Ps





s

ˆs s sP 






The Bloch sphere

This is called the Bloch sphere 
with the angles  and  on 

this sphere
characterizing the spin state 

and the geometrical x, y, and 
z directions corresponding
to the directions of the 
eigenvectors of the 
corresponding spin 
operators

x

y

z

Ps
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Wavefunctions with spin

Thus if  is to be the most complete representation of 
the electron state

including spin effects 
we might write

A function of the form   is called a “spinor”
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Basis functions in combined Hilbert spaces

The basis functions in our new Hilbert space 
are all the products of the basis functions in the 
original separate spaces

For example, if the basis functions for the spatial and 
temporal function were            ,            , …,            , …

then the basis functions when we add spin are

,                 , …,                 , …,

,                 , …,                 , …

 1 ,t r  2 ,t r  ,j t r
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Combining functions in Hilbert spaces for spatial problems

This concept of new basis functions being the products 
of the elements of two basis function sets 

is not exclusively a quantum mechanical one 
E.g., we might represent a classical spatial function 

in one dimensional box of size Lx
as a Fourier series of the form

so we have basis functions of the form

   exp 2 /n x
n

f x a i n x L

 exp 2 / xi n x L



Combining functions in Hilbert spaces for spatial problems

A function in a two-dimensional rectangular box 
of sizes Lx and Ly in the respective coordinate directions

can be represented as a Fourier series

Here the new basis functions 
are the products of the basis functions 

of the two Hilbert spaces 
associated with the two separate problems of 

functions in x and functions in y

     ,
,

, exp 2 / exp 2 /n p x y
n p

g x y a i nx L i py L 
   exp 2 / exp 2 /x yi nx L i py L 



Direct product spaces

A Hilbert space formed by 
combining two other spaces

and making the new basis functions 
the products of the basis functions in the 

different spaces
is called a direct product space 

The spinors exist in a direct product space 
formed by the multiplication of 

the spatial and temporal basis functions and 
the spin basis functions 



Dirac notation and direct product spaces

In the electron spin case
we could write the basis functions in Dirac notation as

,            , … , …,            ,            , …, , …

Here, we understand that 
the        kets are vectors in one Hilbert space 

representing arbitrary spatial and temporal functions 
and the       and       kets are vectors in another Hilbert 
space 

representing only spin functions 

1  2  j  1  2  j 

j

 



Dirac notation and direct product spaces

The products            and            
are vectors in the direct product Hilbert space

Direct products
are “products” of vectors in different Hilbert spaces

to give a new vector in the “direct product” space
and are sometimes written explicitly as

though we will mostly not use this notation 
We could also write these products

using any of the notations 

j  j 

a b

j j j       



Dirac notation and direct product spaces

For example, we could write the basis functions of our 
direct product time, position and spin Hilbert space as

,          , …,          , …,          ,          , …,           , … 

With our different notations
we could also write 

as       

1  2  j  1  2 
j 
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Energy of a spin in a magnetic field

Classically, because angular momentum is a 
vector

then electron spin would also be a vector

Then we would expect a magnetic moment

in a vector generalization of

e Bg 

e Bg σ

σ



Energy of a spin in a magnetic field

In this classical analogy
with magnetic moment

the energy associated with that magnetic moment
in a magnetic field  

would be
In the quantum mechanical case, as usual we postulate

an operator instead of the classical quantity
so instead of ES, we have, with Pauli spin operator

e Bg σ

S e BE g   B σ B
x y zB B B  B i j k

0 1 0 1 0ˆ ˆ
1 0 0 0 12 2 2 2

B B B B
S x y z

ig g g gH B B B
i

        
              

σ B

σ̂



Energy of a spin in a magnetic field

In 

compared to the classical

the factor of ½ in the quantum expression
is only because we like to work with Pauli matrices 

with eigenvalues of unit magnitude
rather than the half integer magnitude 

associated with the spin itself 
It does not express any other difference in the physics
The Pauli equation includes this energy term  

ˆ ˆ
2

B
S

gH 
 σ B

S e BE g   B σ B

ˆ ˆ
2

B
S

gH 
 σ B



The Pauli equation

The Pauli equation also 
treats electromagnetic effects on the electron as a 
charged particle semiclassically

i.e., with classical electric and magnetic fields
So by extension from classical electromagnetism

it uses             
instead of just the momentum operator 

in constructing the rest of the energy terms in 
the equation 

ˆ ep A
ˆ i  p 



The Pauli equation

Hence, instead of the Schrödinger equation, we have 
the Pauli equation

Note here that                       is a spinor

The Pauli equation is therefore not one differential 
equation

but is in general two coupled ones 

 21 ˆ ˆ
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The Pauli equation

More rigorously, since we think of    as a 2x2 matrix
we should actually introduce 

the corresponding 2x2 identity matrix 
and we should write

Then everything in the curly brackets {…} has the
2x2 matrix character needed for the spinor

though in practice     is just assumed
rather than written explicitly

σ̂

1 0ˆ
0 1SI
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The Pauli equation

The Pauli equation 

is the starting point for investigating 
the effects of magnetic fields on 

electrons
It can be used, for example 

to derive the Zeeman effect rigorously
including the effects of spin 
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Scattering of identical particles

We imagine that the two electrons 
are traveling through space
each in some kind of wavepacket

The wavepackets might each be quite 
localized in space at any given time
but they each extend arbitrarily far 

even though the amplitudes will 
become small 
so the wavefunctions always 

overlap to some degree

path a

path b



Scattering of identical particles

We may find the following argument 
more convincing 
if we imagine that the wavepackets

are initially directed towards one 
another

and that these wavepackets
substantially overlap 
for some period of time 

as they “bounce” off one another

path a

path b path a

path b
scattering 

region



Scattering of identical particles

Now, certainly on the right of the 
scattering region
when we measure the electrons 

possibly finding one near path a
and another near path b

because two electrons are absolutely 
identical
we have absolutely no way of 

knowing whether it is 
electron 1 or electron 2 that we 
find near any particular path

path a

path apath b

path b
scattering 

region



Scattering of identical particles

We might have good reason to 
believe
because of our understanding of 

the scattering process
that if electron 1 started out on 
path a on the left 
it is unlikely electron 1 emerged 

onto path b on the right 
but we have to accept that it is 

possible

path a

path apath b

path b
scattering 

region



Scattering of identical particles

Let us write the wavefunction
associated with path a

at least on the right of the 
scattering region 
and at some particular time

and similarly write 
for the corresponding wavefunction

on path b

path a

path apath b

path b
scattering 

region

 a r

 b r



Scattering of identical particles

Hence, we might expect that the
two particle wavefunction

on the right can be written as 
some linear combination of the 
two possible outcomes

where c12 is the amplitude for 
the outcome that electron 1 is on 

path a and electron 2 is on path b
and oppositely for amplitude c21

path a

path apath b

path b
scattering 

region

 1 2,tp r r

         1 2 12 1 2 21 2 1,tp a b a bc c     r r r r r r



Scattering of identical particles

But we believe electrons to be absolutely identical 
so it can make no difference to any measurable 
outcome if we swap the electrons 

We cannot measure the wavefunction itself 
but we do expect to be able to measure  

Swapping the electrons changes 
into                

and so we conclude that

2
tp

 1 2,tp r r  2 1,tp r r

   2 2

1 2 2 1, ,tp tp r r r r



Scattering of identical particles

Now
means that 

where  is some complex number of unit magnitude 
We could of course swap the particles again 

Since the particles are absolutely identical 
we expect this swapping process produces exactly 

the same result, and so

   2 1 1 2, ,tp tp r r r r

   2 2

1 2 2 1, ,tp tp r r r r

   1 2 2 1, ,tp tp r r r r



   1 2 2 1, ,tp tp  r r r r

Scattering of identical particles

With both                                   and

we conclude
so, presuming (or postulating) the wavefunction

should be restored on this double swap

So we have only two possibilities for 
 = 1 or  = –1
hence

   2 1 1 2, ,tp tp r r r r    1 2 2 1, ,tp tp r r r r

   2
1 2 1 2, ,tp tp  r r r r

2 1 



Scattering of identical particles

Now we can substitute our general linear combination

in                                    to get

Rearranging, we have

         1 2 12 1 2 21 2 1,tp a b a bc c     r r r r r r

   1 2 2 1, ,tp tp  r r r r

       
        

12 1 2 21 2 1

21 1 2 12 2 1

a b a b

a b a b

c c

c c

   

   



  

r r r r

r r r r

          1 2 12 21 12 21 2 1a b a bc c c c     r r r r

    2 1 12 21a b c c   r r 



Scattering of identical particles

But

must hold for all r1
and in general   

since they represent different and largely 
separate wavepackets

and so we must have

So in

we must have 

         1 2 12 21 2 1 12 21a b a bc c c c    r r r r 

   1 1a b r r

12 21 0c c 

12 21c c 

         1 2 12 1 2 21 2 1,tp a b a bc c     r r r r r r



Scattering of identical particles

So given that the electrons emerge on paths a and b
we have shown that there are only two possibilities 

for the nature of the wavefunction on the right of 
the scattering volume

Either

or 

where c is in general some complex constant

         1 2 1 2 2 1,tp a b a bc       r r r r r r

         1 2 1 2 2 1,tp a b a bc       r r r r r r



Scattering of identical particles

We have therefore proved that, on 
the right 
the amplitudes of 

the function   

and the function   

are equal in magnitude 
though possibly opposite in 

sign 

path a

path apath b

path b
scattering 

region
   1 2a b r r

   2 1a b r r



Scattering of identical particles

But, we might say
for the electron on path a on the 

left 
the scattering probability into 
path a on the right 

is in general different from 
the scattering probability into 
path b on the right

path a

path apath b

path b
scattering 

region



Scattering of identical particles

How therefore can we have 
the amplitudes of the two 

possibilities on the right

and   

being equal in magnitude? 

path a

path apath b

path b
scattering 

region
   1 2a b r r

   2 1a b r r



Scattering of identical particles

The resolution of this apparent problem is that 
even on the left of the scattering volume 

at some time before the scattering 
the wavefunction

must also have had the two possibilities

and 

being equal in magnitude 

 1 2,tpbefore r r

   1 2abefore bbefore r r    2 1abefore bbefore r r



Scattering of identical particles

Specifically, then
even before the interaction

the wavefunction must have been either

or

         1 2 1 2 2 1,tpbefore before abefore bbefore abefore bbeforec       r r r r r r

         1 2 1 2 2 1,tpbefore before abefore bbefore abefore bbeforec       r r r r r r
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Bosons

We find that a given kind of particle always corresponds 
to only one of the possible choices of 

All particles corresponding to    

i.e., with a wavefunction for a pair of particles in the form

are called bosons
Photons and all particles with integer spin 

including also, for example, 4He nuclei 
are bosons

1  

         1 2 1 2 2 1,tp a b a bc       r r r r r r



Fermions

All particles corresponding to 

i.e., a wavefunction for a pair of particles in 
the form 

are called fermions 
Electrons, protons, neutrons

and all particles with half integer spin 
are fermions 

1  

         1 2 1 2 2 1,tp a b a bc       r r r r r r



Pauli exclusion principle

For two fermions, we know the wavefunction is built 
from the form

Suppose now that we postulate that the two fermions 
are in the same single-particle state 

say, state a
Then the wavefunction becomes

Note that this wavefunction is zero everywhere 

         1 2 1 2 2 1,tp a b a bc       r r r r r r

         1 2 1 2 2 1, 0tp a a a ac        r r r r r r
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Fermion single particle states and the 
state of the system



Boson modes and the state of the system
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Exchange energy

Suppose we have two electrons of identical spin 
They will certainly have a Coulomb repulsion 

and so we could write the Hamiltonian similarly to 
the hydrogen atom 

except here the two particles are identical 
and the Coulomb potential is repulsive rather 
than attractive 

The Hamiltonian is therefore

 1 2

2 2
2 2

1 2

ˆ
2 4o o

eH
m 

    
r r r r





Exchange energy

Because they are fermions 
the state of the two particles is built on the form

where the individual wavefunctions           and      
are normalized 

and the factor          gives overall normalization 
We can also write this in bra-ket notation as

where                      and so on 

           1 2 1 2 2 1, 1/ 2tp a b a b       r r r r r r

 a r  b r

1/ 2

  1/ 2 1, 2, 2, 1,tp a b a b  

 11, aa  r



Order in wavefunction and bra or ket products

Note that the order of the products of the 
wavefunctions does not matter in expressions such as

and

Obviously 

since            and            are each simply a number 
for any given value of r1 or r2

           1 2 1 2 2 1, 1/ 2tp a b a b       r r r r r r

  1/ 2 1, 2, 2, 1,tp a b a b  

       1 2 2 1a b b a   r r r r

 1a r  2b r



Order in wavefunction and bra or ket products

For the case of  the bra-ket notation 
we can similarly state

Quite generally
the order of the statement of the vectors 

corresponding to different degrees of freedom or 
dynamical variables 

does not matter in direct product spaces

1, 2, 2, 1,a b b a



Exchange energy

Now for this two-electron state

we evaluate the energy expectation value

I.e., 

The first two terms (which are actually equal) 
have a straightforward meaning 

  1/ 2 1, 2, 2, 1,tp a b a b  

ˆ
tp tpE H 

ˆ ˆ1, 2, 1, 2, 2, 1, 2, 1,1
ˆ ˆ2 1, 2, 2, 1, 2, 1, 1, 2,

a b H a b a b H a b
E

a b H a b a b H a b

 
  

   



Exchange energy

Formally evaluating, we have for the first term

 1 2

2 2
2 2

1 2

ˆ1, 2, 1, 2,

1, 2, 1, 2,
2 4o o

a b H a b

ea b a b
m 

 
      

r r r r


1 2

2 2
2 2

2

1 2

1, 2, 1, 2, 1, 2, 1, 2,
2 2

1, 2, 1, 2,
4

o o

o

a b a b a b a b
m m

ea b a b


     




r r

r r

 

KEa KEb PEabE E E  



Exchange energy

Here, EKEa is the kinetic energy of an electron in single-
particle state a

Note that                     because the single particle 
wavefunctions are normalized

Similarly

1 1

2 2
2 21, 2, 1, 2, 1, 1, 2, 2,

2 2KEa
o o

E a b a b a a b b
m m

     r r
 

2, 2, 1b b 

   
2

2 3

2KEb b b
o

E d
m

    r r r

   
2

2 3

2 a a
o

d
m

    r r r



Exchange energy

The final contribution, EPEab, is the Coulomb potential 
energy from the interaction of the

charge density from one electron in single-particle 
state a and the other in single-particle state b

So all parts of
are simple kinetic and potential energies 

and similarly for 

   2 2
2

2 3 3

1 2

1, 2, 1, 2,
4 4

a b
PEab

o o

eE a b a b e d d
 

 


 

 
r r

r r
r r r r

ˆ1, 2, 1, 2, KEa KEb PEaba b H a b E E E  

ˆ2, 1, 2, 1,a b H a b



Exchange energy

So the two terms

give us the energy we expect semiclassically
the kinetic energies of the two particles and the 
potential energy from their interaction

But there are two more terms, on the bottom line of

These give what is called the exchange energy
an energy term with no classical analog

1 ˆ ˆ1, 2, 1, 2, 2, 1, 2, 1,
2 KEa KEb PEaba b H a b a b H a b E E E     

ˆ ˆ1, 2, 1, 2, 2, 1, 2, 1,1
ˆ ˆ2 1, 2, 2, 1, 2, 1, 1, 2,

a b H a b a b H a b
E

a b H a b a b H a b

 
  

   



Exchange energy

We note that, by the Hermiticity of the Hamiltonian

and so the exchange energy can be written

and finally for the total expectation value of the 
energy of these two electrons in this state

ˆ ˆ2, 1, 1, 2, 1, 2, 2, 1,a b H a b a b H a b


   

 1 ˆ ˆ1, 2, 2, 1, 1, 2, 2, 1,
2EXabE a b H a b a b H a b


     

KEa KEb PEab EXabE E E E E   

        3 3
1 2 2 1 1 2

ˆRe a b a bH d d         r r r r r r



Validity of single particle calculations

If the function           is only substantial in a region near 
to some point ra

then so also is the function 
Similarly, if the function           is only significant near to 

some point rb
then so also is the function

So, if the points ra and rb are far enough apart that there 
is negligible overlap of the functions           and

and  

 a r

 2
a r

 b r

 2
b r

 a r  b r

   
1

2 3
1 1 1 0a b d   rr r r     

2

2 3
2 2 2 0b a d   rr r r 



Validity of single particle calculations

Similarly, for such negligible overlap 
regardless of the form of the potential energy

simply because the functions           and   
do not overlap 

Hence 
there is only a contribution to the exchange energy 

if the individual particle wavefunctions overlap

 1 2,V r r
          3 3

1 2 1 2 2 1 1 2, 0a b a bV d d     r r r r r r r r 

 a r  b r
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Extension to more than two non-identical particles

If we had N different (i.e., not identical) particles 
that were approximately not interacting 

at least in some region of space and time 
(e.g., substantially before or after the scattering) 

then we could construct the state               for those by
simply multiplying the single-particle states or modes

where the numbers and the letter N refer to the particles
and the small letters refer to the single-particle state 

the individual particles are in

different

1, 2, 3, ,different a b c N n  



More than two bosons

We can write the state as

Here     is one of the permutation operators
This is an operator that changes one function in the 
Hilbert space into another 

in this case by permuting the particles among the 
modes

The meaning of the sum is that it is taken over all of 
those possible distinct permutation operators

ˆ

ˆ 1, 2, 3, ,identical bosons
P

P a b c N n  

P̂



More than two bosons

The notation here

is just a mathematical way of saying we are summing 
over all permutations of the N particles 

among the chosen set of modes 
Incidentally, for this boson case 

it is quite allowable for two or more of the modes to 
be the same mode 

e.g., for mode b to be the same mode as mode a
an important and general property of bosons 

ˆ

ˆ 1, 2, 3, ,identical bosons
P

P a b c N n  



More than two bosons

Note that, for any given set of modes a, b, c, …n
with given numbers of these bosons in each mode

there is only one possible such boson state of   
identical particles 

The state 

satisfies the symmetry requirement that 
swapping any two particles does not change the 

sign or amplitude of the state
Swapping particles just corresponds to changing the 

order of the terms, leaving the sum itself unchanged

ˆ

ˆ 1, 2, 3, ,identical bosons
P

P a b c N n  



More than two fermions

We can write the state for   identical fermions as 

where now by        we mean that 
we use the + sign 

when the permutation corresponds to an even number 
of pair-wise swaps of the individual particles 

and the – sign 
when the permutation corresponds to an odd number of 
pair-wise swaps of the individual particles 

!

ˆ 1

1 ˆ 1, 2, 3, ,
!

N

identical fermions
P

P a b c N n
N




  

P̂



More than two fermions

Note that for this state 

if two of the single-particle states are identical 
e.g., if b = a

then the fermion state is exactly zero because 
for each permutation there is an identical one 
with opposite sign that exactly cancels it 

This is the extension of the Pauli exclusion principle to N
particles

!

ˆ 1

1 ˆ 1, 2, 3, ,
!

N

identical fermions
P

P a b c N n
N




  



Slater determinant

There is a particularly convenient way to write the N
particle fermion state

which is called the Slater determinant

This is just another way of writing

1, 2, ,
1, 2, ,1

!
1, 2, ,

identical fermions

a a N a
b b N b

N
n n N n

 




   


!

ˆ 1

1 ˆ 1, 2, 3, ,
!

N

identical fermions
P

P a b c N n
N
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Multiple particle basis functions

So we can find some complete basis set 
to represent one of the particles

and then formally construct a new basis set

for the N particle system
from products of single particle functions

appropriately symmetrized with respect to 
exchange

  ,i j j i r

 1 2, ,ab n N ab n  r r r 



Multiple particle basis functions

Depending on the symmetry with respect to exchange 
there are different forms for this basis function 

(i) non-identical particles

or equivalently
where each of the           may be chosen to be any 

of the single particle basis functions
(ii) identical bosons

(iii) identical fermions

       1 2 1 2, ,ab n N a b n N   r r r r r r  
1, 2, ,ab n a b N n  

 a r
 i r

ˆ

ˆ 1, 2, ,ab n
P

P a b N n  
!

ˆ 1

1 ˆ 1, 2, ,
!

N

ab n
P

P a b N n
N 

   



Number of basis functions – non-identical particles

For non-identical particles
there is one basis function for every choice of 
combination of single particle basis functions 

If we imagined there were M possible single particle 
basis functions

and there are N particles 
then there are in general MN such basis functions 

for the N particle system



Number of orthogonal states – non-identical particles

So, for N non-identical particles
specifying a state of that N particle system 

involves specifying a linear combination 
of the MN different orthogonal N-particle basis 

functions
Because there are only MN different orthogonal N-

particle basis functions
there can only be MN different orthogonal N-particle 
states

even if we now allow them to interact



Number of orthogonal states – non-identical particles

So, for N non-identical particles
even allowing them to interact

there are only MN possible orthogonal N-particle 
states

each of which will be a different combination of 
the MN different N-particle basis functions 

Number of orthogonal states of  non-identical particles, 
with  available single-particle states or modes,

N

N
M

M



Number of distinct basis functions - bosons

In the case of identical bosons 
the N-particle basis states 

corresponding to different permutations 
of the same set of choices of basis 

modes 
are not distinct 

and so there are fewer basis 
states than for non-identical 
particles 



Number of distinct basis functions - bosons

For example, we see that in 

the state             is not distinct from 
Since all permutations of the products of 

basis modes 
are already in the sum 

these two states are the same sum of 
products 

performed in a different order 

ab n  ba n 

ˆ

ˆ 1, 2, ,ab n
P

P a b N n  



Number of distinct basis functions - bosons

The counting of these boson states is complicated, but  
it corresponds to a standard result in permutations and 
combinations, which is the problem of 

counting the number of combinations of M things 
here the single particle states or modes 

taken N at a time 
since we always have N particles 

with repetitions allowed
i.e., we can have more than one particle in a mode

with the standard result     1 !/ ! 1 !M N N M    



Number of distinct basis functions - bosons

For example 
think of M boxes

each containing as many blocks as we like of just 
one color

with each box containing a different color of 
blocks

We are picking N blocks altogether from these boxes
The number of possible different combinations of 

blocks we can end up with is
   1 !/ ! 1 !M N N M    



Number of distinct basis functions - bosons

For example 
the set of combinations of 

2 particles among 
3 modes, a, b, and c

allowing repetitions is 
ab, ac, bc, aa, bb, cc

giving six in all 
which corresponds to   

   3 2 1 !/ 2! 3 1 ! 6     



Number of orthogonal states - bosons

Just as for the non-identical particle case 
this number of basis states is also 

the number of different orthogonal 
states we can have 

for the set of identical boson particles 
even if we allow interactions

 
 

Number of orthogonal states of  identical bosons,
1 !

 with  available modes
! 1 !

N
M N

M
N M

 






Number of distinct basis functions - fermions

Specifically, if there are M choices for the first basis 
single-particle state a in

then there are M – 1 choices for the second single 
particle basis state b, and so on down to  

M – N + 1 choices for the last single particle basis 
state n

Hence, instead of MN initial choices, we have only 

Since the order of the choice of states does not matter 
we divide by the number of different orders, N!

ab n 

     1 1 !/ !M M M N M M N    



Number of orthogonal states - fermions

Hence in the identical fermion case 
there are                               possible basis states 

and hence the same number of possible 
orthogonal states altogether

even if we allow interactions between particles
I.e., 

 !/ ! !M M N N  

 

Number of orthogonal states of  identical fermions, 
with  available single-particle states 

!
! !

N
M

M
M N N
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Example numbers of states

For example, suppose we have two 
particles 
each of which can be in one of two 

different single-particle states or 
modes, a and b

a
b



Example numbers of states

Suppose these particles are in some 
potential such that 
there are two single-particle states 

or modes quite close in energy 
and all other possible states are 
sufficiently far away in energy
that we can approximately 

neglect those other states 
in our counting

a
b

Energy



Example numbers of states

We might be considering, for 
example
two particles in a weakly coupled 

pair of similar quantum boxes 
or a one-dimensional problem

such as coupled potential wells 
a
b

Energy



Example numbers of states

Because we know for some other 
reason that the particles cannot 
have much energy 
for example, the temperature may 

be low
we presume the particles can only 
be in one or other 
of the two lowest coupled 

single-particle states or modes 
of these two wells or boxes 

a
b

Energy



Example numbers of states

For each situation we consider  
non-identical particles
identical bosons, and 
identical fermions

these single-particle states or modes 
might be different

e.g., because of exchange energy
but that will not affect our argument 
here 
which is just counting states 

a
b



Example numbers of states

We can now write out the possible 
states in each case 
For all of these cases 

the number of possible single-
particle states or modes of a 
particle is 
M = 2
and the number of particles is 
N = 2

a
b 2M 

2N 



Non-identical particles

For non-identical particles 
such as 

a proton and a neutron
the possible distinct states of this 

pair of particles are

1, 2,a a a
b



Non-identical particles

For non-identical particles 
such as 

a proton and a neutron
the possible distinct states of this 

pair of particles are

1, 2,a a 1, 2,b b a
b



Non-identical particles

For non-identical particles 
such as 

a proton and a neutron
the possible distinct states of this 

pair of particles are

1, 2,a a 1, 2,b b 1, 2,a b a
b



Non-identical particles

For non-identical particles 
such as 

a proton and a neutron
the possible distinct states of this 

pair of particles are

As we expected from the expression MN

there are 22 = 4 states of the pair of 
particles

1, 2,a a 1, 2,b b 1, 2,a b 1, 2,b a a
b



Bosons

We could consider identical bosons 
such as two 4He (helium-four) 

atoms (which are bosons) 
because they are made from 6 
particles each with spin ½ 
two protons, two neutrons and 

two electrons, which therefore 
have an integer total spin 

a
b



Bosons

The possible distinct states of this 
pair of identical bosons are

1, 2,a a

a
b



Bosons

The possible distinct states of this 
pair of identical bosons are

1, 2,a a 1, 2,b b

a
b



Bosons

The possible distinct states of this 
pair of identical bosons are

Note there is only one way of 
having the two identical particles 
in different states

1, 2,a a 1, 2,b b  1 1, 2, 2, 1,
2

a b a b

a
b



Bosons

In this list of basis states
,               ,  

we do not have to write the explicit symmetrized 
form

since it is describing the same state as   
and similarly for the state with both particles in 

the b mode
(The          normalizes the explicitly symmetric 
combination state)

1, 2,a a 1, 2,b b  1 1, 2, 2, 1,
2

a b a b

1, 2, 2, 1,a a a a
1, 2,a a

1/ 2



Bosons

In this list of basis states
,               ,  

we therefore have 3 states
which agrees with

i.e., 

Note that this is not the same as
the case of non-identical particles

where we had 4 states

1, 2,a a 1, 2,b b  1 1, 2, 2, 1,
2

a b a b

   1 !/ ! 1 !M N N M    
   2 2 1 !/ 2! 2 1 ! 3   



Fermions

For identical fermions, there is only  
one possible state of the pair of 

particles 
since the two particles have to be 
in different single-particle states 
and here there are only two 

single-particle states to choose 
from for each particle 

a
b



Fermions

So that one (normalized) state is

which agrees with the formula

which gives   state 
where we remember 

that 0! = 1

  1/ 2 1, 2, 2, 1,a b a b

 !/ ! !M M N N  
 2!/ 2!0! 1 a

b



Thermal occupation of states

The differences in the number of available 
states in the three cases of 

non-identical particles 
identical bosons, and 
identical fermions 

leads to very different behavior once we 
consider the thermal occupation of states



Thermal occupation of states

For example, if we presume that we are at some 
relatively high temperature 

such that the thermal energy, kBT
is much larger than the energy separation of the 

two single-particle states or modes a and b
but still much less than the energy to the next 
states

then the thermal occupation probabilities 
of all the different allowed combinations of single-
particle states or modes 

will all tend to be similar



Non-identical particles

For the case of the non-identical particles
which behave like classical particles as far as the 
counting of states is concerned 

with the 4 states

we therefore expect a probability of ~ ¼ 
of occupation of each of the states 

Therefore, the probability that the two particles are 
in the same state is ~ ½ 

1, 2,a a 1, 2,b b 1, 2,a b 1, 2,b a

a
b

a
b

a
b

a
b



Identical bosons

For the case of the identical bosons 
there are only three possible states

so the probability of occupation of any one state 
is ~ 1/3

a
b

a
b

a
b



Identical bosons

Two of the two-particle states have 
the particles in identical modes 

and only one two-particle state
has the particles in different single particle states 

So the probability of finding the two identical bosons in the 
same single-particle state (mode) is now 2/3

larger than the ½ for the non-identical particle case

1, 2,a a 1, 2,b b
  1/ 2 1, 2, 2, 1,a b a b

a
b

a
b

a
b



Identical fermions

For the case of identical fermions 
there is only one possible state 

which therefore has probability ~1 
and it necessarily corresponds to the two 

particles being in different states 

a
b

  1/ 2 1, 2, 2, 1,a b a b
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Bank account analogy

Suppose you have 
an antique jar (a) in the kitchen for 

your spending money 
and a box (b) under the bed for 

your savings money 
You put your dollar bills 

each labeled with a unique number
into either the antique jar (a) or 
the box (b)

a

b



Bank account analogy

This is like the quantum mechanical 
situation of 
non-identical particles (the dollar 

bills) and 
different single-particle states or 
modes (a or b) 
into which they can be put 

– the jar or the box

a

b



Bank account analogy

If I have two dollar bills 
then there are four possible 

situations 
i.e., states of the entire system 

of two dollar bills in the antique 
jar and/or the box

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar
bill 1 in the antique jar and bill 2 in 

the box

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar
bill 1 in the antique jar and bill 2 in 

the box
bill 1 in the antique jar and bill 2 in 

the antique jar

a

b



Bank account analogy

bill 1 in the box and bill 2 in the box
bill 1 in the box and bill 2 in the 

antique jar
bill 1 in the antique jar and bill 2 in 

the box
bill 1 in the antique jar and bill 2 in 

the antique jar
making four states altogether

This reproduces the counting for 
non-identical particles



Bank account analogy

Consider next that you have two bank accounts
a checking account (a), and a savings account (b) 

You may still have the same amount of money
$2

You may know how much money you have in each account 
but the dollars are themselves identical in the accounts 

So now there are only three possible states
Two dollars in savings
One dollar in savings and one in checking
Two dollars in checking



Bank account analogy

Note that, in these three possible states
Two dollars in savings
One dollar in savings and one in checking
Two dollars in checking

there are 
2 states with both dollars in the same account

but only one in which they are in different 
accounts

This bank account argument above gives the counting 
for boson states



Bank account analogy

Consider now that you have two bank accounts 
a checking account (a) and a savings account (b)

but you are living in the Protectorate of Pauliana
where you may have no more than one dollar in each 
bank account 

Then for your two dollars
there is only one possible state

one dollar in savings
one dollar in checking

This gives the counting for fermion states



Counting states with two “bank accounts”

For the case of identical fermions 
there is only one possible state for our two dollars

with each dollar being in a different bank account 
For identical bosons 

there are three possible states for our two dollars
in two of which both are in the same bank account
and in one of which they are in different bank accounts

For non-identical (classical) particles
there are four possible states for our dollar bills

in two of which both are in the same bank account
and in two of which they are in different bank accounts
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Thermal distributions

Identical bosons 
are more likely to be in the 

same mode
than are classical or non-
identical particles 

The Bose-Einstein distribution 
lies above the Maxwell-

Boltzmann distribution
Energy E -  (in units of kBT)

( – chemical potential 
or Fermi energy)
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Thermal distributions

Identical fermions 
are less likely to be in the same 

single-particle state 
than are classical or non-
identical particles
In fact, they never are in the 

same single-particle state 
The Fermi-Dirac distribution 

lies below the Maxwell-
Boltzmann distribution 

Energy E -  (in units of kBT)
( – chemical potential 

or Fermi energy)

0 10-100

1
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 FDP E  BEP E
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A filled semiconductor band

Consider a filled valence band in a semiconductor
in the “single particle” approximation

where one electron is assumed to move in an average 
periodic potential 

and therefore is in a Bloch state of a particular k
value 

The possible Bloch states of a single electron (of a given spin) 
correspond to all the different possible k values in the 
band 

of which there are Nc if there are Nc unit cells in the 
crystal



A filled semiconductor band

A full band therefore corresponds to
Nc electrons of each spin in 2Nc different single-
particle states

where the factor of 2 comes from the two spin 
states associated with each k value

There is only one such state
made from these single particle states

that obeys the antisymmetry with respect to 
exchange 

which is the Slater determinant of all of the 
single-particle states in the band



N photons in a mode

Photons in a given mode are certainly identical
Photons are very simple identical bosons

Photons do not have excited states of any kind
There is therefore no meaning to the idea of 

identical photons in a given mode 
having more than one state to choose from

So, M = 1 for photons in a mode
and the number of possible states of the N photons 
in the mode is simply 

   1 1 !/ ! 1 1 ! 1N N     





14.2 Multiple particle distributions

Slides: Video 14.2.5 Quantum 
mechanical particles reconsidered 

Text reference: Quantum Mechanics 
for Scientists and Engineers 

Section 13.9 – 13.10



Multiple particle distributions

Quantum mechanical particles 
reconsidered

Quantum mechanics for scientists and engineers David Miller



Ontology of quantum particles



Quantum mechanical particles reconsidered

There are fewer ontological problems if we consider levels 
of excitation of modes

Instead of “3 photons in mode a and 2 in mode b”
we say that mode a is in its third level of excitation, 

and mode b is in its second level of excitation 
Counting is then simple, as in the bank account analogy 
It does not matter if we never introduce “particles”

as long as we have the rules constructed by quantum 
mechanics for manipulating states

it does not matter what words we use 



Distinguishable and indistinguishable 
particles



Distinguishable and indistinguishable particles

So, even if two particles are identical 
if there is no reasonable physical process 

by which they could be swapped  
such “distinguishable” particles can be 

treated 
as if they were non-identical



Distinguishable and indistinguishable particles

So, we can say as an approximation that 
two identical particles are distinguishable 

if the exchange interaction between them is 
negligibly small 

Then the “distinguishability” lets us treat them as 
non-identical particles for practical purposes 

Conversely, if we say that two particles are 
indistinguishable 

because of the possibility of exchange of them 
then we are saying that we have to symmetrize the 

state properly with respect to exchange
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Operators for harmonic oscillators
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Harmonic oscillator raising and lowering operators

The harmonic oscillator Schrödinger equation was

where  is the angular frequency of oscillation

Now we introduce a dimensionless distance

so we can rewrite the Schrödinger equation as

2 2
2 2

2

1ˆ
2 2

dH m z E
m dz

   
 

    
 



m z 


2
2

2

1
2

d E
d

  
 

 
   
  



Harmonic oscillator raising and lowering operators

The term                       reminds us of the difference of 
two squares of numbers 

though here we have the difference that
is an operator 

If we examine a product of this form for our present 
case, we have

2 2 2/d d  

2 2 2 2 ( )( )a b b a a b a b       

2 2/d d

2
2

2

1 1 1 1
2 22 2

d d d d d
d d d d d

    
    

      
              
      



Harmonic oscillator raising and lowering operators

in addition to the                                  we want to rewrite
has a second term that we cannot simply discard

Here we note that, for any function

2
2

2

1 1 1 1
2 22 2

d d d d d
d d d d d

    
    

      
              
      

  2 2 21/ 2 /d d  

 f 

      d d d df f f
d d d d

      
   

 
   

 

     d d df f f
d d d
    
  

    f 



Harmonic oscillator raising and lowering operators

Since this relation 

is true for any function
we can write the commutation relation

So from

we have 

   d d f f
d d

   
 

 
  

 
 f 

1d d
d d
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2
2

1 1 1 1
2 22 2

d d d d d
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2

1 1 1 1
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We can choose to write the “raising” or “creation” 
operator

(pronounced “a dagger”) 
and the “lowering” or “annihilation” operator

Harmonic oscillator raising and lowering operators

† 1ˆ
2

da
d




 
   

 

1ˆ
2

da
d




 
  

 



Harmonic oscillator raising and lowering operators

Note these operators                               and 

are Hermitian adjoints of one another
The operator           is anti-Hermitian, as shown for

i.e.,                                                 for arbitrary      and  
though  is Hermitian (being the position operator) 

Therefore, we see     and     are Hermitian adjoints, i.e.,

Note neither of these operators is Hermitian, i.e., 

† 1ˆ
2

da
d




 
   

 

1ˆ
2

da
d




 
  

 

/d d /d dz
*

/ /d d d d         

†1 1ˆ ˆ
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â †â
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Hamiltonian with raising and lowering operators

From 

and using the definitions for these operators 

the Schrödinger equation 

becomes

So we can rewrite the Hamiltonian as

† 1ˆ
2

da
d




 
   

 

1ˆ
2

da
d
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Ea a  
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2
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Number operator

We know from the previous harmonic oscillator solution
that the eigenenergy for eigenstate is 

so given

we know that

n
1
2nE n   

 


† 1ˆ ˆ ˆ
2

H a a   
 



†ˆ ˆ n na a n 



Number operator

Since 
this operator       obviously has the harmonic 
oscillator states as its eigenstates

and the number n of the state as its eigenvalue
so it is sometimes called 

the number operator

with the eigenequation

†ˆ ˆ n na a n 
†ˆ ˆa a

†ˆ ˆ ˆN a a

ˆ
n nN n 
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The operators   and    have a very important property 
which is their commutator

Specifically, we find 

(and it is a good exercise to prove this)
This relation is so useful that it is worth memorizing

If we use the word “less” in its meaning as “minus”
we have the relatively rhythmic phrase

“a a dagger less a dagger a equals one”

Properties of raising and lowering operators

â †â

† † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a     



Properties of raising and lowering operators

We can use this property 

together with the property

to show the reason why these operators are 
called 

raising and lowering operators 
or creation and annihilation operators

 † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a  

†ˆ ˆ n na a n 



Properties of raising and lowering operators

Operating on both sides of
with

we have

Regrouping on the left gives

and substituting from we have

i.e.

†ˆ ˆ n na a n  â

 †ˆ ˆ ˆ ˆn na a a na 

† †ˆ ˆ ˆ ˆ 1aa a a 

       † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ1n n naa a a a a n a    

    †ˆ ˆ ˆ ˆn naa a n a 

    †ˆ ˆ ˆ ˆ1n na a a n a  



Properties of raising and lowering operators

But this expression                                           means
from

that           is simply         
at least within some normalizing constant An

Hence                           

and we see why 
the operator    is called the lowering operator

because it changes the state        into the state

†ˆ ˆ n na a n 
ˆ na  1n 

1ˆ n n na A  

â
n 1n 

    †ˆ ˆ ˆ ˆ1n na a a n a  



Properties of raising and lowering operators

We can perform a similar analysis 
operating on both sides of                          with

The details of this are left as an exercise 
The result is
Again, we conclude from                          that   

is simply
at least within some normalizing constant Bn+1

Hence                              and we see why 
the operator    is called the raising operator

because it changes the state        into the state

†ˆ ˆ n na a n  †â

    † † †ˆ ˆ ˆ ˆ1n na a a n a  
†ˆ ˆ n na a n 

†ˆ na  1n 

†
1 1ˆ n n na B  

†â
n 1n 



Raising and lowering operators

Incidentally, one way to remember which operator 

is which 
is to think of the superscript dagger “  ” as a “+” sign 

corresponding to raising the state
Indeed, it is quite a common notation to use a 

superscript “+” sign

†
1 1ˆ n n na B  

1ˆ n n na A  

†



Deducing the normalization coefficients An and Bn

Premultiplying by          gives

Now

which can be rewritten as

since from

we know  

1ˆ n n na A   1n 

1 ˆn n na A  
††

1 1ˆ ˆn na a     

† ††
1 1ˆ ˆn n n na a B          

†
1 1ˆ n n na B  

†
1ˆ n n na B  



Hence

so

Hence

so               within a unit complex constant
which we choose to be +1

so               also
So instead of                           we have

Instead of                              we have 

Deducing the normalization coefficients An and Bn

†
1 ˆn n n n na B B  
    

1 ˆn n n n n n na A B B    
   

2† †
1ˆ ˆ ˆn n n n n n n n na a A a A B A n       

nA n

1ˆ n n na A   1ˆ n na n  
nB n

†
1 1ˆ n n na B   †

1ˆ 1n na n   



Harmonic oscillator eigenfunctions

We know that the harmonic oscillator has a lowest state
which corresponds to n = 0

Hence, from                             we must have
This gives an alternative way of deducing 

Using the differential operator definition of   , we have

which confirms the solution is (after normalization)

1ˆ n na n   0ˆ 0a  
 0 0  

â

 0
1 0
2

d
d

  


 
  

 

     1/4 2
0 1/ exp / 2      



Harmonic oscillator eigenfunctions

Now, we can construct all the solutions for different n
Successive application of     to        gives

and so the normalized eigenstates can be written as

By this approach each eigenfunction can be 
progressively deduced from preceding ones 

We can also use this as a substitution to allow 
convenient manipulations of the states by operators 

†â 0

 †
0ˆ !

n

na n 

 †
0

1 ˆ
!

n

n a
n
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Hamilton’s equations

In classical mechanics 
the Hamiltonian, H, represents the total energy 

and in the case of one particle in one dimension
it is a function of 

the momentum, p
and the position, q

p and q are considered to be independent variables 

Hence, in classical mechanics

where          is the potential energy

 
2

2
pH V q
m

 

 V q



The force on the particle
is the negative of the gradient of the potential 

(a particle accelerates when going down hill)

i.e., with                          the force is

As usual, from Newton’s second law

force = rate of change of momentum

so we know that
dp H
dt q


 



Hamilton’s equations

 
2

2
pH V q
m

 
dV HF
dq q


   





Hamilton’s equations

With 

we know also that  

Since p = mv where v is the particle velocity
and, by definition,  

we therefore have

 
2

2
pH V q
m

 

H p
p m






/v dq dt

dq H
dt p







Hamilton’s equations

The two equations 

are known as Hamilton’s equations
If the Hamiltonian depends on two quantities  p and q

and these quantities and the Hamiltonian obey 
Hamilton’s equations

then we have found the quantities analogous to 
momentum and position

dp H
dt q


 


dq H
dt p







Hamilton’s equations

It has been very successful in quantum mechanics 
to start with a classical version of the problem

with a Hamiltonian H and quantities p and q
all obeying Hamilton’s equations

and then to propose a quantum version
by substituting a differential operator 

for p
in the corresponding Hamiltonian 

/i d dq 
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An electromagnetic field mode

We imagine a box of length L in the   
x direction 

We presume it is arbitrarily large in 
the other dimensions 
and consequently the mode can be 

described as 
a standing plane wave in the x
direction
of some wavevector magnitude 

k

L

x

z
y



An electromagnetic field mode

We expect that the electric field E
is perpendicular to the x direction 

as both the E field and the 
magnetic field B
are transverse to the direction of 

propagation 
for a simple plane 

electromagnetic wave L

x

z
y

E



An electromagnetic field mode

We will choose the mode to be 
polarized in the z direction 
with an appropriate amplitude Ez

The E field in the other two 
directions 
is taken to be zero

L

x

z
y

EEz



An electromagnetic field mode

We also expect that the magnetic 
field B is perpendicular to the E
field
so we choose it polarized in the y

direction
with amplitude By

with zero B field in the other 
two directions L

x

z
y

By
B



An electromagnetic field mode

Hence we postulate that 

and 

where c is the velocity of light
introduced here for subsequent convenience 

D is a constant still to be determined, and 
and        are at the moment simply functions of 

time yet to be determined 

  sinzE p t D kx

  cosy
DB q t kx
c



 p t  q t



An electromagnetic field mode

We now check that these fields satisfy the appropriate 
Maxwell’s equations

which will justify all our postulations about these 
classical fields 

and will tell us some other required relations 
between our postulated quantities 

We now presume that we are in a vacuum 
so no charge density and no magnetic materials 

and the permittivity and permeability are their 
vacuum values of  and  respectively 



An electromagnetic field mode

Using the Maxwell equation

with Ex and Ey both zero by choice
and noting that   

because we have an infinite plane wave with no 
variation in the y direction

then we are left with 

t


  

BE

/ 0zE y  

yz
BE

x t



 



An electromagnetic field mode

So with our choices                            and 

then our result from Maxwell’s equations

gives the requirement

so

where  

yz
BE

x t



 

  sinzE p t D kx   cosy
DB q t kx
c



cos cosD qkpD kx kx
c t





dq p
dt



kc 



Similarly, using the Maxwell equation

with Bx and Bz both zero by choice
and noting that   

because we have an infinite plane wave with no 
variation in the z direction

then we are left with 
y z

o o

B E
x t

 
 


 

o o t
  

 

EB

An electromagnetic field mode

/ 0yB z  



An electromagnetic field mode

So with our choices                            and 

then our result from Maxwell’s equations

gives the requirement

i.e., using the relation 

we have   

  sinzE p t D kx   cosy
DB q t kx
c



y z
o o

B E
x t

 
 


 

sin sino o
D dpkq kx D kx
c dt

  

2

1
o o c
  

dp q
dt

 



An electromagnetic field mode

So we have found that our postulated form for the 
mode of the radiation field 

does indeed satisfy the two Maxwell equations

provided we have the relations 

between our time-varying amplitudes p and q

t


  

BE o o t

  
 


EB

  sinzE p t D kx   cosy
DB q t kx
c



dp q
dt

 
dq p
dt





An electromagnetic field mode

Differentiating                with respect to time t

and substituting from 

we find

which means that the electromagnetic mode 
does indeed behave exactly like a harmonic 
oscillator

with oscillation (angular) frequency 

dq p
dt


dp q
dt

 

2
2

2

d q q
dt
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2
2 2

4
oD L p q    

Hamiltonian for an electromagnetic mode

Formally in an electromagnetic field in a vacuum

the energy density is

In a box of length L, then, per unit cross-sectional 
area, the total energy is the Hamiltonian

2 21 1
2 o

o
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Hamiltonian for an electromagnetic mode

With our Hamiltonian

we now try to choose D so as to get p and q
to correspond to the analogs of momentum and 

position with this Hamiltonian 
by having H, p, and q obey Hamilton’s equations

2
2 2

4
oD LH p q    

dp H
dt q


 


dq H
dt p







Hamiltonian for an electromagnetic mode

If we choose

then

so                 and

But we already deduced that                and

so our chosen H, p, and q obey Hamilton’s equations

2 / oD L 
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Quantizing the Hamiltonian

Having derived a classical Hamiltonian for an 
electromagnetic mode

we now proceed to quantize it
We postulate that we can substitute the operator

for the scalar quantity p
of the classical Hamiltonian 

obtaining

ˆ dp i
dq

  

 2 2

2
H p q
 

2
2 2

2
ˆ

2
dH q
dq

  
   

 




Quantizing the Hamiltonian

For convenience we define the dimensionless unit
For future use, we also can define a 

dimensionless momentum operator
In these dimensionless units

the Hamiltonian can be written in the form

identical to the harmonic oscillator Hamiltonian 

or in the form

/q  

ˆ ˆ / dp i
d
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2
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2
dH
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Mode notation

To show which mode the operators refer to
we commonly use  to index the different 
modes

Note  here does not necessarily mean 
wavelength

It is just an integer index
With that new notation

we have for a given mode, for example,  
an angular frequency 

instead of just 



Mode notation

With that notation, for a given mode we will also have
a Hamiltonian  
creation and annihilation operators     and  
and a number operator  

We can also label the eigenstates similarly as 
being the nth eigenstate associated with the mode

We should also change to using the coordinate 
since each different mode will have its own 
corresponding coordinate

Ĥ
†â â

N̂

n



Mode notation

With this notation, we use some harmonic oscillator results 
to give key relations for the electromagnetic mode 

The Hamiltonian becomes 

The number operator becomes 
and so we have
and the corresponding eigen energy is

which grows  n , i.e., as 

† 1ˆ ˆ ˆ
2

H a a       
 



†ˆ ˆ ˆN a a  
†ˆ ˆ ˆn n nN a a n         

1
2nE n     

 


n 



Mode notation

We also have 
the commutation relation

the lowering relation
which takes the state with n photons in mode 

and changes it into the state with n   photons 
so we now call hence we call    

the annihilation operator for mode 
the raising relation

so we similarly call
the creation operator for mode 

† † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a a a a a          

1ˆ n na n     

â

†
1ˆ 1n na n      

†â



Mode notation

We will also have that trying to take a photon out of an 
“empty” mode

will lead to zero result
just as the same mathematics did for our simple 

harmonic oscillator
and we will also be able to write, as before

though now we think of it as 
the state with n photons in mode 

0ˆ 0a  

 †
0

1 ˆ
!

n

n a
n



  


 



Nature of quantum states of modes

We have quantized the electromagnetic mode 
by analogy 

leading to an abstract set of results
Do we have to be this abstract? 

Can’t we use the wavefunction as 
before?

The wavefunction does have some meaning 
though it is quite different, for example

from that of the electron spatial 
wavefunction



Nature of quantum states of modes

Just as before
we have for the state with no photons in mode 

but if we now work backwards 
to find the physical interpretation of the coordinate 

we find

 
 

2

0 1/4
1 exp

2


 
 


 

  
 

2 coso
yB kx
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Nature of quantum states of modes

In other words,  is, in a dimensionless form
the amplitude of the mode of the magnetic field 

It is not a spatial coordinate 
For example, we can interpret 

as the probability that 
in this state of electromagnetic field mode 

the mode has (dimensionless) amplitude 
That probability is therefore the Gaussian,  

We would find related results for the states of the 
mode with more photons

  2
0  

   21/ exp  



Wavefunctions in quantized field modes

Though we may sometimes be interested in these 
distributions of magnetic or electric field 
amplitude

which we can deduce from this 
“wavefunction”

we are generally much less interested in these 
than we were in the 

probabilities of finding particles at points in 
space 

As a result, in the quantized electromagnetic field 
we make relatively little use of wavefunctions



Wavefunctions in quantized field modes

Most of the results we are interested in 
such as processes adding or subtracting photons

can more conveniently be described through the 
use of operators and state vectors 

Typically, the basis set and the resulting state we will use
will not be written as functions,         , of the 
amplitudes, , of the fields in the modes 

but as basis vectors corresponding to specific 
numbers of photons in a mode

  

n n  
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 as an operator 

From the original definitions of the creation and 
annihilation operators in terms of  and          , we have

Now we note that we can write

Note that  (which we can now write as    ) 
is really an operator, not just a coordinate

just as position r was really an operator 

/d d
† 1ˆ

2
da

d 





 
   

 

1ˆ
2

da
d 






 
  

 

 †1ˆ ˆ ˆ
2

a a    

̂
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 as an operator

Similarly
we can also write the dimensionless form of 

the generalized momentum operator
defined as in 

in the form
ˆ ˆ/ /id d p      

 †ˆ ˆ ˆ
2
i a a    



Field operators

With these definitions of  and 
we now substitute back into the relations 

that defined the mode’s electric and magnetic fields
Instead of scalar quantities for the electric and magnetic 

fields for this mode
we now have operators

̂ ˆ

  sinzE p t D kx   / cosyB q t D c kx

 †ˆ ˆ ˆ sinz
o

E i a a kx
L


  



 
  †ˆ ˆ ˆ coso

yB a a kx
L


  

 
 





Meaning of field operators

Just as before 
if we want to know the average value of a measurable 
quantity 

we take the expected value of its operator
and the same is true here 

For a state      of this mode
we would have



ˆ
z zE E  

ˆ
y yB B  



Commutator for electric and magnetic fields

With these field operators
we can now work out the commutator

for the electric and magnetic fields
Explicitly, from

we have

 †ˆ ˆ ˆ sinz
o

E i a a kx
L


  



 
  †ˆ ˆ ˆ coso

yB a a kx
L
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Commutator for electric and magnetic fields

Multiplying out this algebra

† †ˆ ˆ ˆ ˆ ˆ ˆ, sin cos ,o
z y
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E B i kx kx a a a a
L


     
 


       



 † † † † † † † †
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Commutation relation for fields

But we know that

so from our previous result 

we have the commutation relation for the electric 
and magnetic field operators in this mode

† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1a a a a a a a a              

† †ˆ ˆ ˆ ˆ ˆ ˆ, 2 sin coso
z y

o

E B i kx kx a a a a
L


     
 


      



ˆ ˆ, 2 sin coso
z y

o

E B i kx kx
L


 
 


    





Uncertainty principle for electric and magnetic fields

The general form of the commutation relation 
gives the uncertainty principle 

so the standard deviations of the expected values 
of the electric and magnetic field amplitudes in 

this mode obey

These field operators do not commute in general 
We cannot in general simultaneously know 

both the electric and magnetic field exactly! 

ˆ ˆˆ,A B iC   
/ 2A B C  

sin coso
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o

E B kx kx
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Number states

The Hamiltonian and number operator eigenstates
correspond to n photons in the mode

and are known as the number states or Fock states 
In these states 

the probability of measuring any particular amplitude 
By in the mode 

is distributed according to 
the square of the Hermite-Gaussian harmonic 

oscillator solutions with quantum number n
The Ez amplitudes are similarly distributed 

n



Number states

The expectation values of the electric and magnetic field 
amplitudes are both zero for any number state, e.g.,

because the states      ,           , and
are all eigenstates of the same Hamiltonian

and so are orthogonal
and similarly for the magnetic field mode amplitude

†ˆ ˆ ˆsinz
o

n E n i kx n a a n
L


      




 


n 1n  1n 

 sin 1 1 1
o

i kx n n n n n n
L


     




    
 0



Schrödinger and Heisenberg representations 

So far, we have used solutions to the time-independent 
Schrödinger equation for the electromagnetic mode

Here we use the term “Schrödinger equation” in the 
generalized sense where we mean that

is a Schrödinger equation for a system 
in an eigenstate with eigenenergy E

Explicitly, for the eigenstates of our electromagnetic 
mode, we have

Ĥ E 



 ˆ 1/ 2H n n n     



Schrödinger and Heisenberg representations 

Generalizing our earlier postulations
we also postulate here that 

the time-dependent generalized Schrödinger 
equation is valid, i.e.,

even if our Hamiltonian is not the one in our 
original Schrödinger equation for an electron 

This postulation does appear to work

Ĥ i
t

 







Time-dependence and number states

With this approach to describing time-dependence 
as before, to get the time variation of a given state 

we multiply the time-independent energy eigenstates
by   

to make

consistent with

so including time-dependence the number states become

   exp 1/ 2 / exp 1/ 2i n t i n t               

 ˆ 1/ 2H n n n     

Ĥ i
t

 





 exp 1/ 2i n t n     
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The coherent state

The state that corresponds most closely to the classical 
field in an electromagnetic mode 

is the coherent state 
introduced previously as an example with the 

harmonic oscillator 
Using our current notation we can rewrite this as

where 

0

1exp
2n nn

n
c i n t n



    




         


 exp / !n
nnc n n n

    



The coherent state

In these expansion coefficients

the quantity    will turn out to be the expected value 
of the number of photons in the mode 

As before, note that

is the Poisson distribution 
with mean    and standard deviation  

n

 2 exp
!

n

nn

n n
c

n









n n

 exp
!

n

nn

n n
c

n











The coherent state

Note that, in the coherent state
the number of photons in the mode is not 
determined 

The coefficients          
tell us the probability that

we will find n photons in the mode 
if we make a measurement

This number is now found to be distributed 
according to a Poisson distribution

2
nnc



The coherent state

It is in fact the case that 
the statistics of the number of photons 

in an oscillating “classical” 
electromagnetic field 

are Poissonian
For example 

if we put a photodetector in a laser beam 
we will measure a Poissonian distribution 

of the arrival rates of the photons
an effect known as shot noise



Coherent state

Coherent state oscillations with 

where

and  is the magnetic    
field amplitude
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Coherent state oscillations with 

where

and  is the magnetic    
field amplitude

Coherent state
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Coherent state

Coherent state oscillations with 

where

and  is the magnetic    
field amplitude 
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Coherent state

Coherent state oscillations with 

where

and  is the magnetic    
field amplitude 
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Coherent state

Coherent state oscillations with 

where

and  is the magnetic    
field amplitude 
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Sets of classical modes

We postulate a set of classical modes
each of which has the following form

Here E, B, u, and v are all in general vectors
and D is a constant 

The forms we used for our plane wave example

correspond to these with

   , ( )t p t D    E r u r    , ( ) Dt q t
c


  B r v r

  sinzE p t D kx   cosy
DB q t kx
c



   ˆ sin kx  u r z    ˆ cos kx v r y



Sets of classical modes

and  
satisfy Maxwell’s equations 

and the wave equation in free space if we require

We presume the classical electromagnetic problem
with its boundary conditions 

has been solved to give these modes

   , ( )t p t D    E r u r    , ( ) Dt q t
c


  B r v r

   
c


 


 u r v r    
c


 


 v r u r

dq p
dt


  dp q

dt


  



Sets of classical modes

We will also presume that 
the spatial functions           and   

are normalized over the entire volume 
and they are all orthogonal

So, for two (possibly different) modes
with indices 1 and 2 respectively 

and

 u r  v r

    3
1 2 1, 2d    u r u r r

    3
1 2 1, 2d     v r v r r



Classical superpositions and energy

Consider a classical superposition of such modes  

The total energy of such a field is

where we have also used 

   , ( )t p t D  


 E r u r      , Dt q t
c


 


B r v r

2 2 31 1
2 o

o

H d


 
  

 
 E B r

21/ o oc  

        3
1 2 1 2 1 2 1 2 1 2

1, 2

1
2 o D D p p q q d         

 

        u r u r v r v r r



Classical superpositions and energy

Using the orthonormality of the u and of the v in

eliminates the “cross terms” with different indices, so 

so we can write a sum of separate Hamiltonians

where

 2 2 21
2 oH D p q  



 

        3
1 2 1 2 1 2 1 2 1 2

1, 2

1
2 oH D D p p q q d         

 

        u r u r v r v r r

H H




 2 2 21
2 oH D p q    



Classical mode Hamiltonians

In each

if we now choose

then we have

and the H, p, and q now obey 

Hamilton’s equations

as we could check

 2 2 21
2 oH D p q    

o

D 







 2 2

2
H p q

  


 

dp H
dt q

 




 


dq H
dt p

 









Quantization of individual modes

We can proceed for each mode, postulating 
a “momentum” operator for each mode

hence changing the classical Hamiltonian

to the proposed the quantum mechanical one

ˆ dp i
dq



  

2
2 2

2
ˆ

2
dH q

dq


 


  
   

 


 2 2

2
H p q

  


 



Quantization of individual modes

We next rewrite this Hamiltonian as 

defining dimensionless units  
and creation and annihilation operators

so the total Hamiltonian for the set of modes is

2
2 †

2

1ˆ ˆ ˆ
2 2

dH a a
d


    



  


         
  

 

/q   

† 1ˆ
2

da
d 






 
   

 

1ˆ
2

da
d 






 
  

 

† 1ˆ ˆ ˆ
2

H a a  
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Occupation number representation

For example, the state with 
one photon in mode k, three in mode m
and none in any other mode 

which would be an example of 
a “multimode” state

could be written as

where we have labeled the modes 
progressively with the lower case letters 

0 , ,0 ,1 ,0 ,3 ,0 ,a j k l m n 



Single mode operators with multimode states

Just as before
the annihilation operators will have the property

now specific to given mode

with

Similarly
and the number operator for a given mode

will still be
so

 ˆ , , , 1 ,a n n n    
    

ˆ ,0 , 0a   

 †ˆ , , 1 , 1 ,a n n n    
     

†ˆ ˆ ˆN a a  
ˆ , , , ,N n n n     



Writing multimode states using operators

We can create a multimode state by progressively 
operating with the appropriate creation operators 

starting with the “zero” state or “empty” state
often written simply as  

For our example state, we could write

where the factor             compensates for the factors 
introduced by the creation operators in 

keeping the state normalized

0

† † † †1 ˆ ˆ ˆ ˆ0 , ,0 ,1 ,0 ,3 ,0 , 0
1!3!a j k l m n k m m ma a a a 

1 / 1!3!

 †ˆ , , 1 , 1 ,a n n n    
     



Writing multimode states using operators

In general, we can write a state with
n1 particles in mode 1
n2 particles in mode 2 

and so on
as

     1 2† † †
1 2 1 2

1 2

1 ˆ ˆ ˆ, , , , 0
! ! !

n n n
n n n a a a

n n n
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Commutation relations for boson operators

Formally, then, for creation operators 
operating on any state

we must have

or, in the form of a commutation relation

Similarly, for annihilation operators 
it does not matter in what order we destroy particles 

and so we similarly have

† † † †ˆ ˆ ˆ ˆj k k ja a a a

† † † †ˆ ˆ ˆ ˆ 0j k k ja a a a 

ˆ ˆ ˆ ˆ 0j k k ja a a a 



Commutation relations for boson operators

For mixtures of annihilation and creation operators 
if we annihilate a boson in one mode 

and create one in another 
it does not matter in what order we do that either 

Only if we are creating and annihilating in the same mode 
does it matter what order we do this

with a commutation relation we have previously 
deduced (i.e.,                    )

Hence in general we can write
† †ˆ ˆ ˆ ˆj k k j jka a a a  

† †ˆ ˆ ˆ ˆ 1aa a a 



Multimode field operators

It is now straightforward to construct the full multimode 
electric and magnetic field operators

We start from the classical definition of the 
multimode electric field

as an expansion in classical field modes
We use the relation                      we deduced to 

get Hamilton’s equations, and 
we substitute the operator      

for the quantity p in each mode 

   , ( )t p t D  


 E r u r

/ oD  

p̂



Multimode field operators

We therefore use our previously deduced operator

in

to obtain the (multimode) electric field operator 

 †ˆ ˆ ˆ
2

p i a a   


   , ( )t p t D  


 E r u r

     †ˆ ˆ ˆ,
2 o

t i a a 
  






 E r u r



Multimode field operators

By a similar argument, starting from the classical 
expression for a multimode magnetic field

substituting the operator                            for q
we obtain

     , Dt q t
c


 


B r v r

 †ˆ ˆ ˆ
2

q a a   


     †ˆ ˆ ˆ,
2

ot a a 
  



 
 B r v r
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Description and ordering of multiple fermion states 

We can write a basis state for multiple identical fermions as 

Here, there are N identical fermions, and they occupy 
single-particle basis states a, b, … n

!

; , ,
ˆ 1

1 ˆ 1, 2, 3, ,
!

N

N a b n
P

P a b c N n
N




  

1, 2, ,
1, 2, ,1

!
1, 2, ,

a a N a
b b N b

N
n n N n






   




Single-particle fermion states 

Single-particle basis states are 
individual states a fermion can 
occupy
and here each has a lower case 

letter associated with it
For example 

each possible electron state in a 
potential well or atom 
corresponds to a different single-
particle basis state here

a

b

c



Multiple fermion basis states 

Though 

might seem to imply that each of the 
possible states is occupied
that is not in general the case 

Very few of the possible single-
particle states are likely occupied 
in any given multiple fermion basis 

state

a

b

c

; , ,

!

ˆ 1

1 ˆ 1, 2, 3, ,
!

N a b n

N

P

P a b c N n
N















Multiple fermion basis states

We might have three electrons 
in with four potential wells
and be considering a 

(multiple particle) basis 
state in which there is 
1 electron in the ground 
state of well 1 

1 in the 2nd state of well 3
1 in the 4th state of well 4



a

b

c

Multiple fermion basis states

A basis state that might have two 
electrons in one well 
e.g., one on the lowest state and 

one on the third state
though this is not necessarily an 

eigenstate of the Hamiltonian 
The first electron would repel the 

second electron
so the second electron would not 

see a simple square potential



Multiple fermion basis states

For manipulations in the 
fermion case, we must 
define one standard order of 

labeling of the single-
particle basis states
in the determinants for the 
multiple fermion basis 
functions 



Multiple fermion basis states

For example, if we had a 
system with four potential 
wells 
we might label sequentially 

all of the states in well 1 
then next all of the states in 
well 2
and so on 

a
b
c

d

e
f
g

h

i
j
k

l

m
n
o

p



Multiple fermion basis states

We could choose some other 
labeling sequence 
labeling all of the first states 

in wells 1 through 4 
then all of the second states 
in wells 1 through 4 
and so on 

a
e

b
f

c
g

d
h

i j k l

m n o p



Multiple fermion basis states

We could choose some other 
labeling sequence 
labeling all of the first states 

in wells 1 through 4 
then all of the second states 
in wells 1 through 4 
and so on 

or we could even choose some 
more complicated labeling 
sequence

a
b
d

g

c
e
h

k

f
i
l

n

j
m
o

p



Multiple fermion basis states

It does not matter what 
sequence we choose 
but we have to have one 

standard labeling sequence
Here, we label the single-

particle basis states using the 
lower case letters 
and those will be in 

alphabetical sequence in 
our standard order

a
e
i

m

b
f
j

n

c
g
k

o

d
h
l

p



Occupation number representation

We might, for example, have a basis state 
corresponding to three identical fermions 

one in state b, one in state k, and one in state m
In standard order, we would write that state as

Here we have also introduced another notation 
the occupation number notation

similar to the boson occupation number notation 

3; , , ,

1, 2, 3,
1 1, 2, 3, 0 ,1 ,0 , ,1 ,0 ,1 ,0
3! 1, 2, 3,

b k m a b c k l m n

b b b
k k k
m m m

     



Occupation number representation

In this occupation number representation, as in the state

0a in the ket means that the single-particle fermion 
state (or fermion mode) a is empty, and
1b means state b is occupied 

Because this is a fermion state
the determinant combination of the different 
fermions to the occupied states is understood

3; , , ,

1, 2, 3,
1 1, 2, 3, 0 ,1 ,0 , ,1 ,0 ,1 ,0
3! 1, 2, 3,

b k m a b c k l m n

b b b
k k k
m m m

     



States not in standard order

We could also write a state that was not in standard 
order for the rows 

e.g., 

To get that state into standard order for the rows 
we would have to swap the first and second rows

If we swap two adjacent rows in a determinant 
we have to multiply the determinant by –1

3; , ,

1, 2, 3,
1 1, 2, 3,
3! 1, 2, 3,

k b m

k k k
b b b
m m m

 



So, swapping the top two rows, we have

3; , ,

1, 2, 3,
1 1, 2, 3,
3! 1, 2, 3,

k b m

b b b
k k k
m m m

  

States not in standard order

1, 2, 3,k k k

,0 ,1 ,0 , ,1 ,0 ,1 ,0a b c k l m n    

3; , ,b k m 

1, 2, 3,b b b–
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Fermion creation operators

Now we postulate 
a fermion creation operator 

for fermion “mode” or single-particle 
basis state k

and write it as  
It must take any state in which single-particle 

basis state k is empty 
and turn it into one 

in which this state k is occupied 

†
k̂b



Constructing the creation operator

Suppose we start with the state where 
single-particle states b and m are occupied 

but state k and all other states are not 
In the permutation notation, we therefore propose that   

has the following effect on that state

So,      adds a third particle into the system
and we propose that it adds it to the end of the list

†
k̂b

2! 3!
†

ˆ ˆ1 1

1 1ˆ ˆ ˆ1, 2, 1, 2, 3,
2! 3!k

P P

b P b m P b m k
 

   
†
k̂b



Constructing the creation operator

Adding to the end of the list is equivalent to
adding a row to the bottom of the determinant (and 
a column to the right)

i.e., now dropping the normalization factors for 
convenience but keeping the sign behavior

Note the sequence in the permutation notation is the 
same as the sequence down this leading diagonal

†

1, 2, 3,
1, 2,ˆ 1, 2, 3,
1, 2,

1, 2, 3,
k

b b b
b b

b m m m
m m

k k k




For this case 

the determinant is not written in standard order 
To get this particular determinant into standard order 

we need to swap the bottom two rows 
and in performing this one swap 

we must therefore multiply the determinant by –1

Constructing the creation operator

† 1, 2,ˆ
1, 2,k

b b
b

m m


1, 2, 3,
1, 2, 3,
1, 2, 3,

b b b
m m m
k k k

1, 2, 3,
1, 2, 3,
1, 2, 3,

b b b
k k k
m m m

 



Constructing the creation operator

Suppose now that we add another particle 
this time in state j

using the operator 
Then we have

†ˆ
jb

† † †

1, 2, 3,
1, 2,ˆ ˆ ˆ 1, 2, 3,
1, 2,

1, 2, 3,
j k j

b b b
b b

b b b k k k
m m

m m m
 



† † †

1, 2, 3,
1, 2,ˆ ˆ ˆ 1, 2, 3,
1, 2,

1, 2, 3,
j k j

b b b
b b

b b b k k k
m m

m m m
 

Constructing the creation operator

Suppose now that we add another particle 
this time in state j

using the operator 
Then we have

†ˆ
jb

1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,

b b b b
k k k k
m m m m
j j j j

 



1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,

b b b b
k k k k
m m m m
j j j j

 † † 1, 2,ˆ ˆ
1, 2,j k

b b
b b

m m


Constructing the creation operator

To get to standard order
we have to swap the bottom j row with the adjacent 
m row 

multiplying by –1

1, 2, 3, 4,k k k k
1, 2, 3, 4,m m m m
1, 2, 3, 4,j j j j

 1



1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,

b b b b
k k k k
m m m m
j j j j

 
1, 2, 3, 4,j j j j

† † 1, 2,ˆ ˆ
1, 2,j k

b b
b b

m m


Constructing the creation operator

Then we swap the j row
now second from the bottom

with the adjacent k row, 
multiplying again by –1

1, 2, 3, 4,k k k k

1, 2, 3, 4,m m m m

 1 2



† † 1, 2,ˆ ˆ
1, 2,j k

b b
b b

m m
 

Constructing the creation operator

So finally

1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,

b b b b
k k k k
m m m m
j j j j

1, 2, 3, 4,j j j j
1, 2, 3, 4,k k k k
1, 2, 3, 4,m m m m

 1 2



Constructing the creation operator

Now suppose we do this two-particle creation operation 
in the opposite order 

First, similarly to before, but first with 
and performing the necessary swap of the bottom 

two rows 

† 1, 2,ˆ
1, 2,j

b b
b

m m

†ˆ
jb

1, 2, 3,
1, 2, 3,
1, 2, 3,

b b b
j j j

m m m
 



† † †

1, 2, 3,
1, 2,ˆ ˆ ˆ 1, 2, 3,
1, 2,

1, 2, 3,
k j k

b b b
b b

b b b j j j
m m

m m m
 

Constructing the creation operator

Next, if we operate with †
k̂b



† †

1, 2, 3, 4,
1, 2, 1, 2, 3, 4,ˆ ˆ
1, 2, 1, 2, 3, 4,

1, 2, 3, 4,

k j

b b b b
b b j j j j

b b
m m m m m m

k k k k

 

Constructing the creation operator

Next, if we operate with
adding a k row to the bottom (and a column to the 
right)

we obtain

†
k̂b



† †

1, 2, 3, 4,
1, 2, 1, 2, 3, 4,ˆ ˆ
1, 2, 1, 2, 3, 4,

1, 2, 3, 4,

k j

b b b b
b b j j j j

b b
m m m m m m

k k k k

 

Constructing the creation operator

Now, however 
we only have to swap adjacent rows once 

not twice
to get the determinant into standard order 

This result is –1 times the result from that of 
the operators in the order 

1, 2, 3, 4,m m m m
1, 2, 3, 4,k k k k



† †ˆ ˆ
j kb b



Sign behavior for creation operator pairs

For example, we would get the same 
difference in sign 

if we had considered the pairs of operators
and        

or the pairs        and
Note one of the pairs of operators always 

results in one more swap of adjacent rows 
than the other 

because it encounters one more row to be 
swapped 

† †ˆ ˆ
a kb b † †ˆ ˆ

k ab b
† †ˆ ˆ
j nb b † †ˆ ˆ

n jb b



Sign behavior for creation operator pairs

Hence we have the result
valid for any state with single-particle 
states j and k initially empty

In fact
this relation is universally true for any state

as we can now show 

† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 



Sign behavior for creation operator pairs

For any state in which state k is initially occupied 
the fermion creation operator for that state 

must have the property that
because we cannot create two fermions in one 

single-particle state 
Hence when the single-particle state k is occupied 

trivially we have                            and  
Hence  still works here 

because each individual term is zero 
and similarly when state j is initially occupied

†ˆ ,1 , 0k kb  

† †ˆ ˆ ,1 , 0j k kb b   † †ˆ ˆ ,1 , 0k j kb b  
† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 



Sign behavior for creation operator pairs

We also trivially get the same result 
for any initial state with j = k

because we are trying to create at least two 
fermions in the single-particle state 

three if it is already occupied
and so we also get zero for both terms 

Hence we conclude that 

is valid for any starting state 

† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 

† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 



Anticommutation relation

A relation of the form
is called an anticommutation relation 

It is like a commutation relation between operators 
but with a plus sign in the middle, rather than 

the minus sign of a commutation relation 
A notation sometimes used for an anticommutator of 

two operators is

Now we will progressively develop a family of 
anticommutation relations for the fermion operators

† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 

 † † † † † †ˆ ˆ ˆ ˆ ˆ ˆ,j k k j j kb b b b b b 



Formalization of creation operator sign behavior

We see, with our choice that we add the particle in state 
k initially to the end of the list 

or, equivalently, to the bottom of the determinant 
and then swap it into place 

that the number of swaps we have to perform is 
the number, Sk, of occupied states that are 

after the state k in the standard order
With this definition

we have formally  †ˆ ,0 , 1 ,1 ,kS
k k kb     
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Fermion annihilation operators

Now we can proceed to define annihilation operators 
From                                                we can see that

Taking the complex conjugate 
or, actually, the Hermitian adjoint, of both sides

So, we deduce

 †ˆ ,0 , 1 ,1 ,kS
k k kb     

   †ˆ,1 , ,0 , 1 ,1 , ,1 , 1k kS S
k k k k kb          

   
† ††† †ˆ ˆ,1 , ,0 , ,0 , ,1 ,k k k k k kb b       

 ˆ ,1 , 1 ,0 ,kS
k k kb     

 ˆ,0 , ,1 , 1 kS
k k kb     



Fermion annihilation operators

Hence
whereas     creates a fermion in single-particle 
state k

provided that state was empty 
we see from 

annihilates a fermion in single-particle state k
provided that state was full

and is called the fermion annihilation 
operator for state k

†
k̂b

 ˆ ,1 , 1 ,0 ,kS
k k kb     

k̂b



Annihilation operator acting on a state

The annihilation operator acting on the Slater 
determinant progressively 

swaps the row corresponding to state k in 
the determinant with the one below it 

until that row gets to the bottom of the 
determinant 

in which case we remove it (and the 
last column) of the determinant 

in an inverse fashion to the process 
with the creation operator 



Anticommutator for annihilation operators

Using the relation (analogous to                        )

which merely states that, if the single-particle state k is 
empty to start with

we cannot annihilate another particle from that state
we can argue similarly that

which is the annihilation operator 
anticommutation relation

valid for all states and for j = k

ˆ ˆ ˆ ˆ 0j k k jb b b b 

†ˆ ,1 , 0k kb  
ˆ ,0 , 0k kb  
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Mixtures of creation and annihilation operators

Suppose single-particle states b, j, and m are initially 
occupied 

and we operate on this state first with the 
annihilation operator  

Then we have

where we had to swap the j and m rows to get the j
row to the bottom

ˆ
jb

1, 2, 3,
1, 2,ˆ 1, 2, 3,
1, 2,

1, 2, 3,
j

b b b
b b

b j j j
m m

m m m
 



Mixtures of creation and annihilation operators

Now we operate with    , obtaining

where the minus sign is cancelled because we had to 
swap the k row from the bottom with the m row

†
k̂b

†

1, 2, 3,
ˆ ˆ 1, 2, 3,

1, 2, 3,
k j

b b b
b b j j j

m m m

† 1, 2,ˆ
1, 2,k

b b
b

m m
 

1, 2, 3,
1, 2, 3,
1, 2, 3,

b b b
k k k
m m m





Mixtures of creation and annihilation operators

Next let us consider applying these operators in the 
opposite order, starting now with 

where we had to swap the k row from the bottom 
with the m row

†
k̂b

†

1, 2, 3, 4,
1, 2, 3,

1, 2, 3, 4,ˆ 1, 2, 3,
1, 2, 3, 4,

1, 2, 3,
1, 2, 3, 4,

k

b b b b
b b b

j j j j
b j j j

k k k k
m m m

m m m m

 



Mixtures of creation and annihilation operators

Applying the    operator now gives

In operating with    , two swaps are 
required because we have to 
swap past both the m and k rows. 

†

1, 2, 3, 4,
1, 2, 3,

1, 2, 3, 4,ˆ ˆ ˆ1, 2, 3,
1, 2, 3, 4,

1, 2, 3,
1, 2, 3, 4,

j k j

b b b b
b b b

j j j j
b b j j j b

k k k k
m m m

m m m m

 

1, 2, 3,
1, 2, 3,
1, 2, 3,

b b b
k k k
m m m

 

ˆ
jb

ˆ
jb



Mixtures of creation and annihilation operators

As before, we find an additional row swap required with 
one order of operators rather than the other

The result 

is minus the result 

†

1, 2, 3, 1, 2, 3,
ˆ ˆ 1, 2, 3, 1, 2, 3,

1, 2, 3, 1, 2, 3,
k j

b b b b b b
b b j j j k k k

m m m m m m


†

1, 2, 3, 1, 2, 3,
ˆ ˆ 1, 2, 3, 1, 2, 3,

1, 2, 3, 1, 2, 3,
j k

b b b b b b
b b j j j k k k

m m m m m m
 



Mixtures of creation and annihilation operators

Hence, at least when operating on states when single-
particle state j is initially full and single-particle state k
is initially empty

Again, if state j is initially empty, then both pairs of 
operators will lead to a zero result

and similarly if state k is initially full 
Hence, as long as states j and k are different states 

this relation is universally true 

† †ˆ ˆ ˆ ˆ 0j k k jb b b b 



Mixtures of creation and annihilation operators

The only special case we have to consider more carefully 
here is for j = k

Suppose single-particle state k is initially full
Then we have

because     operating on this state gives zero 

†

1, 2, 3,
ˆ ˆ 1, 2, 3, 0

1, 2, 3,
k k

b b b
b b k k k

m m m


†
k̂b



Mixtures of creation and annihilation operators

For the other order of operators, we have

It is left as an exercise to repeat this derivation for the 
situation where state k is initially empty 

In both cases, the result is the same
One or other of the pairs returns the original state 

and the other pair returns zero 

† †

1, 2, 3,
1, 2,ˆ ˆ ˆ1, 2, 3,
1, 1,

1, 2, 3,
k k k

b b b
b b

b b k k k b
m m

m m m
 

1, 2, 3,
1, 2, 3,
1, 2, 3,

b b b
k k k
m m m





Anticommutation relation for mixed operators

Hence we can say that

Putting this together with 

we can write the anticommutation
relation for mixed annihilation and 
creation operators

† †ˆ ˆ ˆ ˆ 1k k k kb b b b 
† †ˆ ˆ ˆ ˆ 0j k k jb b b b 

† †ˆ ˆ ˆ ˆ
j k k j jkb b b b  



Fermion number operator

Finally, we note that        
is the fermion number operator for the state k

i.e., it will tell us the number of fermions occupying 
state k

If the state is initially empty
it will return the value zero 

and if the state is initially full 
it will return the value 1

We can write this as

†ˆ ˆ
k kb b

†ˆ ˆˆ
k k kN b b
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We would like an operator, in occupation number form 
representing the quantum mechanical wavefunction 

to give a way to transform operators, such as 
Hamiltonians, from a spatial form 

into the occupation number representation 
We propose first a wavefunction operator when we have 

a single particle

where the          are some complete set for describing 
functions of space 

Fermion wavefunction operator

   ˆˆ j j
j

b r r

 k r



Fermion wavefunction operator

Suppose a single particle was in state m
i.e., with wavefunction  

We can also write that state as

where      is the state with 
no fermions present in any single-particle state

Then we find that

 m r

†ˆ0 ,1 ,0 , 0l m n mb 
0

     † †ˆ ˆ ˆˆ ˆ0 ,1 ,0 , 0 0l m n m j j m
j

b b b   r r r 



Fermion wavefunction operator

Now in this relation

we use the anticommutation relation

obtaining

But               because an attempt to annihilate a 
particle that is not there results in a null result 

(The right hand side here is actually a vector 
of zero length)

Hence we have

    †ˆ ˆˆ 0 ,1 ,0 , 0l m n j j m
j

b b r r 

† †ˆ ˆ ˆ ˆ
j k k j jkb b b b  

    †ˆ ˆˆ 0 ,1 ,0 , 0l m n j jm m j
j

b b   r r 

ˆ 0 0jb 

   ˆ 0 ,1 ,0 , 0l m n m r r 



Fermion wavefunction operator

We can see then from 
that this operator has successfully extracted the 
amplitude  

We have also acquired the ket in the result
which might seem odd 

but we should have a state vector here 
because the result of operating on a state vector 

should be a state vector 

   ˆ 0 ,1 ,0 , 0l m n m r r 

 m r
0



Fermion wavefunction operator

By a simple extension of the above algebra
if the particle is in a linear superposition, i.e., 

where by                we mean the state with 
one particle in state k and no other single-

particle states occupied 
then 

which has extracted the desired linear 
superposition of wavefunctions

,1 ,S k k
k

c   

,1 ,k 

    ˆ 0S k k
k

c   r r



Two-fermion wavefunction operator

Next we  propose a wavefunction operator for a two-
fermion state 

The          is for normalization of the final result
It is left as an exercise to show that such an operator 

operating on a state with two different single-particle 
states occupied 

leads to a linear combination of products of 
wavefunctions that is correctly antisymmetric
with respect to exchange of these two particles 

     1 2 1 2
,

1 ˆ ˆˆ ,
2 n j j n

j n

b b   r r r r

1/ 2



Two-fermion wavefunction operator

That is, if this operator 

acts on a state s that has 
one fermion in single-particle state k

and an identical fermion in single-particle state m
i.e., the state  

then

     1 2 1 2
,

1 ˆ ˆˆ ,
2 n j j n

j n

b b   r r r r

† †ˆ ˆ,1 , ,1 , 0k m k mb b  

         1 2 1 2 2 1
1ˆ , ,1 , ,1 , 0
2k m k m k m       r r r r r r  



Multiple fermion wavefunction operator

We can propose to extend such wavefunction operators 
to larger numbers of particles

postulating

with the expectation that these operators will 
also extract the correct sum of permutations

to give wavefunctions antisymmetric with 
respect to exchange

       1 2 1 2
, , ,

1 ˆ ˆ ˆˆ , , N n b a a b n N
a b n

b b b
N

    r r r r r r
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Single-particle fermion Hamiltonian

Consider a Hamiltonian for a single fermion 
Previously, we had a simple Hamiltonian such as the 

simplest Schrödinger equation for a single particle

For any given state       of spatial wavefunction         
the expected value for energy was

 
2

2ˆ
2

H V
m

   r r r

   r

     
2

2 3ˆ
2

E H V d
m

     
     

 
r rr r r r



Postulating a Hamiltonian with fermion character

To give the Hamiltonian fermion particle character 
we substitute for the wavefunction in 

with the wavefunction operator 
generating our desired new fermion operator 

instead of the expectation value 
Hence we obtain a single particle Hamiltonian operator

     
2

2 3ˆ
2

E H V d
m

     
     

 
r rr r r r

     
2

† 2 3ˆ ˆ ˆ
2

H V d
m

 
 

    
 

 rr r r r



Postulating a Hamiltonian with fermion character

Presume that the single-particle basis states with spatial 
wavefunctions   

are the eigenstates of this single particle Hamiltonian 
with corresponding eigenenergies Em

Now using the wavefunction operator
we obtain

 m r

   ˆˆ j j
j

b r r

     
2

† 2 3

,

ˆ ˆˆ
2j k j k

j k
H b b V d

m
   

    
 

 rr r r r

   † 3

,

ˆ ˆ
j k k j k

j k

b b E d   r r r †

,

ˆ ˆ
j k k jk

j k

b b E  †ˆ ˆ
j j j

j

E b b ˆ
j j

j

E N



Postulating a Hamiltonian with fermion character

Now we can use this elegant form
Consider a state       as 

a linear superposition of the basis states
In the r representation

or equivalently in the number state notation

where          is a convenient way of writing the 
basis state in which 

only single particle state m occupied 

†ˆ ˆˆ
j j j

j

H E b b


 m m
m

c  r

†ˆ 0m m
m

c b 
†ˆ 0mb



Postulating a Hamiltonian with fermion character

The Hermitian conjugate of                          

is

So now we can evaluate the energy expectation value
using our new forms of the state and the Hamiltonian

Now we simplify   
using anticommutation relations

†ˆ 0m m
m

c b 
ˆ0m m

m

c b 

† †

, ,

ˆ ˆ ˆ ˆˆ 0 0m n j m j j n
m n j

E H c c E b b b b    
† †ˆ ˆ ˆ ˆ 0m j j nb b b b



Simplifying with anticommutation relations

A simple algebraic approach to simplify an expression 
like                   is to 

use the anticommutation relations to push 
annihilation operators to the right

That will lead to disappearance of terms because 
an annihilation operator acting on the empty state   
gives a zero result 

We will therefore keep making substitutions of the form

which is just the anticommutation relation for and  

† †ˆ ˆ ˆ ˆ 0m j j nb b b b

† †ˆ ˆ ˆ ˆ
m j mj j mb b b b 

m̂b †ˆ
jb



Simplifying with anticommutation relations

Hence we have

So substituting back into

we have

which is exactly the result we would have expected 
based on our previous approach 

  † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0m j j n mj j m nj n jb b b b b b b b   

† †

, ,

ˆ ˆ ˆ ˆˆ 0 0m n j m j j n
m n j

E H c c E b b b b    

, ,

0 0m n j mj nj
m n j

E c c E   

 †ˆ ˆ 0 0mj j m nj mj njb b     

2

j j
j

c E
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Single-particle Hamiltonians with multiple particle states 

Suppose then that we have N identical fermions 
Fermion i is presumed to have a single-particle 
Hamiltonian in the original r form such as

Therefore, in the original r form
the total Hamiltonian for the set of N fermions is 

 
2

2ˆ
2 ii iH V

m
   r r r

1

ˆ ˆ
N

i
i

H H


 r r



Single-particle Hamiltonians with multiple particle states 

We now show that, even for the multiple fermion case 
we can still write the total Hamiltonian operator 

exactly as in

So, regardless of how many particles are in the system 
we do not have to change the Hamiltonian for non-
interacting fermions 

i.e., we do not have to write a sum over all the 
particles 

like

†ˆ ˆˆ
j j j

j

H E b b

1

ˆ ˆ
N

i
i

H H


 r r



Single-particle Hamiltonians with two particle states 

So now we consider a single-particle fermion operator 
and a multi-fermion system

We now illustrate that

is still the Hamiltonian we would deduce when 
we create the Hamiltonian using multiple fermion 

wavefunction operators 
We show this Hamiltonian 

works also for two fermions (N = 2)

†ˆ ˆˆ
j j j

j

H E b b



Single-particle Hamiltonians with two particle states 

Suppose we have a specific two-fermion state with 
one fermion in single-particle state k

and one in single-particle state m
We can write that state as

Evaluating with our new Hamiltonian form we have

† †ˆ ˆ,1 , ,1 , 0TP k m k mb b    

ˆ
TP TPE H   †

† † † † †ˆ ˆ ˆ ˆ ˆ ˆ0 0k m j j j k m
j

b b E b b b b
† † †ˆ ˆ ˆ ˆ ˆ ˆ0 0j m k j j k m

j

E b b b b b b



Single-particle Hamiltonians with two particle states 

Now we simplify

using the anticommutation relation 
to push the annihilation operators to the right 

† † †ˆ ˆ ˆ ˆ ˆ ˆ0 0j m k j j k m
j

E E b b b b b b

  † † † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0m k j j k m m jk j k jk k j mb b b b b b b b b b b b   

 † † † † † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0jk m m jk m k j m jk m j k m m j k k j mb b b b b b b b b b b b b b b b     

    
      

† † †

† † † † †

ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0

jk m m jk mk k m mj m j

jk mj j m mk m k mj j m k k mj m j

b b b b b b

b b b b b b b b b b

   

    

    
       

† †ˆ ˆ ˆ ˆ
m j mj j mb b b b 



Single-particle Hamiltonians with two particle states 

Now in

we have annihilation operators on the far right 
in every expression involving creation and 
annihilation operators 

so all of those terms disappear (              for any i ) 

    
      

† † †

† † †

† † † † †

ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0

m k j j k m

jk m m jk mk k m mj m j

jk mj j m mk m k mj j m k k mj m j

b b b b b b

b b b b b b

b b b b b b b b b b

   

    

    
       

ˆ 0 0ib 



Single-particle Hamiltonians with two particle states 

Hence we have

But, by choice, m and k are different states so 
mk never has any value other than zero

Hence we have

Substituting back into 

we have

exactly as expected for two non-interacting fermions 

 † † †ˆ ˆ ˆ ˆ ˆ ˆ 0 0m k j j k m jk jk mk mj jk mj mk mjb b b b b b           

 † † †ˆ ˆ ˆ ˆ ˆ ˆ 0 0m k j j k m jk mjb b b b b b   
† † †ˆ ˆ ˆ ˆ ˆ ˆ0 0j m k j j k m

j

E E b b b b b b
  0 0j jk mj k m

j

E E E E    



Single-particle Hamiltonians with two particle states 

Hence this illustration shows how the Hamiltonian 

also works for multiple particle states. 
Unlike the r representation of the Hamiltonian

we do not have to add separate Hamiltonians for 
each identical fermion

and hence we have an elegant form of Hamiltonian 
for multiple fermion systems

†ˆ ˆˆ
j j j

j

H E b b
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General single-particle fermion operators 

Here we consider a system with N fermions 
In the r representation of an operator   

e.g., such as the momentum operator 
for a multiple fermion system 

we would add all of the operators 
corresponding to the coordinates of each 
particle, i.e., 

where      is the operator for a specific particle 
e.g., it might be the momentum operator

Ĝr

1

ˆ ˆ
N

i
i

G G


 r r

ˆ
iGr



General single-particle fermion operators 

In the annihilation and creation operator formalism
we postulate instead that

where  

is the N-particle fermion wavefunction operator, so

† 3 3 3
1 2

ˆ ˆˆ ˆ NG G d d d   r r r r

       1 2 1 2
, , ,

1 ˆ ˆ ˆˆ , , N n b a a b n N
a b n

b b b
N

    r r r r r r


  

           

† † †

1 , ,
, ,

3 3 3
1 2 1 2 1 2

1 ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ

N

a b n n b a
i a b n

a b n

a b n N i a b n N N

G b b b b b b
N

G d d d     

  


  

  
  





 

 rr r r r r r r r r




 

  



General single-particle fermion operators 

In

each of the a, b, …, n and each of the a’, b’, …, n’
ranges over all single-particle fermion states

Now, all the spatial integrals, except the one over ri
lead to Kronecker deltas of the form 

forcing         ,         , etc., except for particle i

           

† † †

1 , ,
, ,

3 3 3
1 2 1 2 1 2

1 ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ

N

a b n n b a
i a b n

a b n

a b n N i a b n N N

G b b b b b b
N

G d d d     

  


  

  
  





 

 rr r r r r r r r r




 

  

k k 

a a  b b 



General single-particle fermion operators 

Hence

where

We can use the anticommutation relation
to progressively swap the operator   

from the right to the center 
and the anticommutation relation

to progressively swap the operator   
from the left to the center

† † † †
1 2 1 2

1 , , , 1, 2,

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
N

i i a b i n n i b a
i a b i i n

G G b b b b b b b b
N 

  
 

   

    3
1 2 1 2

ˆ
i i i i i i i iG G d   rr r r

ˆ ˆ ˆ ˆ 0j k k jb b b b 

2îb

† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 
†
1îb



General single-particle fermion operators 

Each such application of an anticommutation relation 
results in a sign change 

but there are equal number of swaps from the left 
and from the right 

so there is no net sign change in this operation 
Hence we have 

†
21

† † † †
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

ii

N

i i a b n i i n b a
i a b i i n

omitting b omitting b

G G b b b b b b b b
N 

  
 

  



General single-particle fermion operators 

In practice with any operator
in the end we are working out its matrix elements

Any two operators with identical matrix elements are 
equivalent operators 

We consider two, possibly different, N-fermion basis states 
and   

and consider matrix elements of the operator    in 

between such states 

1N 2N
Ĝ

†
21

† † † †
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

ii

N

i i a b n i i n b a
i a b i i n

omitting b omitting b

G G b b b b b b b b
N 

  
 

  



General single-particle fermion operators 

Because of Pauli exclusion
the only strings of operators that can survive in 
matrix elements for legal fermion states 

are those in which the operators   
are all different from each other 

i.e., correspond to annihilation operators for 
different single particle states

and are each different from both     and   
since otherwise we would be trying either to 

annihilate two fermions from the same state or 
create two fermions in the same state 

ˆ ˆ ˆ, ,a b nb b b

1îb 2îb



General single-particle fermion operators 

Hence, for these states
since no two states in the string of creation operators 
or in the string of annihilation operators can be 
identical 

not only do the pairs of annihilation operators 
anticommute and 

the pairs of creation operators anticommute as usual
so also do all the pairs of creation and annihilation 

operators with different subscripts 
other than possibly the pair †

1 2
ˆ ˆ
i ib b



General single-particle fermion operators 

Hence in

we can swap the creation operator   
all the way from the left 

until we get to the left of the corresponding 
annihilation operator  

only acquiring minus signs as we do so 

†
21

† † † †
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

ii

N

i i a b n i i n b a
i a b i i n

omitting b omitting b

G G b b b b b b b b
N 

  
 

  

†
âb

âb



General single-particle fermion operators 

Actually, we acquire an even number of minus signs
because the number of swaps taken to get to the 
middle 

is equal to 
the number to get from the middle to its final 

position 
so there is no change in sign in all these swaps 

We can repeat this procedure for each creation operator 
other than  

which we do not need to move anyway

†
1îb



General single-particle fermion operators 

Hence, with all these swaps, we can rewrite

as

or more simply

†
21

† † † †
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

ii

N

i i a b n i i n b a
i a b i i n

omitting b omitting b

G G b b b b b b b b
N 

  
 

  

†
21

† † † †
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

ii

N

i i i i n n b b a a
i a b i i n

omitting b b

G G b b b b b b b b
N 

  
 



†
21

†
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆˆ ˆ ˆ ˆ

ii

N

i i i i n b a
i a b i i n

omitting b b

G G b b N N N
N 

  
 





General single-particle fermion operators 

When this operator

operates on a specific N-fermion basis state 
the only terms in the summation that can survive 

are those for which the list of states   
corresponds to occupied states in  

and so the sum over a, b, …, n (omitting i1 and i2) 
and the number operators 

can be dropped without changing any matrix 
element 

†
21

†
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆˆ ˆ ˆ ˆ

ii

N

i i i i n b a
i a b i i n

omitting b b

G G b b N N N
N 

  
 



1N

, ,a b n
1N



General single-particle fermion operators 

Hence we can write

It makes no difference which fermion we are considering 
is the same for every fermion

so the sum over i is trivial, and so 

where we also further simplified notation by 
substituting j for i1 and k for i2

†
1 2 1 2

1 1, 2

1 ˆ ˆˆ
N

i i i i
i i i

G G b b
N 

  

1 2i iG

†

,

ˆ ˆˆ
jk j k

j k

G G b b



This is the general form for a single-particle fermion 
operator

The Hamiltonian 

is just a special case for a diagonal operator 
Hence we have found a very simple form 

for the single-particle fermion operator 
valid for any number of fermions

General single-particle fermion operators 

†

,

ˆ ˆˆ
jk j k

j k

G G b b

†ˆ ˆˆ
j j j

j

H E b b
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Fermion operators and multiple 
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Two-particle fermion operators

Quantum mechanics for scientists and engineers David Miller



Two-particle fermion operators

Fermions such as electrons interact
e.g., through their Coulomb repulsion

For such cases, we need two-particle operators 
In the r form, we might have an operator   

that depends on the coordinates of both particles 
Then we postulate we can write

using the two-fermion wavefunction operator 

 1 2
ˆ ,Dr r r

     † 3 3
1 2 1 2 1 2 1 2

ˆ ˆˆ ˆ, , ,D D d d   rr r r r r r r r

     1 2 1 2
,

1 ˆ ˆˆ ,
2 k j j k

j k

b b   r r r r



Two-particle fermion operators

Substituting this two-particle wavefunction operator
into 

we have

or equivalently

where

     † 3 3
1 2 1 2 1 2 1 2

ˆ ˆˆ ˆ, , ,D D d d   rr r r r r r r r

         † † 3 3
1 2 1 2 1 2 1 2

, , ,

1 ˆ ˆ ˆ ˆˆ ˆ ,
2 a b d c a b c d

a b c d

D b b b b D d d       rr r r r r r r r

† †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

D D b b b b 

          3 3
1 2 1 2 1 2 1 2

ˆ ,abcd a b c dD D d d      rr r r r r r r r



Order of suffixes in two-particle fermion operators

Note in

the order of the suffixes on the chain of operators
is not a, b, c, d

The ordering is in the opposite sense for the 
annihilation operators

This different ordering emerges 
from the wavefunction operators 

and the properties of Hermitian conjugation

† †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

D D b b b b 

† †ˆ ˆ ˆ ˆ
a b d cb b b b



Two-particle operators with multiple particles

We presume that the two-particle fermion operator

would remain unchanged as we changed the system 
to have more than two fermions in it 

The arguments would be similar to those for the single-
particle fermion operator   

So we presume this is a general statement 
for a two-particle fermion operator 

in this annihilation and creation operator approach

† †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

D D b b b b 

†

,

ˆ ˆˆ
jk j k

j k

G G b b



Electrons interacting through the Coulomb potential

For two electrons (of the same spin) with Coulomb repulsion 
the Hamiltonian in the r form is 

Hence our two particle operator formalism gives us 

where Habcd is defined analogously to

   1 2

2 2
2 2

1 2
1 2

ˆ ,
2 4o o

eH
m 

    
r r rr r

r r


          3 3
1 2 1 2 1 2 1 2

ˆ ,abcd a b c dD D d d      rr r r r r r r r

† †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

H H b b b b 



Electrons interacting through the Coulomb potential

Suppose specifically we have the two-fermion state 
where one electron is in the basis state   

and the other is in the basis state   
i.e., the two-particle state can be written

We evaluate the expectation value of the energy 
using the Hamiltonian

for this state, i.e. 

 k r
 m r

† †ˆ ˆ 0TP k mb b 

† †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

H H b b b b 

† † † †

, , ,

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0 0
2TP TP abcd m k a b d c k m

a b c d

H H b b b b b b b b   



Electrons interacting through the Coulomb potential

Now 

the proof of which is left as an exercise 
Hence we have for the energy expectation value

† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0m k a b d c k m

ak bm ck dm am bk cm dk am bk ck dm ak bm cm dk

b b b b b b b b
               



  

 

† † † †

, , ,

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0 0
2
1
2

TP TP abcd m k a b d c k m
a b c d

kmkm mkmk mkkm kmmk

H H b b b b b b b b

H H H H

  

   





Electrons interacting through the Coulomb potential

In

explicitly, we have

and

These are exactly the same terms as previously calculated
using the r formalism 

 1ˆ
2TP TP kmkm mkmk mkkm kmmkH H H H H     

        3 3
1 2 1 2 1 2

ˆ
kmkm mkmk k m k mH H H d d       rr r r r r r

        3 3
1 2 1 2 1 2

ˆ
kmmk mkkm k m m kH H H d d        rr r r r r r



Electrons interacting through the Coulomb potential

Remember in

Hkmkm or equivalently                                 is the sum of 
the kinetic energies for the two particles and 
the Coulomb potential energy for two electrons

so it is the energy we would calculate if the 
particles were not identical

is the exchange energy

Hence this approach does reproduce the results of our 
previous r formalism 

 1ˆ
2TP TP kmkm mkmk mkkm kmmkH H H H H     

(1/ 2)( )kmkm mkmkH H

(1/ 2)( )mkkm kmmkH H 
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Interaction of different particles

States with different kinds of particles

Quantum mechanics for scientists and engineers David Miller



States with different kinds of particles

For a state with 
one fermion in fermion state k, and one in state q
one photon in photon mode d and three in photon 
mode s

we could write the state in a list form 
or alternatively using creation operators acting on 
the empty state as

,0 ,1 ,0 , 0 ,1 ,0 , ; ,0 ,1 ,0 , ,0 ,3 ,0 ,j k l p q r c d e r s t          

;fm bnN N  3† † † †1 ˆ ˆ ˆ ˆ 0
3! k q d sb b a a 



States with different kinds of particles

In

Nfm is the mth possible list of occupied fermion states 
here the list

and similarly Nbn is the nth possible list of occupied 
boson states 

here the list  
Note now that the empty state     is one that is empty 

both of this kind of fermion and this kind of boson

 3† † † †

,0 ,1 ,0 , 0 ,1 ,0 , ; ,0 ,1 ,0 , ,0 ,3 ,0 ,

1 ˆ ˆ ˆ ˆ; 0
3!

j k l p q r c d e r s t

fm bn k q d sN N b b a a

     

  

     

,0 ,1 ,0 , 0 ,1 ,0 ,j k l p q r  

,0 ,1 ,0 , ,0 ,3 ,0 ,c d e r s t       
0



Commutation relations for different particles

We postulate that creation and annihilation operators 
for different particles commute under all conditions 

Specifically for the boson and fermion operators we 
would have 

Note similar relations also would hold 
for annihilation and creation operators 

corresponding to two different kinds of fermions 
such as electrons and protons

† † † †ˆ ˆˆ ˆ 0j jb a a b   ˆ ˆˆ ˆ 0j jb a a b  
† †ˆ ˆˆ ˆ 0j jb a a b   † †ˆ ˆˆ ˆ 0j jb a a b  
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Electron-photon interaction

Suppose first we had mathematically “turned off” 
any interaction between electrons and photons 

Because there is no interaction for the moment
the resulting Hamiltonian is the sum of the separate 
fermion (electron) and boson (photon) Hamiltonians

The sum over j is over all possible single-particle 
fermion states (modes) 

The sum over  is over all possible photon modes

† †ˆ ˆˆ ˆ ˆo j j j
j

H E b b a a  


  



Electric dipole interaction – boson operators

Previously, for the electric dipole interaction 
we had, from a semiclassical view of the energy of an 
electron at position ri in an electric field E

Substituting the multimode electric field operator
for the classical field E gives

for any specific electron i

ˆ
scedH e r E r

Ê

   †ˆ ˆ ˆ1
2ed i i i

o

H e a a 
  






   r u r r



Electric dipole interaction – fermion operators

For N electrons
if we stayed in our previous r form 

we would have to add all these Hamiltonians

Now we want to transform this Hamiltonian in r form 
into the fermion occupation number form also

To do so, we formally use the N-fermion 
wavefunction operators

   †

1

ˆ ˆ ˆ1
2

N

ed i i
i o

H e a a 
  






    r u r r



Electric dipole interaction – fermion operators

Because the fermion and boson operators commute 
with one another

the boson operators also commute with the (fermion) 
wavefunction operators, and so we can write

† 3 3 3
1 2

ˆ ˆˆ ˆed ed NH H d d d   r r r r

   † † 3 3 3
1 2

1

ˆ ˆˆ ˆ1
2

N

i i N
i o

e a a d d d
  



 


 
    

 
  u r r r r r 

   † † 3 3 3
1 2

1

ˆ ˆˆ ˆ 1
2

N

i i N
i o

a a e d d d
  



 


 
    

 
  u r r r r r 



Rewriting the single-particle fermion operator 

Note first that this operator

is a “single-particle” operator
It is a sum of terms

each of which only depends on the coordinates 
of one particle

There are no parts to it that depend on 
relative separations of two particles, for 
example

   † † 3 3 3
1 2

1

ˆ ˆ ˆˆ ˆ 1
2

N

ed i i N
i o

H a a e d d d
  



 


 
    

 
  u r r r r r 



Rewriting the single-particle fermion operator 

Now we remember that, when we had such an operator 
in the r form as a sum of single-particle operators for 
each of N fermions

then the result of rewriting it in creation and 
annihilation operator form was

with 

1

ˆ ˆ
N

i
i

G G


 r r

† 3 3 3 †
1 2

,

ˆ ˆˆ ˆˆ ˆ N jk j k
j k

G G d d d G b b   r r r r

    3ˆ
jk j kG G d   rr r r



Rewriting the single-particle fermion operator 

So our operator

similarly becomes

with

   † † 3 3 3
1 2

1

ˆ ˆ ˆˆ ˆ 1
2

N

ed i i N
i o

H a a e d d d
  



 


 
    

 
  u r r r r r 

 † †

, ,

ˆ ˆˆ ˆ ˆed ed jk j k
j k

H H b b a a  


 

    3ˆ
ed jk j i ed i k i iH H d    rr r r

      31
2 j i i i k i i

o

e d


  


      r u r r r r



Rewriting the single-particle fermion operator 

In 

with

all the details of the specific form of the single-
particle fermion states and of the electromagnetic 
modes 

are contained within the constants Hedjk

 † †

, ,

ˆ ˆˆ ˆ ˆed ed jk j k
j k

H H b b a a  


 

      31
2ed jk j i i i k i i

o

H e d
 

  


      r u r r r r



Operators and processes

The annihilation and creation operators identify processes 
that could occur given appropriate starting states 

We can open up the operator expression

If (fermion) state k was occupied and state j was empty 
and we had at least one photon in mode 

then we could have a process corresponding to 
that involves annihilating a photon in mode 

and changing an electron from state k to state j
i.e., absorption of a photon to change the electron state

 † † † † †ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆj k j k j kb b a a b b a b b a     

†ˆ ˆ ˆj kb b a



Operators and processes

Similarly, in 

the process corresponding to the operators   
is one of emission of a photon 

as an electron goes from state k to state j
We will evaluate transition rates for such processes 

once we have discussed time-dependent 
perturbation theory for this formalism 

 † † † † †ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆj k j k j kb b a a b b a b b a     
† †ˆ ˆ ˆj kb b a
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Time-dependent perturbation theory 

We will have an unperturbed Hamiltonian,    
such as the one for non-interacting fermions and 
bosons

Then we will consider the interactions between particles 
such as the electric dipole interaction discussed 
before for electrons and photons

as a perturbation 

ˆ
oH

† †ˆ ˆˆ ˆ ˆo j j j
j

H E b b a a  


  

 † †

, ,

ˆ ˆˆ ˆ ˆed ed jk j k
j k

H H b b a a  


 



Perturbation theory with occupation number states

Now our basis states must describe both 
the occupation of each single-particle electron state

and the occupation of each boson mode 
Hence we write our basis states in the form used in a 

previous example

 3† † † †

,0 ,1 ,0 , 0 ,1 ,0 , ; ,0 ,1 ,0 , ,0 ,3 ,0 ,

1 ˆ ˆ ˆ ˆ; 0
3!

j k l p q r c d e r s t

fm bn k q d sN N b b a a

     

  

     



Perturbation theory with occupation number states

Specifically, the mth state of this entire (non-interacting) 
fermion-boson system

or the mth basis state of an interacting system 
can be written as  

where Nfm is the list of all the occupation 
numbers 

of each possible single-particle fermion state 
and Nbm is similarly the list of all the occupation 

numbers 
of each possible boson mode 

;fm bmN N



Perturbation theory with occupation number states

These states will be the eigenstates of the unperturbed 
Hamiltonian 

which we take as

Analogous to the zero-order perturbation theory 
equation

we now write this in the form
where Em would be the energy of this fermion-

boson system in state m
in the absence of any interaction between the 

fermions and bosons

† †ˆ ˆˆ ˆ ˆo j j j
j

H E b b a a  


  

ˆ ; ;o fm bm m fm bmH N N E N N

ˆ
o n n nH E 



Perturbation theory with occupation number states

The actual system state is some linear superposition   
where we expand this state in our multiple fermion 
and multiple boson occupation number basis 

i.e., analogous to the previous expansion

we have

explicitly including the time factors   
so we can leave them out of the states



   exp /n n n
n

a t iE t    

 exp / ;m m fm bm
m

c iE t N N   

 exp /miE t 
;fm bmN N



Perturbation theory with occupation number states

Note again that, in

in contrast to previous approaches 
which treated perturbations as external 

phenomena 
Em is the energy of the complete (unperturbed) 

fermion-boson system in this state  
not merely the energy of the fermion

 exp / ;m m fm bm
m

c iE t N N   



Perturbation theory with occupation number states

We now proceed exactly as before to set up time-
dependent perturbation theory

with the only differences being that 
the basis states                 

are states of the entire system
and the (unperturbed) eigenvalues Em

are those of the entire (unperturbed) system
here of fermions and bosons

;fm bmN N



Perturbation theory with occupation number states

So, as before, with

in

eliminating terms on both sides using

and premultiplying by                for state q of the 
fermion-boson system

we obtain, analogously to previous results 

 exp / ;m m fm bm
m

c iE t N N   

 ˆ ˆ
o pi H H

t
 

 



ˆ ; ;o fm bm m fm bmH N N E N N

;fq bqN N

    ˆexp / exp / ; ;q q m m fq bq p fm bm
m

i c iE t c iE t N N H N N    



Perturbation theory with occupation number states

Taking the usual perturbation approach 
of basing the first-order change in wavefunctions 

on the zeroth-order state 
i.e., on the unperturbed wavefunctions 

we have
analogously to          1 01 ˆexpi n in i p n

n

a t a i t H t
i

   


     1 01 ˆexp / ; ;q m m q fq bq p fm bm
m

c c i E E t N N H N N
i

     




Perturbation theory with occupation number states

In

as before, we typically presume the system
here an electron-photon one

starts in some specific basis state s of the 
unperturbed problem so that   

and all other such coefficients are zero
so we have

     1 01 ˆexp / ; ;q m m q fq bq p fm bm
m

c c i E E t N N H N N
i

     


 0 1sc 

   1 1 ˆexp / ; ;q q s fq bq p fs bsc i E E t N N H N N
i
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Photon emission and absorption

We take the electric dipole 
perturbing Hamiltonian
in annihilation and creation 

operator form

For simplicity, we presume we have 
only one electron 
and that it has only two states of 

interest 

 † †

, ,

ˆ ˆˆ ˆ ˆ ˆp ed ed jk j k
j k

H H H b b a a  


  
1

2



Photon emission and absorption

State 1 – the lowest electron state 
with energy E1

State 2 – the upper electron state 
with energy E2

We consider the three possible 
processes of 
photon absorption
spontaneous emission 
and stimulated emission

E1

E2

1

2



Photon absorption

Suppose 
the electron is initially in state 1

the lower state 
there is one photon in mode 1

and there are no photons in any 
other modes 

Then we can write the initial state as

1

† †
1̂ ˆ; 0fs bsN N b a

E1

E2

1

2
mode 
1



Photon absorption

This state will have an energy 

From now on
for simplicity

we omit the zero point energy of 
the harmonic oscillator

i.e., the additional          terms 

This change merely corresponds to a 
choice of energy origin 

11sE E   

E1

E2

1

2
mode 
1

1

1
2 



Photon absorption

In our pertubation theory result

as time evolves
to have any non-zero result for the amplitude cq of 

state q
as required for any “transition” of the system to 

state q
we must have the matrix element

be non-zero

   1 1 ˆexp / ; ;q q s fq bq p fs bsc i E E t N N H N N
i

    


ˆ; ;fq bq p fs bsN N H N N



Photon absorption

Now we have 

Examining the sequence of operators, we have

 
1

† † † †
1

, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ; 0p fs bs ed jk j k
j k

H N N H b b a a b a   


 

   1 1 1

† † † † † † † † †
1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0j k j kb b a a b a b b b a a a a        

  1 1 1

† † † † †
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0j k kb b b a a a a        

 1 1

† † †
1

ˆ ˆ ˆ 0j kb a a    

1 1

† † † †
1 1

ˆ ˆ ˆ ˆ0 0k j k jb b a a     



Photon absorption

With this result

in

only two possible choices for state q, i.e., state  
give non-zero results 

when we form 

Either, the first possibility, 

or, the second possibility,

 
1 1 1

† † † † † † † †
1 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ0 0 0j k k j k jb b a a b a b b a a         

 
1

† † † †
1

, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ; 0p fs bs ed jk j k
j k

H N N H b b a a b a   


 
;fq bqN N

ˆ; ;fq bq p fs bsN N H N N
†ˆ; 0fq bq jN N b

1

† † †ˆ ˆ ˆ; 0fq bq jN N b a a 



Photon absorption

Consider the first possible “final” state 
which is the state with 

one electron in state j
and no photons in any modes

This state will have energy
which leads to

†ˆ; 0fq bq jN N b

q jE E

   1 1

1 †
1 1

,

1 ˆ ˆexp / 0 0q j ed jk k j j
k

c i E E t H b b
i   



        


 1 11 1
1 exp /j ed ji E E t H
i       




Fermi’s Golden Rule revisited

We can repeat the Fermi Golden Rule derivation
in the current notation

Now in

we integrate over time
By definition, we choose   

since we regard the system as starting in the 
specified initial state at t = 0 

Hence integrating from t = 0 to to, we have

   1 1

1
1 1

1 exp /q j ed jc i E E t H
i        


   1 0 0qc t  

      1

1

1

11
1

1

exp / 1ed j
q o j o

j

H
c t i E E t

E E








       
 





Fermi’s Golden Rule revisited

I.e., 

So 

      1

1

1

11
1

1

exp / 1ed j
q o j o

j

H
c t i E E t

E E








       
 



   1

1 1

1

1

1 1
1

sin / 2
2 exp / 2

j o

ed j j o
j

E E t
iH i E E t

E E


 







          

 
 



   
 
 

1

1

1

2
2 2 11

1 2

1

sin / 2
4

j o

q o ed j

j

E E t
c t H

E E











   
 

 



 
 

1

1

1

2
2 1

1 2

1

sin / 22 1 2 j o

o ed j
o j

E E t
t H

t E E








 

       
   

 
 



Fermi’s Golden Rule revisited

Now the function

is a sharply peaked function near  
and it has unit area when integrated over this 

energy argument 

(note that                                    )

Hence in the limit of large to
it can be replaced by a delta function

 
 

1

1

2
1

2

1

sin / 21 2 j o

o j

E E t

t E E







 

     
 

   

 



11 0jE E   

 2 2sin /x x dx 



   



Fermi’s Golden Rule revisited

So

becomes

which gives a steadily rising occupation probability 
for this state q

Hence the transition rate is 

   
 
 

1

1

1

2
2 2 11

1 2

1

sin / 22 1 2 j o

q o o ed j
o j

E E t
c t t H

t E E








 

       
   

 
 

     1 1

2 21
1 1

2
q o o ed j jc t t H E E 
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Fermi’s Golden rule to select final states

Now, for j = 1 , the -function 

vanishes for any finite 
So the only final state q that will give 

a transition rate 
is the state j = 2

with the corresponding restriction 
that
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Absorption process

Hence our process is as follows
We start with 

one photon in mode 1 and the 
electron in state 1

E1

E2

1

2
mode 
1

1




Absorption process

Hence our process is as follows
We start with 

one photon in mode 1 and the 
electron in state 1

We finish with 
no photons and the electron in 
state 2

This is a normal absorption process
now requiring the destruction of 

the photon in the process

E1

E2

1

2

1




From our operators, the other final possibility would be 

with a corresponding energy 
This term would actually correspond to photon emission

We now have a photon in mode 
With starting energy                       as before

the -function argument in Fermi’s Golden Rule is

But this cannot be close to zero because 
and       is also positive 

Fermi’s Golden rule to select final states

1
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Fermi’s Golden rule to select final states

Hence on integrating over time as above 
this term associated with final state 

will not give rise to any steady transition rate 
Hence this possibility can be discarded here
Simply put, we cannot emit a photon here

because there is no lower energy for the electron to 
go to

Though this might seem obvious
we have formally derived this conclusion here

not merely presumed it is obvious
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Spontaneous emission

Suppose 
the electron is initially in state 2

the upper state 
there are no photons in any mode

Now we can write the initial state as

with energy
Note semiclassically with no 

electromagnetic field
there would be no transitions 

E1

E2

1

2

†
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Spontaneous emission

Forming                    with 

with our starting state  

we encounter the string of operators

ˆ ;p fs bsH N N  † †

, ,

ˆ ˆˆ ˆ ˆ ˆp ed ed jk j k
j k

H H H b b a a  
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Spontaneous emission

With this string of operators 
from

to get a non-zero result for 
we must therefore choose for state q

which is the state with 
the electron now in state j
and a photon in mode 

This state q has energy 

 † † † † †
2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ0 0j k k jb b a a b b a    
ˆ ;p fs bsH N N
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Spontaneous emission

We put this state q
which has some specific choice of mode 

and electron state j
into our general perturbation theory expression

So    1 † †
2 2

1 ˆ ˆˆ ˆexp / 0 0q j ed jk k j j
k

c i E E t H a b a b
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Spontaneous emission

Integrating

and taking   to get the transition rate, gives

As before, for any finite   
the only possible choice for the final state is j = 1

if there is to be any transition rate 
with the requirement

i.e., we have

   1
2 2

1 exp /q j ed jc i E E t H
i        


  21
qc

   2

2 22 /q ed j jw H E E      



2 1E E   

 2
12 1 2

2
q edw H E E 

     




Spontaneous emission

This transition process is 
spontaneous emission 

The electron starts in its higher state 2
with no photons present 

and ends in its lower state 1 
with one photon present E1

E2

1

2


mode 




Spontaneous emission

This photon can be in any mode 
with the correct photon energy to 

match the energy separation   
and for which Hed12 is not zero for 
some other reason

This process has emerged naturally 
as a consequence of quantizing the 

electromagnetic field 
requiring essentially no additional 
physics except quantization

E1

E2
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mode 
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Stimulated emission

Suppose now we have 
a photon in mode 1 and 
an electron in its upper state 

The initial state is therefore

with an energy E1

E2

1

2
mode 
1

1

† †
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Stimulated emission

Then, with algebra similar to that used before

The first term                   is simply the absorption term 

but this will vanish in Fermi’s Golden Rule because 
there is no electron state into which we can absorb 

given that we are starting in the upper state 
The second term has two possibilities in the summation

both final photons in different modes   
both final photons in the same mode 
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Final two photons in different modes 

Suppose           so                      leads to a term              

Then for some specific 
to get a non-zero result for   

the final state will have to be

with energy
corresponding to a state with 

the electron in level j and 
a photon in each of the different modes  and 1

ˆ; ;fq bq p fs bsN N H N N

1

† † †ˆ ˆ ˆ; 0fq bq jN N b a a 

1q jE E      
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Final two photons in different modes 

We will have, for some specific  and j

giving a transition rate

for which the only possibility here for non-zero 
transition rate is j = 1 and 

This process is just spontaneous emission into mode 
with the same transition rate as before 
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Spontaneous emission

So this process starts with 
the electron in state 2
a photon in mode 1

E1

E2

1

2

mode 1



Spontaneous emission

So this process starts with 
the electron in state 2
a photon in mode 1

and ends with 
the electron in state 1
a photon in mode 1
and a photon spontaneously emitted 

into mode 
The spontaneous emission in mode  is 

unaffected by the photon in mode 1

E1

E2

1

2


mode 1

mode 

mode 1



Final two photons in the same mode

Suppose           so                      leads to a term 

So to get a non-zero result from 
the final (normalized) state has to be

with an energy

Note that, to have a normalized state here
we have had to introduce the factor   

as in the general normalized multiple boson state 

ˆ; ;fq bq p fs bsN N H N N
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Final two photons in the same mode

Hence from 
we are obtaining a term

The       is very important 
It comes from having two photons in the mode

and leads to a larger amplitude for this process
than for spontaneous emission

ˆ; ;fq bq p fs bsN N H N N
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Final two photons in the same mode

Hence for this process we have 

leading to a transition rate into this final state of 

for which the only possibility for finite transition 
rate is with j = 1 and

with a corresponding transition rate, finally, of
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Stimulated emission

The process starts with
the electron in state 2
a photon in mode 1

and ends with 
the electron in state 1
two photons in mode 1

This process is stimulated emission
E1

E2

1

2

1 mode 1
mode 1



Stimulated emission

Note the additional factor of 2 in the transition rate

Note that, other things being equal 
e.g., matrix elements and energies 

the transition rate into the mode already occupied with a 
photon 

is twice as high as the spontaneous emission into an 
unoccupied mode 

Bosons want to go into modes that are already occupied!
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Multiphoton case

It is left as an exercise to analyze the case of  photons 
initially in mode 1

The result for stimulated emission is

with the transition rate into the mode 1 being   
times larger than the spontaneous rate 

into an otherwise similar mode 
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Multiphoton case

Spontaneous emission in any other mode 
is unaffected by the presence of      photons in mode 1

as can be shown directly by considering the 
multiphoton case

The result for absorption with     photons initially in mode 1
can similarly be shown to be a transition rate

where the absorption rate is proportional to the 
number of photons in the mode

as we would expect 

1
n

1
n
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Multiphoton case

Note specifically in the absorption transition rate

that we wrote the matrix element
not the matrix element

Given the definition of           above

we see that                         so  
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Total spontaneous emission rate

We presume we start off with 
the electron in an excited state (here state 2), and 

no photons in any modes
The total spontaneous transition rate will be 

the sum of the transition rates into all possible final 
states q through spontaneous emission

where wq is the spontaneous emission rate into 
some specific mode 

spon q
q

W w



Total spontaneous emission rate

The specific transition rate into mode  is

Since here we are presuming the electron starts in state 
2 and ends in state 1

the sum                     over all possible final states

reduces to a sum over all possible photon modes 
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Matrix element evaluation

To calculate the transition rate
we start with the matrix element Hed12

We presume the field is approximately uniform 
over the size scale of the quantum system

because the wavelength of the light is long
compared to the size of an atom

So if the quantum system is centered at some position ro
we can just use the field at that point

simplifying the calculation of the matrix element 



Matrix element evaluation

So in the matrix element

we simplify by replacing           by

obtaining

where  
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Plane wave modes

We need a normalizable form for plane wave modes 
We imagine we have a cubic box of volume Vb

It is common for mathematical convenience to use 
running waves with periodic boundary conditions 

though one could use standing waves and get the 
same result for a large box 

The resulting modes have the form

where e is a unit vector in the polarization direction of 
the electric field

   1 exp
b

i
V  u r k re



Plane wave modes

These modes are normalized over the box of volume Vb
The allowed values of kx are spaced by 

where Lx is the length of the box in the x direction 
and similarly for the y and z directions 
leading to a density of modes in k-space of

For such propagating waves
we will also have two distinct polarization directions 

though we will handle polarization properties 
directly

2 / xL

 3/ 2bV 



Plane wave modes

We approximate the sum over the modes 
by an integral over k with this density of states  

and also formally a sum over the two possible 
polarizations, i.e.,

In considering the polarizations 
we choose polarization directions at right angles to 
one another 

and at right angles to k

 3/ 2bV 
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Plane wave modes

Specifically we choose polarization 
directions 
relative to (vector) matrix element r12

Here we choose one polarization p
to be in the plane of the vectors k

and r12
With this choice

the other polarization direction is 
perpendicular to r12 and so

vanishes for this polarization 
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Plane wave modes

Hence in our summation
we need only retain the first 

polarization
For this choice, we therefore find that 

(the non-bold quantities refer to the 
vector magnitudes) p
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Total spontaneous transition rate

Now we can use all these results to rewrite Wspon , i.e.,
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Total spontaneous transition rate

In

with ck =  and changing variables to                 , 

Given that

we finally have the total spontaneous emission rate

where 
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Natural lifetime

Such a rate gives a natural lifetime, nat , for a state

A quantum mechanical system sitting in empty space in 
an excited state 

will decay on average over this timescale to its lower 
state, emitting a photon 

The direction of the mode into which the photon is 
emitted is random 

though weighted somewhat by the polarization 
effects 

1/nat sponW 
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Pure and mixed states

So far the only randomness we have considered 
is from quantum-mechanical measurement 

Consider, e.g., the state of polarization of a 
photon 

So far, we could write a general state of 
polarization as

where       is a horizontally polarized 
photon state 

and      is a vertically polarized one

H Va H a V  

H

V



Suppose we measure such a state  
using e.g., a polarizing beamsplitter that separates 
horizontal and vertical polarizations 

to different outputs with different detectors

source of  
photons with 

controlled 
polarization

Pure and mixed states

H Va H a V  

horizontally polarized 
photons

vertically 
polarized 
photons

polarizing 
beamsplitter

“vertical” 
detector

“horizontal” 
detector

H Va H a V  



For this state,                                we expect probabilities 

of measuring horizontal polarization 

of measuring vertical polarization

horizontally polarized 
photons

vertically 
polarized 
photons

“vertical” 
detector

“horizontal” 
detector

source of 
photons with 

controlled 
polarization

Pure and mixed states

2
Ha

2
Va
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polarizing 
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More complete description of optical polarization

Since we must have                        by normalization
we could also choose to write

 = 0 corresponds to linear polarization
 is then the angle of the optical electric vector 
relative to the horizontal axis

When        , the field is in general “elliptically polarized” 
the most general state of polarization 

with  = 45º give 
right and left circular polarization 

22 1H Va a 

cosHa   exp sinVa i 
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Polarization filter

We can always build a polarizing filter or compensator
to allow passage of a photon of any specific polarization

100% of the time
even when starting with elliptical polarization

We could arrange to delay only the horizontal polarization 
by a compensating amount -

to make the photon linearly polarized
then rotate the polarization or apparatus by angle so 

that the photon was always passed through 
to, e.g., the vertical detector 



Pure states

When we can make a polarization filter or compensator 
so we get 100% of the photons to one detector 

we say that the photons are in a “pure” state
here  H Va H a V  

horizontally polarized 
photons

vertically 
polarized 
photons

“vertical” 
detector

“horizontal” 
detector

polarizing 
beamsplitter

source of 
photons with 

definite 
polarization

polarization 
compensator

H Va H a V



Pure states

All states considered so far have been pure states
A “compensator” could be made to pass any particles 
in any one specific quantum mechanical state 

with 100% efficiency to one detector

horizontally polarized 
photons

vertically 
polarized 
photons

“vertical” 
detector

“horizontal” 
detector

polarizing 
beamsplitter

source of 
photons with 

definite 
polarization

polarization 
compensator

H Va H a V



Mixed states

Suppose we have a beam that is a mixture 
from two different independent lasers, “1” and “2”

Presume laser 1 contributes a fraction P1 of the photons 
and laser 2 contributes a fraction P2
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polarized 
photons

“vertical” 
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polarizing 
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polarization 
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horizontally polarized 
photons
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polarized 
photons

“vertical” 
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“horizontal” 
detector

polarizing 
beamsplitter

laser 1
polarization 

compensator

laser 2

non-polarizing 
beamsplitter

Mixed states

Then the probability a given photon is from laser 1 is P1
and similarly there is probability P2 it is from laser 2 



horizontally polarized 
photons
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polarizing 
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laser 1
polarization 
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laser 2

non-polarizing 
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Mixed states

Presume also that these two lasers give uncorrelated photons
of two possibly different polarization states

and        respectively1
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2

2



horizontally polarized 
photons

vertically 
polarized 
photons

“vertical” 
detector

“horizontal” 
detector

polarizing 
beamsplitter

laser 1
polarization 

compensator

laser 2

non-polarizing 
beamsplitter

Mixed states

There is now no one setting of the compensator 
that in general will pass all the photons from both lasers

to the vertical detector 
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horizontally polarized 
photons

vertically 
polarized 
photons

“vertical” 
detector

“horizontal” 
detector

polarizing 
beamsplitter

laser 1
polarization 

compensator

laser 2

non-polarizing 
beamsplitter

Mixed states

Hence, we cannot simply write this state 
as some linear combination such as

of the two different polarization states

2
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1 1 2 2b b 



Mixed states

If we were able to do that, we could construct a 
polarizing filter 

to pass 100% of the photons
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Mixed states

So the state of these photons is described differently
as a “mixed state”

in contrast to a “pure state” like 

horizontally polarized 
photons
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 1 z

Pure states for potential wells

Suppose, for some particle 
with mass
we have a potential well

such as the “infinite” one-
dimensional potential well

We put it in a pure state 
that is an equal linear 

superposition of the lowest 
two states of this well z

1n 

2n 

 2 z

  1 21/ 2   



Pure states for potential wells

In such a superposition

the position of this particle
will oscillate back and 
forwards
because of the different 

time-evolution factors 
for the two energy 
eigenstates 
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Mixed states for potential wells

Suppose instead we take an 
ensemble of identical 
potential wells
and randomly prepare 

half of them with the 
particle in the lowest state
and half of them with the 

particle in the second 
state



Mixed states for potential wells

Statistically, since we do not 
know which wells are which 
at least before performing 

any measurements 
each of these wells is in a 
mixed state 
with 50% probability of 

being in either the first 
or second state



Mixed states for potential wells

Now we evaluate the 
expectation value
of the    position operator for 

each potential well 
In each well

evaluates to the position of 
the center of the well 
since each of these 
wavefunctions is equally 
balanced about the center 

z
ẑ

z



Mixed states for potential wells

The “ensemble average”
of expectation values from 

the different wells 
is also zero

and there is no oscillation 
in time 

Again it would not be correct 
simply to write the mixed 
state 
as a linear combination of the 

form  

z
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Pure state in skewed wells

Suppose each well is skewed
by applying electric field in the 

z direction
for a particle like an electron 
in the well

Then      is different for the first 
and second states of the well
with            for the first state 
and            for the second state

For the pure state, we still expect 
oscillation 

z

1z z

2z z



Mixed states for skewed wells

For a mixed state 
with probabilities P1 and P2

respectively that
we had prepared a given well 
in the first or second state

we would still have no oscillation 
The ensemble average value of 

the measured position 
would now be

2
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Mixed state ensemble average expectation value

Generalizing from 

we expect the ensemble average expectation value 
for some operator    corresponding to an 

observable quantity 

can be written

for some set of different quantum mechanical 
state preparations   

made with respective probabilities Pj
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Mixed states

In considering mixed states
where we are saying that the quantum mechanical 
state could be any of a set of different possibilities 

with respective probabilities Pj
the different         need not be orthogonal 

For example, we could be considering several different 
polarization states close to one another in angle 

perhaps from some fluctuation in time in the precise 
output polarization of some laser

giving a mixed state of many different possible 
similar but not identical polarizations 

j

j
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Density operator

However we are going to represent the mixed state 
it must obviously contain the probabilities Pj

and the pure states 
but it must not simply be a linear combination 

of the states
The structure we propose instead is the density operator

This is an operator because 
it contains the outer products              of state vectors 

j

j j j
j

P  

j j 



Density operator

In 

we deliberately leave the “hat” off this operator 
to emphasize that its physical meaning and use 

are quite different from other operators we have 
considered

 is not an operator representing some physical 
observable 

Rather,  is representing the state
in general, a mixed state

of the system

j j j
j

P   



Density operator

If  is a useful way of representing the mixed state 
it must allow us to calculate quantities like 

the ensemble average measured value
for any physical observable with operator  

If we can evaluate        for such any physical observable
then  will be the most complete way we can have of 
describing this mixed quantum mechanical state 

because it will tell us the value we will get of any 
measurable quantity

to within our underlying statistical uncertainties

A
Â

A



Density matrix and ensemble average values

To understand the properties of the density operator
we write it in terms of a complete orthonormal basis

First we expand each of the pure states        in this set 

obtaining

Then we use this expansion and its adjoint 
in our definition                             to obtain

m

j
 j
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u
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j
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Density matrix and ensemble average values

Written

the matrix representation of  is now clear 
We have for a matrix element in this basis

Here we have also introduced and defined the idea of 

the ensemble average of the coefficient product 
We now usually talk of  as the density matrix 

with matrix elements uv

     ,
j j

j u v u vu v j
P c c  


 

    j j
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j
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Properties of the density matrix

We can deduce several properties from our definition of 
the density matrix

First, the density matrix is Hermitian

Explicitly

Because the density matrix is Hermitian 
so also is the density operator 

since the density matrix is just a 
representation of the density operator

    j j
vu j v u

j

P c c


     j j
j u v

j

P c c
   

 
 uv



Properties of the density matrix

Second, the diagonal elements mm
give us the probabilities of finding the system in a 
specific one of the states  

is the probability for a pure state j
that we will find the system in state m

Hence adding these up with probabilities Pj
gives the overall probability of finding the 

system in state m in the mixed state 
(The off-diagonal elements are a measure of the 

“coherence” between different states and we will return 
to discuss this later)

m
( ) ( ) ( ) 2( ) | |j j j
m m mc c c 



Properties of the density matrix

Third, the sum of the diagonal elements of the density 
matrix is unity 

i.e., remembering that we can formally write the sum 
of the diagonal elements of some matrix or operator 

as the trace (Tr) of the matrix or operator

because the state        is normalized (so                     )

and the sum of all the probabilities Pj of the various 
states        in the mixed state must be 1

  mm
m
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mm
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Ensemble average value from the density matrix

Consider an operator     for some physical observable
and specifically consider the product

We can therefore write some diagonal element of the 
resulting matrix as

Â
Â
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Ensemble average value from the density matrix

Then the sum of the all of these diagonal elements 

is

Note this is the same as the ensemble average value
of the expectation value of the operator    

for this mixed state, as written before  

    ˆ ˆj j
q q j q v v q

v j

A P c c A    
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Ensemble average value from the density matrix

Hence we have a key result of density matrix theory

The density matrix can be used to deduce any 
measurable ensemble average property of a mixed state 

Hence the density matrix gives a full description of a 
mixed state 

Note that this result
is independent of the basis used to calculate the trace

The basis        could be any set 
that is complete for the problem of interest

 ˆA Tr A

m



Ensemble average value from the density matrix

Note also that
if we have the system in a pure state

in which case P = 1 for that state 
and is zero for any other pure state

then we recover the usual result for the expectation 
value

i.e., 

so the density matrix description gives the 
correct answers for pure or mixed states



 ˆ ˆTr A A A   
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Time-evolution of the density matrix

We can directly calculate the time-evolution of the 
density matrix 

We start with the Schrödinger equation for any 
particular one of the pure states in our mixed state

i.e.,   

and we substitute using 

to obtain

Here all the time dependence of the state is in the

ˆ
j jH i

t
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Time-evolution of the density matrix

Now operating from the left with       

we have

i.e., 

where                           

is a matrix element of the Hamiltonian

m
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j
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Time-evolution of the density matrix

We can take the complex conjugate of both sides of 

Noting that     is Hermitian, i.e.,                 we have

or trivially changing indices  
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Time-evolution of the density matrix

But from our previous result for 
the elements of the density matrix

we can take the time derivative to obtain

Now we can substitute using our previous results

(We changed the summation index to q in the first result)
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Time-evolution of the density matrix

Hence                                                              becomes

Note, though, that by definition

so we can substitute for the terms in [ … ]
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Time-evolution of the density matrix

Hence we have 

Since this is true for every matrix element mn
we have

which tells us how the mixed state evolves in time
and is a key result for the density matrix 

mn
mq qn ms sn

q s

i H H
t
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Two-level system

Take a two-level system 
with energies E1 and E2

and eigenfunctions        and 
Presume the system is much smaller 

than an optical wavelength 
so an incident optical field E will be 

uniform across the system
and take E to be polarized in the z
direction
with magnitude E

E1

E2

1

2

1

2

1 2

z

E



Two-level system

Here we will just treat the interaction 
with the electric field semiclassically

We take an “electric dipole” 
interaction 
between the light 

and the electron in the system 
so that the energy change 

on displacing by an amount z
is eEz

E1

E2

1

2

1

2

z

E



Interaction of light with a two-level system 

Hence we can take the (semiclassical) 
perturbing Hamiltonian as

where    is what we will call
the electric dipole operator

with matrix elements

so that the matrix elements of the 
perturbing Hamiltonian become

ˆ ˆpH e z   E E
̂

mn m ne z   

 ˆ
p pmn mnmn

H H   E



Interaction of light with a two-level system 

We choose the states       and
to have definite parity in the z direction

so with our definition  

and hence with our definition

We are free to choose the relative phase of 
the two wavefunctions such that 12 is real 

so that we have

1 2

mn m ne z   
11 22 0  

pmn mnH  E
11 22 0p pH H 

12 21 d   



Interaction of light with a two-level system 

Hence the dipole operator can be written 

and the perturbing Hamiltonian is

The unperturbed Hamiltonian
is just a 2 x 2 diagonal matrix on this basis

with E1 and E2 as the diagonal elements

So the total Hamiltonian is

0
ˆ

0
d

d





 

  
 
0ˆ

0
d

p
d

H



 

  
 

-E
-E

ˆ
oH

1

2

ˆ ˆ ˆ d
o p

d

E
H H H

E



 

    
 

-E
-E



Interaction of light with a two-level system 

The density matrix is also a 2 x 2 matrix 
because there are only two basis states 
under consideration here

and in general we can write it as

for this two-level system

11 12

21 22

 


 
 

  
 



The dipole of the system

We have not yet defined the system’s state
but we can use                       to write

Using                       and                        we have

Hence

 ˆA Tr A

 ˆTr 
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0
d

d
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Behavior of the density matrix in time

We have, from                                  with the definitions

and 

  ˆ/ / ,t i H      

11 12

21 22
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Behavior of the density matrix in time

Taking the “2 – 1” element of both sides in 

with                       gives 
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22 11 1 2 21 21 12
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Behavior of the density matrix in time

From the diagonal elements in 

we can examine the population difference 11 – 22
between the lower and upper states

Using the Hermiticity of 
which tells us that

we have    11 22 21 212 dd i
dt

     E


12 21 

     
     

12 21 11 22 2 1 12

22 11 1 2 21 21 12

d d

d d

E Ed i
E Edt
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Behavior of the density matrix in time

Solving

and

covers any possible behavior of this idealized 
system

Note: this is not a perturbation theory analysis

 21
21 21 11 22

dd i i
dt

       E


   11 22 21 212 dd i
dt

     E




Density matrix and relaxation times

Consider a fractional population difference
between the “lower” and “upper” states 

Suppose that, in equilibrium, with no applied fields
this difference would have a value

Then experience might tell us that 
because of mechanisms such as

collisions with the walls of a box or with other atoms
or by spontaneous emission 

such systems often settle back down again to   
with an exponential decay with some time constant T1

11 22 

11 22( )o 

11 22( )o 



Density matrix and relaxation times

Then we could hypothesize that we could add a term to

to give

For E = 0, this expression would give exponential decay 

back to 

with time constant T1

   11 22 21 212 dd i
dt

     E


       11 22 11 22
11 22 21 21

1

2 d od i
dt T

         
   E



   11 22 11 22 o
     



Density matrix and relaxation times

We have to consider a similar process also 
for the off-diagonal elements of the density matrix 

as in

To understand this, we need to understand 
the meaning of the off-diagonal elements 21 and 12

which we remember are defined with a relation

 21
21 21 11 22

dd i i
dt

       E
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j
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Dephasing

Within any given pure state j
the product               is in general oscillating 

If we have expanded in energy eigenstates       and 
of the unperturbed system

there is a time-dependence                       built into

and a time-dependence                     built into      

so the product 
has an underlying oscillation of the form  

    j j
u vc c



u v

 exp /uiE t   j
uc

 exp /viE t    j
vc



    j j
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exp( ( ) / )u vi E E t  



Dephasing

As time evolves, the system can get scattered 
from pure state j into another pure state k

with some probability 
possibly even a state in which 11 and 22 are 

unchanged 
but in which the phases of the coefficients

and       are different 
At any given time, therefore, we may have an ensemble of

different possibilities for the quantum mechanical state 
all possibly with different phases of oscillation 

( )
1

kc ( )
2
kc



Dephasing

In our mixed state
if we have sufficiently many such random phases that are 
sufficiently different

then the ensemble average of a product

for different u and v, i.e.,  
will average out to zero

But this ensemble average is simply 
the off-diagonal density matrix element

Hence, off-diagonal elements contain information about 
the coherence of the populations in different states

u vc c

u vc c

uv u vc c 



Dephasing

The processes that scatter into states with different 
phases 

can be called “dephasing” processes
The simplest model is that 

dephasing processes cause 
an exponential settling 

of any off-diagonal element 
to zero 

with some time constant T2



Dephasing

Hence we postulate adding a term              to

to obtain

In the absence of an optical field E
21 would execute an oscillation at approximately 
frequency 

decaying to zero approximately exponentially with 
a dephasing time constant T2

 21
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Behavior with oscillating field

We want see what happens when 
we apply an oscillating electric field

to our two-level system
We can simplify our algebra and results

if we define new “slowly varying” quantities

Using these quantity takes out the underlying oscillation 
at frequency  from our algebra

      cos exp exp
2
o

ot t i t i t     
EE E

     21 21 expt t i t        12 12 expt t i t   



Behavior with oscillating field

We can rewrite

and

using                                     
and dropping all terms

on the presumption that such terms will average 
out to zero over timescales of cycles and hence 

they will make relatively little contribution to 
the resulting values of 11 – 22 and 12

 21 21
21 21 11 22

2

dd i i
dt T
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       11 22 11 22
11 22 21 21
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Bloch equations

Hence we obtain, approximately

These equations are often known as the Bloch equations
They were first derived in the field of magnetic 
resonance

       11 22 11 22
11 22 21 21
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Dipole average

We defined                                    and
We know the density matrix is Hermitian, so

so  
We now evaluate the ensemble average

of the dipole moment of the system
which we previously deduced was

We have 

where we used our result              from above

     21 21 expt t i t  

 12 21d    

    12 21exp expd i t i t       

12 21 
   12 12 21 21exp expi t i t          

     12 12 expt t i t   

12 21  
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Solving in the steady state

Now let us solve in the “steady state” 
with a steady monochromatic field and 

when the system has settled down 
In steady state 11 – 22

the population difference between the states
will have settled to some value 

so
Similarly, any coherent responses will have settled down

to follow the appropriate driving field terms
so we expect                     also  

11 22( ) / 0d dt  

21 / 0d dt 



Solving in the steady state

So, setting the left-hand sides of both

and

to zero
we can solve the resulting simultaneous linear 

equations in the two variables 21 and (11 – 22)
the details of which are left as an exercise
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11 22 21 21
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Solutions in the steady state

With                      , the results are
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Behavior with oscillating field

Presume that we have some large number N
of such systems (“atoms”) per unit volume 

The population difference (per unit volume) between 
the number in the lower state and 
the number in the higher state 

is therefore

and in the absence of the optical field
the population difference is

 11 22N N    

 11 22o o
N N    



Population difference with oscillating field

Using                              and
we can rewrite

as

This result tells us how the population difference varies 
as a function of optical intensity (         ) 

and frequency 

 11 22N N      11 22o o
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Polarization with oscillating field

In general in electromagnetism
the (static) polarization P is defined as 

where  is the susceptibility 
When we have an oscillating field 

the response of the medium 
and hence the polarization 

can be out of phase with the electric field 
and then it is convenient 

to generalize the idea of susceptibility 

o P = E



Susceptibility with oscillating field

We can formally think of the susceptibility
as a complex quantity with real and imaginary parts   

and    respectively 
or equivalently we can explicitly write 

the response to a real field
as 

It is also generally true in electromagnetism that 
the polarization is the dipole moment per unit volume 

Hence here we can also write
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Susceptibility with oscillating field

Hence using

we can write explicit formulas for     and 

   21 212 Re cos Im sind t t        
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We obtain

In electromagnetism,                 , the in-phase response 
is responsible for refractive index 

and the quadrature (i.e., 90° shifted) response,  
is responsible for optical absorption
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Susceptibility with oscillating field
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Small field susceptibility

For a “two-level” system for 
small electric field amplitude
then  

and we have the normal 
“linear” refraction variation

and Lorentzian absorption 
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Absorption saturation

In

2 is proportional to the electric field squared 
which is proportional to the intensity I of the light

Hence we can write
where IS is called the saturation intensity 

Hence, for example, on resonance (21 = ), we have

This equation describes “absorption saturation” 
often seen with the high intensities from lasers
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Density matrix and perturbation theory

Now we would start with  

for the time evolution of the density matrix 
instead of Schrödinger’s equation 

We could generalize the relaxation time approximation 
now writing a proposed set of relations

mno is the equilibrium value for mn
and mn is its “relaxation rate”  

ˆ,mn

mn

i H
t
      

 ˆ,mn
mn mn mnomn

i H
t
          



Density matrix and perturbation theory

One then starts with equations like 

instead of the time-dependent Schrödinger equation 
and constructs a perturbation theory just as before 

This density matrix version is the one commonly used 
for calculating non-linear optical coefficients

eliminating the singularities 
when the transition energy and the photon 

energy coincide

 ˆ,mn
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Quantum mechanical measurement

To interpret a quantum mechanical calculation 
so that we can predict the result of a measurement 

we say that 
if the quantum mechanical calculation says the 

state of the system is   
then the average value we will measure for 
some quantity A is given by 

where     is the operator associated with the 
quantity A



ˆA A 
Â



Quantum mechanical measurement

The measurement is a statistical process
We must repeat the experiment many times 

from the start 
including the process that puts the system into 

the state  
and take the average answer 

We also find that 
every measurement we make returns a value 

corresponding to one of the eigenvalues An of Â



Quantum mechanical measurement

Not every measurement returns the same value 
If we decompose the state into a linear combination 

of the normalized eigenstates        of the operator   

i.e., 

then we find that 
the probability of measuring a particular eigenvalue   

is given by
This probabilistic result is known as the “Born Rule”   

n Â

n n
n

a 

2
na



Quantum mechanical measurement

If no external influence is applied in the meantime 
any subsequent measurements on this system 

will always give the same answer An
on measuring the quantity A

This behavior is called the 
“collapse of the wavefunction” 

Measuring a quantity A appears to force it into one of 
its eigenstates

As far as we know, this collapse is totally random
with probabilities from the Born Rule



Proof of the no-cloning theorem

We can show that
starting from 

the first system in an arbitrary state   
and the second system in some 

prescribed starting state 
we cannot in general 

create the second system in the state  
leaving the first system in state

This is the no-cloning theorem  

1a

2s

2a

1a



Proof of the no-cloning theorem

In this proof, our initial state of the two systems is therefore 
the (direct product) state 

We then imagine that we have some operation 
that, over time, turns this state into the state 

This operation is just some time-evolution operation 
that we can describe by a (unitary) linear operator 

such as the one                                  
we devised before

where t is the time we finish 
and to is the time when we started

1 2a s 

1 2a a 

T̂
 ˆ ˆexp /oT iH t t    



Cloning system properties

We presume we have engineered our cloning system 
to give    the required properties 

Specifically we need at least two properties for  
First we want    to perform the operation

cloning the state a of system 1 into system 2
Second, for some orthogonal state         of system 1

we want
cloning the state b of system 1 also into system 2 

There is no problem in general with constructing such a   

T̂
T̂

T̂
1 2 1 2

ˆ
a a a sT   

1b
1 2 1 2

ˆ
b b b sT   

T̂



Cloning a linear superposition state

The problem comes when we want to clone a linear 
superposition state 

Suppose the initial state of system 1
is the linear superposition

Hence the initial state of the pair of systems is 

 1 1 1
1
2Sup a b   

   1 1 2 1 2 1 2
1 1
2 2a b s a s b s        



Cloning a linear superposition state

By postulation in quantum mechanics
the operators are linear 

Operating on a linear superposition 
must give the linear superposition of the operations

This is not the result we wanted for our cloning operation 

   1 2 1 2 1 2 1 2
1 1ˆ ˆ ˆ
2 2a s b s a s b sT T T         

 1 2 1 2
1
2 a a b b    



Cloning a linear superposition state

We wanted our cloning operation to take 
the system 1 superposition state

and change system 2 from its initial state

into the superposition

while leaving system 1 in

So we wanted the overall initial state

to lead to the final state

but instead we got  

  1 11/ 2 a b 

2s

  2 21/ 2 a b 

  1 11/ 2 a b 

  1 1 21/ 2 a b s  

  1 2 1 21/ 2 a a b b   

   1 1 2 21/ 2 a b a b    
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single 
photons

source of single 
photons with 

controlled 
polarization

Alice wants to communicate securely with Bob 
by sending single photons of specific polarizations

Simple quantum encryption

“vertical” 
detector

horizontally polarized 
photons

vertically 
polarized 
photons

polarizing 
beamsplitter

Alice Bob

“horizontal” 
detector



But there may be an “eavesdropper”, Eve 
trying to secretly read their messages

Simple quantum encryption

single 
photons

horizontally polarized 
photons

vertically 
polarized 
photons

“vertical” 
detector

“horizontal” 
detector

polarizing 
beamsplitter

Alice

source of single 
photons with 

controlled 
polarization

BobEve?



"1"V

Simple quantum encryption

Suppose, first, for a “1” 
Alice sends a vertically polarized 

photon 
a photon in the state   

For a “0” 
she sends a horizontally 

polarized photon 
a photon in the state

"0"H

Alice

V

H



Simple quantum encryption

Bob’s apparatus 
separates the two polarizations 

to different single-photon 
detectors 
vertical for  “1” 
horizontal for  “0”

"0"H
"1"V

Alice

"0"H

Bob

"1"V



Simple quantum encryption

This scheme is not secure
Eve could insert a detection 

system like Bob’s into the path 
receive the photon from Alice 

write down the answer 
then, using a transmission system 

like Alice’s 
retransmit the photon on to Bob

with Alice and Bob being 
unaware of her interception

"0"H
"1"V

Alice Bob

"0"H
"1"V



45º
"1"+45

45º

"0"-45

Simple quantum encryption

Now rotate by 45º the apparatus 
Alice uses for transmission 

Now Alice transmits 
a “1” using the state          and 
a “0” using the state  

If Bob leaves his apparatus 
unchanged
he will receive no information

Note

and

Alice Bob

"0"H
"1"V+45

-45

  1/ 2 +45 H V
  1/ 2 -45 H V



45º

45º

"1"+45

"0"-45

Simple quantum encryption

Since 

and
no matter which state Alice 
sends
Bob’s apparatus will give the 

answer 
half the time 

and the answer 
half the time 

Alice Bob

"0"H
"1"V

  1/ 2 +45 H V
  1/ 2 -45 H V

H

V



45º

45º

"1"+45

"0"-45

Simple quantum encryption

Now Alice and Bob each rotate 
their apparatus by 45º
Then they can send information 

just as before 
If Eve interposes her apparatus

oriented horizontally and 
vertically 

she will receive no information, and
Bob and Alice will deduce their 

message is being intercepted

Alice

45º

45º

"1"+45

"0"-45

Bob



45º

45º

"1"+45

"0"-45

45º

45º

"1"+45

"0"-45

Simple quantum encryption

Bob and Alice can monitor errors 
talking on the telephone and 

checking 
quite openly and publicly 

to see that they are sending and 
receiving 
the same bits 

on some test cases 

Alice Bob



45º

45º

"1"+45

"0"-45

45º

45º

"1"+45

"0"-45

Simple quantum encryption

If Eve has interposed herself 
in this horizontal and vertical way 

half the bits apparently received 
by Bob 
will turn out to be wrong 

and Alice and Bob will know to 
discard all of the bits and to 

send out a search party 
to find Eve and her apparatus 

Alice Bob



45º

45º

"1"+45

"0"-45

45º

45º

"1"+45

"0"-45

Simple quantum encryption

Eve 
seeing the approaching search 

party 
realizes her apparatus is set 
incorrectly 
and retreats to come back 

another day 
then setting her apparatus 

in the 45º fashion 

Alice Bob



45º

45º

"1"+45

"0"-45

45º

45º

"1"+45

"0"-45

Simple quantum encryption

Alice and Bob might by that time 
have changed back

but there is a 50% chance that 
Eve could set her apparatus 

correctly 
and a 50% chance of 

interception 
is likely too high for Alice 

and Bob

Alice Bob



Simple quantum encryption

The trick to thwarting Eve is that 
Alice and Bob 

for each time they want to try 
to communicate a bit 
each separately and randomly 

choose between 
the horizontal-vertical 

setting of their apparatus 
and the 45º one



"0"H
"1"V

"0"H
"1"V

Simple quantum encryption

This leads to four possibilities
In two of these 

their transmission is meaningful
Alice Bob



45º

45º

"1"+45

"0"-45

45º

45º

"1"+45

"0"-45

Simple quantum encryption

This leads to four possibilities
In two of these 

their transmission is meaningful
Alice Bob



Simple quantum encryption

This leads to four possibilities
In two of these 

their transmission is meaningful
In the other two

no information is exchanged

Alice Bob

45º

45º

"1"+45

"0"-45

"0"H
"1"V



"0"H
"1"V

45º

45º

"1"+45

"0"-45

Simple quantum encryption

This leads to four possibilities
In two of these 

their transmission is meaningful
In the other two

no information is exchanged

Alice Bob



"0"H
"1"V

45º

45º

"1"+45

"0"-45

Simple quantum encryption

All that is necessary now 
for successful secure information 

exchange by Alice and Bob 
is for them again to 

call one another up openly on the 
telephone and 
agree when their polarizers were 

set the same 
which they can do without ever 
revealing what information 
was exchanged in each case

Alice Bob



"0"H
"1"V

45º

45º

"1"+45

"0"-45

Simple quantum encryption

For each case where their 
polarizers were set the same
Alice notes what bit she sent
Bob notes what bit he received

They openly compare some of 
these bits
to see if there are errors 

introduced by Eve
If not, they now share secret 

information
in the rest of the bits 

Alice Bob
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Quantum computing, teleportation 
and entanglement

Entanglement

Quantum mechanics for scientists and engineers David Miller



Entanglement

We need to re-examine the states 
of more than one particle

Suppose we have two particles
e.g., two photons



Entanglement

Photon 1 is in one of a set of possible 
states  
e.g., going to the left 

in a particular spatial mode (beam 
shape)
with a specific frequency 

with the different possible 
states being 
vertical 
or horizontal polarization 

1m

1m



Entanglement

Photon 2 is similarly in one of a set of 
possible states  
e.g., going to the right 

in a particular spatial mode (beam 
shape)
with a specific frequency

with the different possible 
states being 
vertical 
or horizontal polarization

2n

1m

2n



Entanglement

Then, appropriate basis states 
for the left-going photon 1 

would be       and  
where H and V refer to 

horizontal and vertical 
polarization

Similarly, appropriate basis states 
for the right-going photon 2 

would be       and 

1H 1V

2H 2V

1V
1H

1m

2V
2H

2n



Entanglement

A possible state of these two photons is

which is the left-going photon 
horizontally polarized

and the right-going photon 
vertically polarized 

Other examples with obvious meanings include 

1 2H V

1 2H H 1 2V V 1 2V H



Entanglement

We can express other polarizations of a given photon 
as linear combinations of horizontal and vertical 

For example
the state                               describes 

a left-going photon 
polarized at an angle of 45°

Hence, a state like   
describes a left-going photon polarized at 45°

and a right-going photon horizontally polarized 

  1 11/ 2 H V

  1 1 21/ 2 H V H



Entanglement

So far, we have assigned each photon a definite polarization 
just as we could classically 

But, these states are not the only ones allowed by 
quantum mechanics

For example, consider the following state of the two photons

i.e., a linear superposition of 
the state where both photons are horizontally polarized
and the state where both photons are vertically polarized

 1 2 1 212

1
2

  H H V V



Entanglement

A state like this

is a linear superposition 
of two of the states we considered already

Quantum mechanically, it is a valid state of the system 
It is a vector in the 4-dimensional Hilbert space that 

describes the polarization state of two photons 
a direct product space in which

,             ,             , and   
are appropriate orthonormal basis vectors

 1 2 1 212

1
2

  H H V V

1 2H H 1 2V V 1 2H V 1 2V H



Entangled states

The state

is very nonclassical
It cannot be factorized into a product of 

a state of particle 1 and 
a state of particle 2 

States that cannot be factorized into a product 
of the states of individual systems on their own 

are said to be entangled

 1 2 1 212

1
2

  H H V V



Entangled states

In such an entangled state

particle 1 does not have a definite state of its own 
independent of the state of particle 2 

Imagine we measure the polarization 
of the left-going photon (photon 1) 

and find it is horizontal
Then we have collapsed the overall state 

into one that now only has terms in
So the state of the whole system now is  

 1 2 1 212

1
2

  H H V V

1H
1 2H H



Bell states

There are three other states like the one already considered 
that together constitute the four Bell states

These four Bell states are orthogonal 
and are a complete basis 

for describing any such two-particle system 
with two basis states per particle (here,      and )

 1 2 1 212

1
2

  H H V V  1 2 1 212

1
2

  H H V V

 1 2 1 212

1
2

  H V V H  1 2 1 212

1
2

  H V V H

H V



Entangled states

For the two particles considered here
each with two basis states

the required Hilbert space is four-dimensional
so the most general quantum mechanical state 

of these two photons is

where now we need four (generally complex) 
coefficients 

the four different c’s
to specify the state of just two photons 

1 2 1 2 1 2 1 2
c c c c    HH HV VH VVH H H V V H V V



Entangled states

For three particles
we need eight coefficients

For four particles 
sixteen coefficients 

and so on 
leading to 2N coefficients for N particles 

300 particles would therefore require 2300 coefficients
a number that may be larger than the number of 
atoms in the observable universe!
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Representing quantum information – qubits

The qubit state can be written

where      is the quantum mechanical state that 
represents “0”

for example 
a horizontal polarization state      of a photon 
a spin-down state      of an electron, or 
a ground state      of an atom 

0
0 1

1

0 1
c

c c
c


 

    
 

0

H


g



Representing quantum information – qubits

Similarly, in   

is the quantum mechanical state representing “1”
and could be physically represented by, for example 

vertical polarization  
spin-up     , or
an excited atomic state  

Because of normalization

0
0 1

1

0 1
c

c c
c


 

    
 

1

V


e

2 2
0 1 1c c 
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Quantum computing, teleportation 
and entanglement

Running a quantum computer

Quantum mechanics for scientists and engineers David Miller



One-qubit gates and operations

A qubit itself can be written as a two element vector
such as we could use to represent a spin state

such as  

The necessary basic operations for a quantum computer 
can be written as four different operations

Three of these are operations on a single qubit
We can write these operations as 2 x 2 matrices 

representing the corresponding unitary operators 

a
b
 
 
 



One-qubit gates and operations

One possible set of single qubit operations is

These unitary operators are known as 
Hadamard,  
Z,      , and 
NOT X,

operators 

1 11ˆ
1 12HU
 

   

1 0ˆ
0 1ZU
 

   

0 1ˆ
1 0NOTXU
 

  
 

ˆ
HU

ˆ
ZU

ˆ
NOTXU



One-qubit operations

Using the Bloch sphere
we can represent a qubit

as a vector, such as 
the spin polarization vector

pointing from 
the center of a sphere 

to its surface
Single qubit operations 

correspond to rotations 
of the vector on the sphere

x

y

z

Ps







One-qubit operations

Single qubit operations can be 
achieved 
for spins 

by appropriate pulses of 
magnetic fields

for two-level “atomic” systems 
by pulses of electromagnetic 
fields

for photons 
by changing the polarization

x

y

z

Ps







Two-qubit gates

The fourth required operation 
interacts two qubits in a “Controlled-NOT” (C-NOT)

One qubit is called the control
The other is called the target 

If the control is
the target qubit is passed through unchanged 

but if the control is    , the target qubit is inverted
a target qubit of state     is changed to state
and a target qubit of   is changed to state  

hence the name Controlled-NOT

0

1
0 1

1 0



Two-qubit gates

A two-qubit state is a vector in a four-dimensional 
Hilbert space

that is, like a state of two photons on different paths

which we could rewrite in the notation 
1 2 1 2 1 2 1 2

c c c c    HH HV VH VVH H H V V H V V

00

00 01 01

1010 11

11

0 0 0 1

1 0 1 1
control target control target

control target control target

c
c c c

cc c
c



 
 
  
  
 
 



Two-qubit gates

The corresponding operator 
in this four-dimensional Hilbert space 

for this C-NOT gate 
can be written

as we will now demonstrate 

1 0 0 0
0 1 0 0ˆ
0 0 0 1
0 0 1 0

CNOTU

 
 
 
 
 
 



For example, the input state with 
the control as a logic 0 and the target as a logic 1 

when written in our form

has c00 = 0, c01 = 1, c10 = 0, and c11 = 0
Writing that state as a column vector gives  

00

00 01 01

1010 11

11

0 0 0 1

1 0 1 1
control target control target

control target control target

c
c c c

cc c
c



 
 
  
  
 
 

Two-qubit gates

0
1
0
0



 
 
 
 
 
 



Two-qubit gates

Starting with this state 
and operating with           gives

which is just the state we started with
As intended, the target qubit passes through unchanged 

if the control qubit is logic 0 

0 1 0 0 0 0
1 0 1 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

     
     
     
     
     
     

ˆ
CNOTU



Two-qubit gates

Alternatively, we could choose an input state where
the control qubit is a logic 1 and the target is a logic 1

that is, c00 = 0, c01 = 0, c10 = 0, and c11 = 1
Then our input state can be written

00

00 01 01

1010 11

11

0
0 0 0 1 0

01 0 1 1
1

control target control target

control target control target

c
c c c

cc c
c



   
   
     
    
   

  



Two-qubit gates

Acting on this input state with           gives

This output state is c00 = 0, c01 = 0, c10 = 1, and c11 = 0
The target qubit is now a logic 0

it has been “flipped”
and the control bit remains at logic 1

ˆ
CNOTU

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 0 0 1 0 1

     
     
     
     
     
     



Hypothetical two-qubit gate

We could imagine two two-level systems
a “control” system
and a “target” system

We shine a “clocking” light pulse at the 
target system

If the control qubit is in its      state
then this clock pulse does nothing to 

the target qubit system
leaving it in its lower state 

0

1

control

0

1

target

0



Hypothetical two-qubit gate

We could imagine two two-level systems
a “control” system
and a “target” system

We shine a “clocking” light pulse at the 
target system

If the control qubit is in its      state
then this clock pulse does nothing to 

the target qubit system
leaving it in its lower state 

0 0

1 1

control target

0



Hypothetical two-qubit gate

We could imagine two two-level systems
a “control” system
and a “target” system

We shine a “clocking” light pulse at the 
target system

If the control qubit is in its      state
then this clock pulse does nothing to 

the target qubit system
leaving it in its lower state 

or its upper state 

0 0

1 1

control target

0



Hypothetical two-qubit gate

If the control qubit is in its     state 
perhaps it changes a transition 

frequency in the target qubit system
through some interaction between 
the control and target qubit systems 

With this change in transition energy 
the target qubit system could then be 

sensitive to the “clock” pulse 
which then flips target qubit state

implementing the C-NOT function

0

1

control1

0

1

target



Hypothetical two-qubit gate

If the control qubit is in its     state 
perhaps it changes a transition 

frequency in the target qubit system
through some interaction between 
the control and target qubit systems 

With this change in transition energy 
the target qubit system could then be 

sensitive to the “clock” pulse 
which then flips target qubit state

implementing the C-NOT function

0 0

1
1

control target1



Hypothetical two-qubit gate

If the control qubit is in its     state 
perhaps it changes a transition 

frequency in the target qubit system
through some interaction between 
the control and target qubit systems 

With this change in transition energy 
the target qubit system could then be 

sensitive to the “clock” pulse 
which then flips target qubit state

implementing the C-NOT function

0 0

1
1

control target1



Hypothetical two-qubit gate

If the control qubit is in its     state 
perhaps it changes a transition 

frequency in the target qubit system
through some interaction between 
the control and target qubit systems 

With this change in transition energy 
the target qubit system could then be 

sensitive to the “clock” pulse 
which then flips target qubit state

implementing the C-NOT function

0 0

1
1

control target1



Hypothetical two-qubit gate

If the control qubit is in its     state 
perhaps it changes a transition 

frequency in the target qubit system
through some interaction between 
the control and target qubit systems 

With this change in transition energy 
the target qubit system could then be 

sensitive to the “clock” pulse 
which then flips target qubit state

implementing the C-NOT function

0 0

1
1

control target1



Example approaches to two-qubit gates

The above example was hypothetical
and simplified

Example systems for real two-qubit gates 
include 

ions in ion traps 
superconducting flux and charge qubits
quantum dots, and 
spins in semiconductor impurities
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Quantum teleportation

Quantum mechanics for scientists and engineers David Miller



Quantum teleportation

The idea of quantum 
teleportation is to 
transfer a quantum state 

from one place to another 
without transferring 

the specific carrier of 
that state



Quantum teleportation

Suppose photon 1 is in an  
unknown superposition of 

horizontal and vertical 
polarization

We want the output photon 
in the same state
but without sending 

photon 1 there 
We may even destroy 

(absorb) photon 1

photon 1

output 
photon ?



Quantum teleportation

But we know 
from the no-cloning theorem 

that 
we cannot clone photon 1 

to produce another 
(output) photon
in the same arbitrary 

superposition photon 1

output 
photon ?



Quantum teleportation

We also know that
simply measuring photon 1

e.g., with a polarizing 
beamsplitter 
together with 

photodetectors
will not reliably tell us 

the full quantum state of 
photon 1

photon 1

output 
photon ?



Quantum teleportation

We end up 
statistically “collapsing” the 

state 
and throwing away 
information 
about the original 

quantum state 
of the photon photon 1

output 
photon ?



photon 3

EPR source

photon 2

Quantum teleportation

The key to quantum 
teleportation 
is to “share entanglement” 

by sharing an “EPR” pair of 
photons 
that are in a Bell 

(entangled) state
photon 1

output 
photon 3



Quantum teleportation

The EPR photon pair is 
presumed to be in the Bell 
state 

The input photon is in an 
(unknown) superposition 
of horizontal and vertical 

polarizations

 2 3 2 323

1
2

  H V V H

1 1 1
c c  H VH V

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3



Quantum teleportation

The state of all three photons, therefore, can be written

A core trick in the teleportation is to note that 
this state can be rewritten as

  123 1 1 2 3 2 3

1
2

c c   H VH V H V V H

   
   

123 3 3 3 312 12

3 3 3 312 12

1
2

c c c c

c c c c

 

 

      

       

H V H V

H V H V

V H V H

H V H V



Quantum teleportation

Note that we have managed to write this state

in terms of the Bell states of photons 1 and 2

   
   

123 3 3 3 312 12

3 3 3 312 12

1
2

c c c c

c c c c

 

 

      

       

H V H V

H V H V

V H V H

H V H V

 1 2 1 212

1
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  H H V V  1 2 1 212

1
2

  H H V V

 1 2 1 212

1
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  H V V H  1 2 1 212

1
2

  H V V H



Quantum teleportation

If we now make a 
measurement 
in Alice’s Bell state 

measurement box 
of the Bell state of 
photons 1 and 2 
we collapse the state 

into 
just one of the four 

Bell state terms

Alice Bob

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement



Alice

Quantum teleportation

For example, suppose Alice 
measures   
an answer we can know 

classically 
because it is the result of 
a measurement

then the overall system of 
three photons 
would now be in the state

Bob

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

12


 123 3 312

1
2

c c   H VV H



Alice

Quantum teleportation

Because Alice can tell Bob the 
result of her measurement 
by communication over an 

ordinary classical channel 
e.g., a telephone line

Bob now knows that 
photon 3 is in the state

(though he does not know 
cH and cV)

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

3 3c cH VV H



Alice

Quantum teleportation

This state 
is not the same as the 

original state of photon 1
which was by definition   

but that is easily fixed 

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

3 3c cH VV H

1 1c cH VH V



Alice

Quantum teleportation

Bob could rotate the 
polarization 90° clockwise 
turning vertical polarization 

into horizontal and 
horizontal into –vertical

i.e.,                 and  
and insert a half wave plate 

to delay the vertical 
polarization by 180°
turning cV to -cV

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

controlled
unitary

transformV H H V



Alice

Quantum teleportation

By this controlled unitary 
transformation, Bob has
changed

into
Photon 3 is now in exactly the 

same state as photon 1 was
without either Alice or Bob 

ever knowing what that 
state was 

i.e., without knowing cH and cV

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

controlled
unitary

transform

3 3c cH VV H
3 3c cH VH V



Alice

Quantum teleportation

For other results from Alice’s 
Bell state measurement 
Bob implements other 

polarization manipulations
but those present no 
fundamental problem 
he could, for example 

use electrically-
controlled phase 
shifters 

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

controlled
unitary

transform



Alice

Quantum teleportation

In general
Bob implements a specific 

unitary transformation on 
photon 3
a combination here of 
phase delays and 
polarization rotations

that depends on the 
outcome of Alice’s Bell 
state measurement

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

controlled
unitary

transform



Alice

Quantum teleportation

Hence
for any result from Alice 

Bob can put photon 3 
into exactly the same 
state 
as photon 1 originally 

had 
thus completing 

the teleportation of the 
quantum mechanical state

Bob

classical 
information

EPR sourcephoton 1
photon 2 photon 3

output 
photon 3

Bell state 
measurement

controlled
unitary

transform
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Hidden variables and Bell's 
inequalities

EPR paradox and hidden variables

Quantum mechanics for scientists and engineers David Miller



EPR pairs

We can create two distinguishable particles 
an EPR (Einstein-Podolsky-Rosen) pair 

in a quantum mechanical superposition state 
of the form of one of the Bell states

For example, for two photons 1 and 2 
going in different directions 

a state like  1 2 1 212

1
2

  H H V V



EPR pairs

Such a state

is a linear superposition of 
the state where the two photons 

are both horizontally polarized
and the state where the two photons 

are both vertically polarized

 1 2 1 212

1
2

  H H V V



EPR pairs

In this state

if one measures one of the photons in a state 
according to quantum mechanics 

the state of both particles is forced to collapse 
into the one element

in the linear superposition 
and a measurement on the other photon 

is now bound to give the result        also 

 1 2 1 212

1
2

  H H V V

H

1 2H H

H



EPR pairs

In this state

similarly, measuring the result       for one photon 
will lead 

according to quantum mechanics 
to the inescapable conclusion that 

the other photon will also be in the state 

 1 2 1 212

1
2

  H H V V

V

V
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Hidden variables and Bell's 
inequalities

Bell’s inequalities

Quantum mechanics for scientists and engineers David Miller



EPR experiment

An “EPR” pair of photons 
in a           Bell state
travel to two different 

measuring apparatuses 
with their axes aligned 

Quantum mechanics predicts
if we measure one photon to 

be horizontal 
then we will find the other 
photon is also horizontal 

EPR photon 
pair source

H
V

Left 
measuring 
apparatus

H
V

Right 
measuring 
apparatus

 1 2 1 212

1
2

  H H V V

12




EPR experiment

Similarly if we measure one 
photon to be vertical
the other photon will also be 

measured to be vertical 
This is the behavior we find 

also in experiments
With aligned axes

both apparatuses measure 
the same polarization 
for these Bell-state photons

H
V

H
V

EPR photon 
pair source

Left 
measuring 
apparatus

Right 
measuring 
apparatus

 1 2 1 212

1
2

  H H V V



Simple example of a Bell’s inequality

Before considering our example
consider the following statement

The number of young women 
the number of right-handed young people
+ the number of left-handed women

This statement is correct
though it may be easier to see with a Venn diagram





Venn diagram proof

Consider a Venn diagram
showing

the set of left-handed 
people

the set of women
the set of young people

left-handed people

young people

women



Venn diagram proof

We can show the sets of 
right-handed young people

left-handed people

young people

women

right-
handed
young 
people



Venn diagram proof

We can show the sets of 
right-handed young people
left-handed women

left-handed people

young people

women

left-handed
women



Venn diagram proof

We can show the sets of 
right-handed young people
left-handed women
young women

left-handed people

young people

women

young
women



Venn diagram proof

The set of 
right-handed young people

plus the set of 
left-handed women

includes all
young women

plus possibly other people too

left-handed people

young people

women

right-
handed
young 
people

left-handed
women

young
women



Venn diagram proof

The set of 
right-handed young people

plus the set of 
left-handed women

includes all
young women

plus possibly other people too
So, # young women 
# right-handed young people
+ # left-handed women

left-handed people

young people

women

right-
handed
young 
people

left-handed
women

young
women 



Local variable theory

So we can draw a Venn 
diagram 

Each possible value of the 
local hidden attribute or 
variable
corresponding to a particular 

measurable set of 
behaviors 
with polarizers at any angle 

is represented by a point 
on this Venn diagram



Local variable theory

We will be interested in three 
possible angles for a 
polarizer
0°, 22.5°, or 45°

and three specific possible 
results for any one 
experiment
pass at 22.5°
pass at 0°
not pass at 45°

pass at 22.5°

pass at 0°

not pass 
at 45°



Local variable theory

All of these three regions can 
overlap
and still be in agreement 

with our observations 
on what happens with 
photons and polarizers

pass at 22.5°

pass at 0°

not pass 
at 45°



Local variable theory

We can only perform one test 
on a given photon 
with a polarizer set at 0°, 

22.5°, or 45°
because that test may 
change the state of the 
photon in some way

pass at 22.5°

pass at 0°

not pass 
at 45°



Local variable theory

With our EPR photon pair 
source, we have 
two photons to use in two 

different experiments 
one on the left, and one on 
the right

and we already know that 
photons prepared this way 
always behave identically 

for identically set polarizers

pass at 22.5°

pass at 0°

not pass 
at 45°



Local variable theory

So, both photons must 
correspond to the same 
point on the Venn diagram
So, we can use one of these 

photons for one test
and the other photon for 
another test
and probe overlap 

regions

pass at 22.5°

pass at 0°

not pass 
at 45°



A Bell’s inequality

The probability that one 
photon will pass at 0° while 
the other will not pass at 45°
the probability that one 

photon will pass at 0° and 
the other will not pass at 
22.5°

+ the probability that one 
photon will pass at 22.5° and 
the other will not pass at 45°

pass at 
0° and 

not pass 
at 22.5°

pass at 22.5°
and not pass at 

45°

pass at 0°
and not 

pass at 45°



pass at 22.5°

pass at 0°

not pass 
at 45°



Bell’s inequalities and experiment

If we find an experiment that violates this inequality
then we have to throw out deterministic local hidden 
variable theories

e.g., the idea that the photon has a variable that it 
carries with it that determines the result of the 
polarization measurement 

Experiments do violate this inequality
Therefore deterministic local hidden variable theories 

cannot explain reality
This conclusion is independent of the correctness of 

quantum mechanics
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Interpretation of quantum mechanics

The measurement problem

Quantum mechanics for scientists and engineers David Miller



Proof of the measurement problem

Suppose that the system starts out 
in one of the eigenstates of the quantity 

such as electron spin 
being measured by the apparatus 

Hence, for the initial eigenstate  
the result of the measurement process

will be the state

When measured in an eigenstate
the system stays in that eigenstate 



M̂   



Proof of the measurement problem

Similarly for the other possible initial eigenstate

So far, this agrees with our observation 
But suppose instead that the system starts 

in a linear superposition state  
Then on operating on that state

because of the linearity of  , we have

Note the resulting state is a linear superposition also

M̂   

M̂

 ˆ ˆ ˆM a a a M a M a a               
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mechanics
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Interpretation of quantum mechanics

Interpretations of quantum mechanics

Quantum mechanics for scientists and engineers David Miller



The Standard Interpretation



Schrödinger’s cat

The classic illustration of the 
absurdity of the Standard 
Interpretation 



Schrödinger’s cat

The classic illustration of the 
absurdity of the Standard 
Interpretation 
is Schrödinger’s cat



Schrödinger’s cat

Schrödinger imagines that
he puts his cat in a box



Schrödinger’s cat

Schrödinger imagines that
he puts his cat in a box

He also puts an atom in the box



Schrödinger’s cat

Schrödinger imagines that
he puts his cat in a box

He also puts an atom in the box
and a bottle of poison



Schrödinger’s cat

The atom can decay radioactively
a “random” quantum mechanical 

process
which may or may not occur

If it occurs
it triggers the release

of poison gas from the bottle



Schrödinger’s cat

The atom can decay radioactively
a “random” quantum mechanical 

process
which may or may not occur

If it occurs
it triggers the release

of poison gas from the bottle
killing the cat



Schrödinger’s cat

But if we cannot see inside the box
what is the state of the cat?

Is it alive or dead?
If a quantum mechanical state only 

collapses when it is observed
“observer created reality”

then the cat should be in a linear 
superposition of alive and dead



Schrödinger’s cat

But if we cannot see inside the box
what is the state of the cat?

Is it alive or dead?
If a quantum mechanical state only 

collapses when it is observed
“observer created reality”

then the cat should be in a linear 
superposition of alive and dead
until we open the box and  

observe one state or the other



Schrödinger’s cat

Schrödinger argues 
superposition is absurd for a cat

Whether it is absurd or not 
and whether absurdity 

should be given any weight 
in deciding the validity of a 

quantum theory 
provided the theory agrees 

with experiment
are both matters of opinion



The Copenhagen Interpretation



Bohm’s Pilot Wave



Bohm’s Pilot Wave

We start with the time-dependent Schrödinger equation

and then we make a mathematical choice to write

where R and S are real quantities 
Any complex function can be represented in this way 

2
2

2
V i

m t
  

  


 

      , , exp ,t R t iS t r r r



Bohm’s Pilot Wave

If we substitute

into 

then, after some algebra
we can deduce the equation

where

2
2

2
V i

m t
  

  


 

      , , exp ,t R t iS t r r r
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Hamilton-Jacobi equation

The equation

but without the “quantum potential”                      , i.e., 

is known as the Hamilton-Jacobi equation 
of classical mechanics

It reproduces the usual classical behavior of a particle 
S is then the “action” or Hamilton’s principal function 

and the momentum is  

 2

0
2
SS V Q

t m
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Hamilton-Jacobi equation

This equation 

is a completely deterministic equation 
in which position and momentum are both 

simultaneously well defined 
For a large wavepacket and a large mass

then the quantum potential Q is a very small correction

and hence, even using the full form with
for such effectively classical situations

we obtain the familiar classical behavior

 2

0
2
SS V

t m


  


2 2

2
RQ

m R


 




Nonlinearity



Distinction between matter and mind



Many-worlds hypothesis



Epilogue
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