Mathematics reference David Miller

Elementary mathematical expressions
Quadratic equations

a’-b’=(a+b)(a-b) (1)
The solutions to the general quadratic equation
ax’ +bx+c=0 2)
are
—b++/b? - 4ac
X = 3)
2a
Taylor and Maclaurin series (power-series expansion)
The Taylor series
_ A\ 42 A\ An
f(x):f(a)+M£ +Mg ..+(X a) d'f +o (4)
1 dx|, 2! dx7 | nt dx" |

gives a useful way of approximating a function near to some specific point x=a, giving
a power-series expansion in (x—a)" for the function near that point.

The Maclaurin series

2 2 n n
f(x)= 1O+ 25 +EE b 20 ©
rdxj, 2! dx*| n! dx" |,
is a special case of the Taylor series where we are expanding around the point x=0.
Power-series expansions of common functions
For small a, the Maclaurin expansions of various common functions are, to first order
Vita=1+a/2+... (6)
L =l-a+... (7)
1+a
sina=a-+... 8
tana=a+... )
a2
cosa:1—7+... (10)
expa=1+a+... (11)
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Sine and cosine addition and product formulae

sin? (&) +cos® () =1 (12)

sin(a + B)=sin(a)cos(B)+cos(a)sin(f) (13)

sin(2a) = 2sinacosa (14)

cos(a £ f8) =cos(a)cos(B)Fsin(a)sin(f) (15)

cos(2ar) = cos? (ar) —sin? () = 2¢08* (&) ~1=1- 2sin? (a) (16)
cos’ (&) = %[u cos(2a) ] (17)
sinz(a)zé[l—cos(Za)] (18)

cos (e)cos () = cos(a~ ) +cos(a+ )] (19)
sin(a)sin(8) =3[ cos (- §)~cos (e + )] (20)
sin(a)cos(ﬂ):%[sin(a—,b’)+sin(a+ﬂ)] (21)
cos(c) +cos( ) = 2005 2 Joos 2 22)
sin(a)+sin(ﬂ):23in(a;ﬂjcos(a;ﬂj (23)
cos(a)-cos( ) =-2sin| 5 Jin[ )
sin(a)—sin(ﬂ)z2cos(“;ﬁjsin(“;ﬂj (25)
Quantum Mechanics for Scientists and Engineers On-Line Course 2



Mathematics reference David Miller
Differential calculus
Product rule
d dv  du
—(uv)=u—+v— 26
dx( ) dx  dx (26)
Quotient rule
du udv
d(u dx__ dx
— 2= 27
dx(vj V2 @)
Chain rule
d df dg
— f X)) =| — |x| = 28
! 0G5 e
Derivatives of elementary functions
LS (29)
dx
d
&exp(ax):aexp(ax) (30)
d 1
—In(x)== 31
dx ( ) X (1)
is,in(x):cos(x) (32)
dx
icos(x):—sin(x) (33)
dx
|
dsin X _ 1 (34)
dx 1-x2
dtan~' x 1
dx 1+x° (35)
Quantum Mechanics for Scientists and Engineers On-Line Course 3



Mathematics reference David Miller
Integral calculus
Integration by parts
g(x) b o df ()
f d f( d 36
oo 28 o[0T o o
where we use the common notation
b
[h(x)], =h(b)-h(a) (37)
and, specifically, here
[f(9a(x)],=f(b)a(b)-f(a)g(a) (39)
Some definite integrals
jsinz(nx)dx =z (39)
0 2
J' (x—712)sin(nx)sin(mx)dx = —zzlnm ~, forn+m odd
0 (n—m)"(n+m) (40)
=0, forn+m even
jsm )cos(26)do=-2/3 (41)
[sin(26)cos(0)do=4/3 (42)
0
j”sin?’ede:f (43)
0 3
[t exp(—t)dt _Jr (44)
o 2
j sin X 4 (45)
j(—s'” Xj dx =7 (46)
U x
_[ exp )dx =r (47)
|
[01+x2 dx =7 (48)
Quantum Mechanics for Scientists and Engineers On-Line Course 4



Mathematics reference David Miller

Partial differentiation

For a function h(x, y) that is a function of two independent variables x and y, the partial

derivative, often stated as “partial d h by d x” or, more explicitly, “partial d h by d x at
constant y”, and written as

oh _oh

= 49
OX OX (49)

y

is the derivative of h with respect to x with the y variable held at a constant value. That
value can also be explicitly stated, for example, as in the notation

i (50)
OXly-y,
which would be the partial derivative taken at the specific value y =y, .
Higher partial derivatives can be formed similarly, as in the notations
o’h _o°h
Zo_- 51
x> ox’l, (1)
and, for the “cross derivative”,
2
oh zi o (52)
oxoy  oxly oy|,

Provided all the various first derivatives and the two cross-derivatives in the two different
orders both exist, we can interchange the order of the partial differentiations in the cross-
derivative; that is,
0%h 3 0%h
OX0y  OyoX

(53)

For small or infinitesimal changes dx in x and dy in y, the resulting total change in h or
differential or exact differential is written

| g, 0

dh dx+— dy (54)

y X

If x and y are both functions of some other variable t, then the total derivative dh/dt is

given by
th_a (a), ) (a) (55)
dt  ox|,\dt) oy| \dt

If x and y are each themselves functions of two variables a and b, then we can write
ah _onl ox|  anl oy (56)
oal, ox|,oal, oy| oal,
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Because this works for any function of x and y (for which all appropriate derivative
exist), we can write

0

p OX

9 (57)

y bayx

which can be used to change partial derivatives from one coordinate system to another.

9
oa

_
y Oa

oy

oa
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Vector calculus

Cartesian coordinates

The the V' operator, which occurs in various different vector calculus operators, is known
as del or nabla, can be written as

ve=ilijo k2 (58)

ox "oy oz
in Cartesian coordinates, with i, j, and k as unit vectors in the x, y, and z directions
respectively.

The gradient operator operates on a scalar function f(x,y,z) to give a vector whose
magnitude and direction are the slope or gradient of the scalar function at the point of
interest. In Cartesian coordinates

grad f =vi =i &4 (59)

ox oy 0z

The Laplacian operator, also known as del squared, operates on a scalar function, giving
a scalar result. It is written in Cartesian coordinates as

ot o'f o'f
=~z t 7t
ox- oy° oz

The operator V-V, sometimes also written as V? can operate on a vector function, in
which case, in Cartesian coordinates, we have

2 82F 2
(V-V)F:iﬁixﬂ 2y+kaEZ

OX oy 0z
In Cartesian coordinates, the divergence of a vector F is defined as

oF
OF, Loy OF, (62)
ox oy oz
In Cartesian coordinates, the curl of a vector F is defined as

oF oF
curlF=VxF= s i+(al:X —ﬁjh &K k (63)
oy oz oz oX oX oy

V2§ (60)

(61)

divF=V.F=

or in the equivalent “determinant” shorthand form,

VxF =

Qo =

(64)

2o =

i
o
ox
FX

n
T

~<
N
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Spherical polar coordinates

In spherical polar coordinates, which can be defined as in the following diagram

\\\: (X! Y, Z)
9"
<~ >y
O
X
with
X =rsinfcos¢ (65)
y=rsingsing (66)
Z=rCoS¢
the gradient can be written
\%i :ﬂ?+lﬂé+ 1 ﬂ;z (67)
o rof rsiné o¢
the Laplacian can be written
2
sz =%£[r2ij+ 2 1 i(ﬂneﬂ)'i'%% (68)
reor or) r°sin@ o6 00) r°sin“@ o¢
the divergence can be written
oF
V-F:izg(r2 )+ ! —(F,sin@)+ 1 & (69)
reor rsing oé rsin@ o¢
and the curl can be written
P 6 )
r’sin@ rsiné r
VxF=| 0 @8 Kkl (70)
or 060 o¢p
F rF,  rsindF,
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Vector calculus identities
V~(VxF)=O (71)
VxVf =0 (72)
Vx(VxF)=V(V-F)-(V-V)F (73)
V~(F><G)=—F'(V><G)+G-(V><F) (74)
YV - VY =PV VPV - VIVY - P'V2Y
=V (¥YVY -wVY) (79)
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