Photochemical Water Splitting

Materials and Applications

ELECTROCHEMICAL ENERGY STORAGE AND CONVERSION

Series Editor: Jiujun Zhang

National Research Council Institute for Fuel Cell Innovation Vancouver, British Columbia, Canada

Published Titles

Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications Aiping Yu, Victor Chabot, and Jiujun Zhang

> Proton Exchange Membrane Fuel Cells Zhigang Qi

Graphene: Energy Storage and Conversion Applications Zhaoping Liu and Xufeng Zhou

Electrochemical Polymer Electrolyte Membranes Jianhua Fang, Jinli Qiao, David P. Wilkinson, and Jiujun Zhang

Lithium-Ion Batteries: Fundamentals and Applications Yuping Wu

Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications Joey Jung, Lei Zhang, and Jiujun Zhang

Solar Energy Conversion and Storage: Photochemical Modes Suresh C. Ameta and Rakshit Ameta

Electrochemical Energy: Advanced Materials and Technologies Pei Kang Shen, Chao-Yang Wang, San Ping Jiang, Xueliang Sun, and Jiujun Zhang

Electrolytes for Electrochemical Supercapacitors Cheng Zhong, Yida Deng, Wenbin Hu, Daoming Sun, Xiaopeng Han, Jinli Qiao, and Jiujun Zhang

Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies Jinli Qiao, Yuyu Liu, and Jiujun Zhang

Metal–Air and Metal–Sulfur Batteries: Fundamentals and Applications Vladimir Neburchilov and Jiujun Zhang

Photochemical Water Splitting: Materials and Applications VNeelu Chouhan, Ru-Shi Liu, and Jiujun Zhang

Photochemical Water Splitting Materials and Applications

Neelu Chouhan Ru-Shi Liu Jiujun Zhang

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20160809

International Standard Book Number-13: 978-1-4822-3759-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of	Congress	Cataloging-in-Publication Dat	a

Names: Chouhan, Neelu. | Liu, Ru-Shi. | Zhang, Jiujun. Title: Photochemical water splitting : materials and applications / Neelu Chouhan, Ru-Shi Liu, Jiujun Zhang. Description: Boca Raton : CRC Press, 2017. | Series: Electrochemical energy storage and conversion Identifiers: LCCN 2016032394| ISBN 9781482237597 (hardback : alk. paper) | ISBN 9781315279657 (ebook) Subjects: LCSH: Photoelectrochemistry. | Water--Electrolysis. Classification: LCC QD578 .C46 2017 | DDC 546/.225--dc23 LC record available at https://lccn.loc.gov/2016032394

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Series Prefa	ce				xiii
Preface					xv
Introduction	1				xvii
Authors					xix
Chapter 1	Intro	duction	to Hydrog	en as a Green Fuel	1
	1.1	Introd	uction		1
	1.2	Currer	nt Energy	Scenario	1
	1.3	Fuel: F	Past, Prese	nt, and Future	4
	1.4	Hydro	gen as a C	hemical Fuel	7
	1.5	The H	ydrogen E	conomy	10
	1.6	Hydro	gen Produ	ction	11
		1.6.1	Oxidativ	ve Process	12
			1.6.1.1	Steam Methane Reforming	13
			1.6.1.2	Autothermal Reforming	13
			1.6.1.3	Partial Oxidation	15
			1.6.1.4	Combined Reforming	16
			1.6.1.5	Steam Iron Reforming	16
			1.6.1.6	Dry (CO ₂) Reforming of CH ₄	18
			1.6.1.7	Plasma Reforming	
			1.6.1.8	Photoproduction of Hydrogen from	
				Hydrocarbons	21
		1.6.2	Nonoxid	lative Process	22
			1.6.2.1	Thermal Decomposition	22
			1.6.2.2	Metal-Catalyzed Decomposition of	
				Methane	24
			1.6.2.3	Simultaneous Production of Hydrogen	
				and Filamentous Carbon	25
			1.6.2.4	Carbon-Catalyzed Decomposition of	
				Methane	26
			1.6.2.5	Catalytic Decomposition of Methane	
				for FC Applications	27
			1.6.2.6	Methane Decomposition Using Nuclear	
				and Solar Energy Input	28
			1.6.2.7	Plasma-Assisted Decomposition of	
				Hydrocarbons	28
	1.7	Hvdro	gen and It	s Applications	
		1.7.1	0		
		1.7.2		ry	
		1.7.3		rtation	
		1.7.4		a Chemical	

	1.8	Environmental Effects of Hydrogen	
		1.8.1 Health Hazards	
		1.8.2 Physical Hazards	
		1.8.3 Chemical Hazards	
		1.8.3.1 Effect to Ozone Layer	
		1.8.3.2 Greenhouse Effect	
		1.8.4 Environmental Hazards of Hydrogen	
	1.9	Hydrogen Safety	
	1.10		
		rences	
Ch 2	C	and 's Director have 's 1 Wester Contractor	41
Chapter 2	Conc	epts in Photochemical Water Splitting	
	2.1	Introduction	
	2.2	Artificial Photosynthesis	
		2.2.1 Carbon Dioxide Reduction	
		2.2.2 Water Spliting	
	2.3	Electrochemistry of Water Splitting	49
		2.3.1 Thermodynamic and Electrochemical Aspects	
		of Water Splitting	
		2.3.2 Oxygen Evolution Reaction	
		2.3.3 Hydrogen Evolution Reaction	
	2.4	Criteria for the Selection of Photocatalytic Material	53
	2.5	Overpotential	
	2.6	Band Gap and Band Edge Position in Photocatalytic	
		Materials	59
	2.7	Band Edge Bending: Semiconductor/Electrolyte	
		Interface Reactions	63
	2.8	Efficiency (Solar to Hydrogen Conversion, Turnover	
		Number, Quantum Yield, Photoconversion Efficiency,	
		Incident Photon-to-Current Efficiency [%], Absorbed	
		Photon-to-Current Efficiency)	65
		2.8.1 Turnover Number	65
		2.8.2 Incident Photon-to-Current Efficiencies	66
		2.8.3 Absorbed Photon-to-Current Efficiency	67
		2.8.4 Solar-to-Hydrogen Conversion Efficiency	
		2.8.5 Quantum Efficiency	
	2.9	Excitonic Binding Energy	
	2.10	Diffusion Length	
	2.11	Carrier Mobility and Penetration in Photocatalysts	
		2.11.1 Electrical Conductivity and Mobility	
		2.11.2 Temperature Dependence of Mobility	
		2.11.3 Mobility versus Diffusion	
		2.11.4 Doping Dependence of Electron Mobility and	
		Hole Mobility	80
		J	-

	2.12	Summa	ary		80		
	References						
Chapter 3	Water-Splitting Technologies for Hydrogen Generation						
	3.1 Introduction						
	3.2	Electrolytic Water Splitting					
		3.2.1		ctrolyzer			
		3.2.2		Electrolyzers			
		3.2.3		ctrolyzers			
		3.2.4		ide Electrolyzers			
	3.3	Biopho		Water Splitting			
	3.4	-	•	Water Splitting			
		3.4.1		ynamics of Thermochemical			
				litting	98		
		3.4.2	-	ep Cycle			
		3.4.3		Cycle			
		3.4.4	-	ep Cycle			
		3.4.5		ycle			
		3.4.6	Hybrid C	ycle	101		
	3.5	Mecha	•	Water Splitting			
	3.6	Plasmolytic Water Splitting					
	3.7	Magne	tolysis of V	Water	107		
	3.8	Radiol	ysis of Wat	ter	107		
	3.9	-		ater Splitting			
	3.10		•	ytic Water Splitting			
		3.10.1		PEC Devices			
			• •	Direct PEC or Photosynthetic Cells			
				Biased PEC Devices			
			3.10.1.3	PV Cell	113		
			3.10.1.3	PV Electrolysis Cell or Regenerative Cel	1113		
				Photogalvanic/Concentration Cells			
		3.10.2		es and Future of PEC Hydrogen			
				on	116		
	3.11	Summa	ary		118		
	Refer	References					
Chapter 4	Elect	Electrochemical Water Splitting					
	4.1	Introdu	ction to Pl	hotoelectrochemical Water Splitting	125		
		4.1.1		ctrochemical (PEC) Water Splitting			
		4.1.2		Affecting Efficiency of the PEC			
			4.1.2.1	Electrode Material			
			4.1.2.2	Effect of Temperature			
			4.1.2.3	Effect of Pressure			

			4.1.2.4	Electrolyte Quality and Electrolyte	
				Resistance	132
			4.1.2.5	Size, Alignment, and Space Between	
				the Electrodes	132
			4.1.2.6	Forcing the Bubbles to Leave	133
			4.1.2.7	Separator Material	133
	4.2	Semic	onducting	Photoelectrode Materials	
		4.2.1	•	Transfer Phenomenon	
		4.2.2	Material	and Energetic Requirements	135
		4.2.3	Sensitize	ers and Photocatalyst	135
		4.2.4		mponents in Action for the	
				plitting Process	138
			4.2.4.1	Amouyal Model	
			4.2.4.2	Kostov et al.'s Model	
			4.2.4.3	Ulleberg Model	
	4.3	Reacto		and Operation (Experiment Setup)	
		4.3.1		t/Bias-Based Reactor	
		4.3.2		Based on Suspension and Electrode Type	
			4.3.2.1	Type 1	
			4.3.2.2	Type 2	
			4.3.2.3	• -	
			4.3.2.4	Туре 4	
		4.3.3		aneous Reactor Types	
	4.4			ter Splitting	
	4.5		•	Perspectives	
	4.6		•		
			•		
	110101	011000			107
Chapter 5	Oxide	e Semic	onductors	$(ZnO, TiO_2, Fe_2O_3, WO_3, etc.)$ as	
	Photo	ocatalyst	s for Wate	er Splitting	161
	5.1	Tutus d			161
				Orida Dhata actalanta midi Visibla Lisht	101
	5.2	-		Oxide Photocatalysts with Visible Light	
		-		t of Morphology of Semiconductor and	160
				nism of Photoelectrodes)	
		5.2.1		f Morphology of Semiconductor	
			5.2.1.1	2	
			5.2.1.2	Unique Aspects of Nanotechnology	166
		5.2.2		n Mechanism of Typical Oxide	
				ectrodes	
			5.2.2.1	TiO ₂	
			5.2.2.2	ZnO	
	5.3			alysts	
	5.4			Aetal Oxide Photocatalysts	
	5.5	Plasmo		rial-Induced Metal Oxide Photocatalysts .	
		5.5.1	Adverse	Effects of Metal Nanoparticles	180

	5.6	Z-Sche	eme Photocatalysts	183
	5.7	Metal	Ion–Incorporated Metal Oxide	188
		5.7.1	Tantalate Photocatalysts	189
		5.7.2	Vanadate Photocatalysts	192
		5.7.3	Titanate Photocatalysts	193
		5.7.4	Niobate Photocatalysts	199
		5.7.5	Tungstate Photocatalysts	200
		5.7.6	Other Oxide Photocatalysts	
			5.7.6.1 Graphene Oxide	202
			5.7.6.2 Complex Perovskite Materials	206
			5.7.6.3 Mixed Oxides	207
	5.8	Oxide	Photocatalysts: Challenges and Perspectives	208
	5.9	Summ	ary	208
	Refe	rences		209
	F 1	. 1		222
Chapter 6	Fund		Understanding of the Photocatalytic Mechanisms .	
	6.1	Introdu	action	223
	6.2	Mecha	nism of Photocatalytic Cleavage of Water in	
		Electro	blytes (Electron Scavenger and Hole Scavenger)	224
		6.2.1	Scavengers or Sacrificial Electrolytes	224
	6.3	Photoc	corrosion	226
		6.3.1	Chemical Passivation for Photocorrosion	
			Protection	227
	6.4	Mecha	nism of Heterogeneous Electrocatalysis	234
	6.5	Mecha	nism of Homogeneous Molecular Catalysis	238
		6.5.1	Tetramanganese–Oxo Cluster Complex for O ₂	
			Generation	239
		6.5.2	Ruthenium Complexes for O ₂ Generation	241
		6.5.3	Manganese Porphyrin Dimer Complexes for O ₂	
			Generation	243
		6.5.4	Dinuclear Co ^{III} –Pyridylmethylamine Complex	
			for O ₂ Generation	244
		6.5.5	Homogenous Metal Complex for Hydrogen	
			Generation through Water Splitting	245
	6.6	Bridgi	ng the Gap between Heterogeneous	
			ocatalysis and Homogeneous Molecular Catalysis	
		6.6.1	Solid–Liquid	250
		6.6.2	Solid–Gas	
		6.6.3	Liquid–Liquid System	
		6.6.4	Fluorous Catalysts	250
		6.6.5	Liquid Poly(Ethylene Glycol) and Supercritical	
			Carbon Dioxide: A Benign Biphasic Solvent	
			System	
		6.6.6	Ionic Liquid–Immobilized Nanomaterials	252

		6.6.7	Phase-Boundary Catalyst	
		6.6.8	Examples	253
	6.7		f Metallic/Metallic Hydroxide Cocatalyst in	
			gen Evolution Reaction/Oxygen Evolution Reaction	
		6.7.1	Metallic Cocatalyst	255
		6.7.2	Roles of Hydroxyl Cocatalysts in Photocatalytic	
			Water Splitting	
	6.8		PRole of the Active Sites on a Catalyst's Surface	261
	6.9		ptual Advancement (Model) of the Active	
		Materi	als for Hydrogen Generation through Water	
		Splitti	ng	264
		6.9.1	Binary-Layered Metals with Extended Light	
			Harvesting Power	265
		6.9.2	Bridging Structures for Water Splitting	267
		6.9.3	Oxygen Activity and Active Surface Sites for	
			Water Splitting	268
		6.9.4	Intrinsic Kinetic Reactor Model for	
			Photocatalytic Hydrogen Production Using	
			Cadmium Zinc Sulfide Catalyst in Sulfide	
			and Sulfite Electrolyte	270
		6.9.5	Remedial Treatment for Improving Efficiency	
			by Improvement in Catalytic Activity of the	
			Nanoparticles by Synthesizing Them in Ionic	
			Liquids	274
		6.9.6	Addition of Carbonate Salts to Suppress	27 1
		0.9.0	Backward Reaction	274
		6.9.7	Design of Active and Stable Chalcogels	
	6.10		ary	
			ary	
	Kelei	iences		278
Chapter 7	Nanc	structur	ed Semiconducting Materials for Water Splitting	291
	7.1	Introd	uction	291
	7.2		naterial Structure, Energetic Transport Dynamics,	271
	7.2		aterial Design	292
		7.2.1	Devices with Different Energetic Transport	/ _
		7.2.1	Dynamics	292
			7.2.1.1 Solar or PV Cell	
			7.2.1.2 Thin-Film PVS	
			7.2.1.2 Thin-Thin TVS	
			7.2.1.4 Photoelectrolysis	
		7.2.2	Interfacial Electron-Transfer Reactions by	273
		1.2.2	•	205
			Nanomaterials	293

		7.2.3	Aspects	of the Material Design	297
			7.2.3.1	Surface Passivation	297
			7.2.3.2	Development of New Oxide or	
				Nonoxide or Semioxide Materials	298
			7.2.3.3	Nonmetal Oxide and Nonoxide Metals	s300
			7.2.3.4	Nanostructuring	302
	7.3	Nanoci	rystalline	Materials	308
	7.4	Thin F	ilm Mater	ials	312
		7.4.1	Hematite	$e (\alpha - Fe_2O_3)$ Thin Films	313
		7.4.2	TiO ₂ Thi	n Films for Water Splitting	315
		7.4.3	ZnO Thi	n Films	319
			7.4.3.1	Doping	320
			7.4.3.2	Sensitization	320
		7.4.4	n-SrTiO ₃	Thin Films	322
		7.4.5	Other Th	nin Films	325
	7.5	Mesop	orous Mat	erials	326
	7.6	Advan	ced Nanos	tructures for Water Splitting	331
		7.6.1	Bioinspi	red Design of Redox Reaction-Active	
			Ligands	for Multielectron Catalysis	331
		7.6.2	HYDRO	SOL: Monolith Reactors	334
		7.6.3	Plasmon	-Resonant Nanostructures	335
		7.6.4	Meta Ma	terials	336
	7.7	Challer	nges and F	Perspectives	340
	7.8	Summa	ary		341
	Refer	ences			341
Index					353

Series Preface

The goal of the Electrochemical Energy Storage and Conversion series is to provide comprehensive coverage of the field, with titles focusing on fundamentals, technologies, applications, and the latest developments, including secondary (or rechargeable) batteries, fuel cells, supercapacitors, CO_2 electroreduction to produce low-carbon fuels, water electrolysis for hydrogen generation/storage, and photoelectrochemistry for water splitting to produce hydrogen, among others. Each book in this series is self-contained, written by scientists and engineers with strong academic and industrial expertise who are at the top of their fields and on the cutting edge of technology. With a broad view of various electrochemical energy conversion and storage devices, this unique book series provides essential reads for university students, scientists, and engineers and allows them to easily locate the latest information on electrochemical technology, fundamentals, and applications.

Jiujun Zhang National Research Council of Canada

Preface

On January 26, 2011, during his State of the Union address, U.S. President Barack Obama stated: "We're issuing a challenge. We're telling America's scientists and engineers that if they assemble teams of the best minds in their fields and focus on the hardest problems in clean energy, we'll fund the Apollo projects of our time.... At the California Institute of Technology, they're developing a way to turn sunlight and water into fuel for our cars.... We need to get behind this innovation." This reflects the importance and relevancy of solar water splitting in fuel generation. We like to underline the word fuel that is to be a sustainable and renewable fuel, which can produce energy/power without releasing any additional carbon dioxide to the atmosphere, is the biggest challenge for the mankind. As the current convention fuels are gradually running out, sooner or later they will be completely exhausted. We have to be prepared for this situation with a better fuel substitute, otherwise a big energy mess will be created that will end life due to scarcity of food, water, and energy. Therefore, it's high time to think and act in the direction of ultimate energy sources. There is an extreme need to line up the industrialists, socialists, intellectuals, and political leaders to meet the current energy challenges, while taking great care of our environment. Hydrogen, as a product of water splitting, is a clean and green solution to the aforementioned problem. Nature provides us a clean and renewable source of hydrogen in the form of water. Unfortunately, cleavage of the water to its constituents, that is, hydrogen and oxygen, at an industrial scale represents one of the "Holy Grails" of materials sciences. To facilitate this reaction, the combination of catalytic material and solar energy has been recognized as a feasible approach to break water. Although renewable energy sources such as sunlight and water are available almost free of cost, developing stable, efficient, and cost-effective photocatalytic materials to split water is a big challenge. As devoted efforts to develop effective materials have continued over the last few decades, various materials with size and structures from nano to giant have been explored. Plentiful materials such as metal oxides, metal chalcogenides, carbides, nitrides, and phosphides of various composition like heterogeneous, homogeneous, plasmonic, mesomorphic, metamaterial, and new graphene-based materials have been tested. There have been critical discussions on the merits and demerits of the studied systems. However, some real technological breakthroughs in material development are definitely necessary for practical applications and commercialization of the technology. To accelerate the research and development activities in the area of water splitting, this book may act as a catalyst. Moreover, this book gives a comprehensive overview and description on both fundamentals and applications of photocatalytic water splitting focused on the recent advances in materials. It also highlights the need for common parameters for studying solar water-splitting phenomena. In addition, it provides insight into the various current and past practices and available databases by emphasizing the pros and cons of the existing and future technologies that are and will be used in water splitting. The book as a whole is our humble effort to give a panoramic view of the developments made in photocatalytic water splitting since the process was discovered.

> Neelu Chouhan University of Kota

Ru-Shi Liu National Taiwan University

Jiujun Zhang National Research Council of Canada

Introduction

This book comprises seven chapters. Chapter 1 introduces hydrogen as a green and efficient fuel to satisfy the energy needs of future generations. Relevant issues such as hydrogen fuel efficiency, production, application, safety, the hydrogen economy, environmental effects, and so on are covered in this chapter. Chapter 2 discusses the basic concepts of photochemical water splitting in order to equip readers with basic terminology and fundamental concepts such as electrochemistry of the water splitting phenomena, selection criteria of photocatalytic material, excitation binding energy, overpotential, diffusion length, carrier mobility and penetration in a photocatalyst, electrode overpotential, band gap and band edge position, band edge bending, efficiency, and so on. Chapter 3 discusses the different practical methods of hydrogen generation from water splitting using techniques such as electrolysis, thermochemical water splitting, biocatalytic water splitting, mechanoocatalytic water splitting, plasmolysis, electrolysis, magnetolysis, radiolysis, and photocatalytic and photoelectrocatalytic water splitting. This chapter gives a better understanding of how photochemical methods work and their benefits compared to other methods in water splitting. Chapter 4 describes different aspects of photoelectrochemical (PEC) water splitting, including factors affecting efficiency of PEC; semiconducting photoelectrode materials (electron transfer phenomenon, material and energetic requirements); models of the water splitting process; reactor design and operation, gradient/ bias-based reactors; and reactors based on suspension and electrode type. The chapter emphasizes the electrochemistry involved in the water splitting process and various electron transfer reactions at different interfaces of electrodes/cocatalysts, electrode/ electrolyte, electrode/sensitizers in the presence of the sacrificial electrolyte at active sites. This is a very important chapter that provides information about the materials involved in different stages of the photocatalytic processes, which is valuable for rational design and optimization of the PEC reactor's efficiency. It also focuses on the challenges and future perspectives of the field. Chapter 5 deals with oxide semiconductors such as ZnO, TiO₂, Fe₂O₃, and WO₃, as well as graphene oxide, which are used as photocatalytic materials for water splitting. This chapter includes the innovative ways to improve the efficiency of the devices such as band gap engineering of the metal oxide, doping, making a solid solution, and addition of quantum dots (QDs)/dyes or plasmonic materials for visible light sensitization, as well as incorporating a Z-scheme to the system. Moreover, a photocatalyst designed at nanoscale can be synthesized and unique aspects of the nanotechnology are discussed in detail. A special attention is given to some metal ion-doped metal oxide photocatalysts. Chapter 6 concentrates explaining the mechanism of the photocatalytic cleavage of water in the presence of scavenger electrolytes (electron scavenger and hole scavenger), photocorrosion, methods for photocorrosion prevention, the mechanism of heterogeneous electrocatalysis, and the mechanism of homogeneous molecular catalysis. The techniques to bridge the gap between heterogeneous electrocatalysis and homogeneous molecular catalysis are also illustrated with suitable examples. This chapter also describes the role of metallic/metallic hydroxide cocatalyst in

the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) and the nature/role of the active sites on catalyst's surface. Some conceptual advancements of the active materials for hydrogen generation through water splitting are explained in brief. Chapter 7 is devoted to describing the most significant technological advances and vivid aspects of the nanostructured semiconducting materials that are used for water splitting, including their structural properties, energetic transport dynamics, and the material design and strategies to enhance the photoresponse of nanomolecular devices. Different nanoforms of the materials like nanocrystalline, thin films, mesoporous, plasmon resonant, metamaterials are discussed with advancement schemes. Current state-of-the-art key challenges with future approaches in the development of efficient PEC cells for water splitting are also discussed in this chapter.

Authors

Neelu Chouhan, PhD, is an associate professor and the head of the Department of Pure and Applied Chemistry at the University of Kota in India. She earned her BSc in 1989 from MDS University, Ajmer, India, a MSc in 1991, a MPhil in 1993, and a BEd in 1996. She earned her PhD on *Organic Conducting Materials* from Monanlal Sukhadia University, Udaipur, India, in 2006. Dr. Chouhan worked as a lecturer in chemistry at SRD Modi College, Kota (1996–1998), and at Govt. PG College,

Bundi (1998–2012). She carried out her 2 years of postdoctoral research fellowship from 2008 to 2009 at the Department of Chemistry, National Taiwan University, Taiwan, and worked on photocatalytic nanomaterials for water splitting. Her research interests are organic superconductors, functional materials, nanomolecular devices, and the photochemistry of water splitting. She is the author or coauthor of more than 30 publications in international scientific journals of high impact factor with a good number of citations, contributed to seven chapters and three books of national/international publications, and has also been granted one international patent.

Ru-Shi Liu, PhD, is currently a professor at the Department of Chemistry, National Taiwan University, Taipei, Taiwan. He earned his BSc in chemistry from Soochow University, Taiwan, in 1981 and the MSc in nuclear science from National Tsing Hua University, Taiwan in 1983. From 1983 to 1985, he worked at the Materials Research Laboratories, the Industrial Technology Research Institute, Taiwan. He earned two PhDs in chemistry one from National Tsing Hua University in 1990 and the other from the University of Cambridge in 1992. Dr. Liu was an associ-

ate professor at the Department of Chemistry in National Taiwan University from 1995 to 1999 before he was promoted to a full professor in 1999. He has also served as an adjunct Pearl Chair professor at the National Taipei University of Technology, Taiwan, since August 2014. His research is focused on the field of materials chemistry. He is the author or coauthor of more than 550 publications in international scientific journals. He has also been granted more than 100 patents.

Jiujun Zhang, PhD, earned his BSc and MSc from Peking University in 1982 and 1985, respectively, and his PhD in electrochemistry from Wuhan University in 1988. Dr. Zhang is now a principal research officer and core competency leader at Energy, Mining, and Environment Portfolio (NRC-EME) of the National Research Council of Canada, Montreal, Canada. Zhang holds several adjunct professorships, including one at the University of Waterloo and the other at the University of British Columbia. He is the author or coauthor of more than 400 publications with more than 20,000 citations (h-index: 62; i10-index: 142), including 230 peer-reviewed journal papers, 18 books, and 41 book chapters, and has been granted 16 U.S./ European/Canada patents. His research is mainly based on electrochemical energy storage and conversion. He has been elected as a fellow of the Electrochemical Society of Electrochemistry (FISE), fellow of the Royal Society of Chemistry (FRSC), fellow of the Engineering Institute of Canada (FEIC), and fellow of the Canadian Academy of Engineering (FCAE).