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It is possibly appropriate to state why do we need to look into these text
book material again. It is known that the two pillars of processes are the thermo-
dynamics and kinetics. The one of the connection points of these two branches
is the chemical equilibrium, a state where the two rates ( not rate constants)
that of forward and back ward are equal. If one were to convert these concen-
tration terms involved in these discussions to electrical quantities (for example
for electro-chemical processes)then the parameter of relevance is the current
densities which possibly reflect the rate of the reaction taking place. Butler
Volmer equation possibly deals with the anodic and cathodic currents and the
net current that is responsible for the overall reaction observed. In this sense,
Bultler Volmer equation possibly provides opportunities to learn on the nature
of the electrochemical reactions that is if it is reversible equilibrium reactions
or if it were to be a irreversible process, the extent of ir-reversibility. From this
point of view, it was considered worthwhile to write this short presentation on
Butler Volmer equation.
In dealing with electro-chemical kinetics one has to learn more equations one of
which goes with the name Butler-Volmer equation. Generally, the generalized
form of electro-chemical reaction is written as R→ O + ne− Where R stands for
the reduced state and is given by Σ siR Ri

ZiR where s is the stoichiometric co-
efficient of species i (positive for the reduced state and negative for the oxidized
state by convention) and O stands for the oxidized state and is equal to siO Oi
ZiO, Ri (Oi) stand for the symbol for the chemical formula and Zi stands for the
charge on the species. This notation may appear cumbersome but it is simply
for a single species s takes value one and one charge species z takes the value
one and the equation written above simply represent a reduced species goes to
the oxidized species with one electron like M → M+ + e−. The reaction rate R
(not to be confused with the Reduced species indicated above) for a generalized
Faradaic half-cell reaction is given by (R = ka CR exp(1-α)ne∆ φ/kT − kcCo
exp(-αne∆φ/kT) = Ra − Rc) Where CR and CO stand for the concentration
terms and the powers to which the concentration terms will be raised in a ki-
netic expression. For example CR = Π CiR

SiR denoting the concentration of
the i reduced species to the power of s. ∆ φ = φ C − φ = electrode potential
− solution potential and α is the so called symmetry factor usually termed as
transfer coefficient. It has to be realized that the ratio of the rate of anode
reaction rate to that of the cathode reaction rate does not depend on , transfer
coefficient or any of the properties of the transition state and it is given as

(Ra/Rc) = (ka CR/kc C0)exp(ne∆ φ/kT) Under the equilibrium conditions,

1



the net reaction rate R is zero. That is Rc = Ra ∆ φ eq = (kT/ne) ln (kcC0/ka
CR) = V0 − (kT/ne) ln (Π C iR

s
iR/ Π CiO

s
iO) where V0 = (kT/ne) ln (kc/ka)

This is the Nernst equation and V0 is the kinetic description of the standard
potential related to the microscopic reaction rates. It is necessary that one
learns the significance of the term Activation over-potential which is a major
contributor in many of the practical electro-chemical processes. Though one
can determine the potential between the two electrodes in an electro-chemical
cell, herein referred as ∆ φ but over-potential appears to be the general term
commonly employed in electro-chemistry. It is defined as η = (∆φ−∆φeq) This
denotes the additional voltage that drives the Faradaic current. In terms of over
potential the reaction rate is
R = kaCRexp(((1− α)ne(η + ∆φeq))/kT )− (kcC0exp((−αne(η + ∆Φeq))/kT )
However,
∆φeq = (kT/ne)ln((kcC0)/(kaCR))
Therefore,
R = (kcC0)(1−α)(kaCR)α(exp(1− α)neη/kT )− exp(−αneη/kT ))
where I = neAR where A is the area of the electrode.
Thus one gets
I = I0[exp((1− α)neη)/kT − exp((−αneη)/kT )]
whereI0 = neA(kcC0)(1−α)(kaCR)α

is the exchange current in dilute solution. This is the Butler Volmer equation.
Limiting cases of Butler-Volmer equation
For small over potentials that is
(η � (kT/ne), one can linearize the Butler-Volmer equation
I = I0(neη/kT ) + [(1− 2α)/2][neη/kT ]2 + ........
Approximatingto
I ∼ I0[neη/kT ]
ηact ∼ [I/Ract];Ract = [kT/neI0]
Ract (greater than 0) is the constant resistance of the Faradaic reaction. Acti-
vation over potential is positive at anode and negative at cathode for a galvanic
cell (I is greater than 0) and electron flows from anode to cathode.
The next condition is when the over potential is large that is (when |η| �(kT/ne)
that is
I ∼ (I0exp((1− α)neη/kT ), η � (kT/ne)
orI ∼ (−I0exp(−αneη/kT )), η � −(kT/ne)
Tafel plot of ln|I| versus η has a slope of ((1-α)ne/kT) for anodic current and
(αne/kT) for cathodic current and Y intercept is ln I0.
Symmetric electron transfer when α takes the value of 0.5

It is common to assume symmetric electron transfer in the Butler Volmer equa-
tion and this often agrees well with experimental Tafel plots. As one will see this
assumption is also mathematically convenient, since the Butler Volmer equation
can be expressed as a hyperbolic since dependence, which can be inverted in
terms of inverse hyperbolic sine η = (2kT/ne)sinh−1(I/2Io) It is seen that the
activation over potential is mainly important at small currents and has roughly
the magnitude of the thermal voltage (kT/e). At large currents, the activation
over potential grows slowly as a logarithm of the applied current ( relative to
the exchange current)
Asymmetric electron Transfer ( when alpha is lower or higher than 0.5)
If the interfacial voltage only biases one direction of a Faradaic reaction, say the
positive reaction ( anode) and not the other, then the Butler Volmer equation
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Figure 1: Typical Tafel plot of log(current) versus over potential. The Butler-
Volmer equation predicts an asymptotic linear dependence for large over poten-
tials, where the slope is related to the transfer coefficient and the y-intercept
gives the exchange current.

Figure 2: Typical I-V curve for activation over potential for symmetric electron
transfer ( that is alpha is 0.5)
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Figure 3: Dimensionless over-potential versus current for different values of
Butler-Volmer transfer coefficient. In the limits alpha = 0 theinterface acts
like an ideal semiconductor diode, which passes current preferentially in one
direction ( Forward bias) with only a small saturation current in the opposite
direction ( reverse bias)

is given as I = I0[exp[neη/kT ]−1] This expression is identical to the non-linear
I-V response of a semiconductor diode. In this case, for a positive over poten-
tial, ( so called forward bias) which enhances the oxidation reaction, the current
grows exponentially with voltage, while the current saturates to a constant for
large negative over potentials set by the reduction reaction rate. (see Fig.3)
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