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Abstract:  Structure and relative stability of Pdn clusters for n=1–13 in gas phase were 
investigated using density functional methods. The structures of Pd clusters were 
determined in terms of Pd-Pd bond length and the results are in very good agreement 
with experimental values.  Stability of the clusters was determined from their relative 
energy values, binding energies and bond energies.  We also calculated the reactivity of 
the Pd cluster using density functional based reactivity descriptor, Fukui function, which 
showed a decrease in reactivity with increasing cluster size.  
 

1. Introduction 
Metal clusters are nano dimensional 
materials which are an intermediate state 
of matter between molecular limit and 
bulk limit. Materials on nanoscale can 
suddenly show very different physical 
and chemical properties compared to 
what they show on macroscale.   For 
example, opaque substances become 
transparent (copper) inert materials 
become catalysts (platinum) stable 
materials turn combustible (aluminium), 
solids become liquids at room 
temperature (gold), insulators become 
semiconductors (silicon) etc.   This is 
due to the quantum size effects which 
describes the quantization of energy for 
the electrons in solids with great 
reductions in particle size.  This effect 
does not come into play in going from 
macro dimensions while it becomes 
dominant in the nanometer size range..  
Other important aspects of the 
nanoclusters are high surface area to 
volume ratio and the dramatic change in 
their electronic structures.  Both these 
effects lead to the greatly improved 
catalytic activity and aggressive 
chemical reactivity.  Cluster properties 
are size dependent [2] and thus tunable. 
This brings the special interest in 

heterogeneous catalysis as well as for the 
synthesis of nano-structured 
materials.[1] Metals clusters have many 
potential applications in chemistry, 
physics and technology.  
On the more applied side, Fe clusters 
promote the nitrogen plus hydrogen 
conversion into ammonia and platium 
clusters catalyze the process to the 
increase the octane grade of gasoline.  
Small clusters of Pt, Rh and Pd are used 
in automative exhaust systems to reduce 
toxic pollutants such as CO, NO, and 
hydrocarbons. Palladium, in particular, 
is a promising material as catalyst in 
various applications.  For example, ultra-
dispersed palladium clusters supported 
on alumina are found to be more active 
than Pd(111) single crystals in CO 
oxidation by oxygen.[3]  In exhaust gas 
treatment, catalytic reduction of nitrogen 
monoxide with propane takes place on 
zeolite supported palladium clusters 
[4,5}i and the extremely reactive NO is 
reduced by CO in presence of highly 
dispersed palladium clusters supported 
on γ-alumina [6]   Moreover, ultra-
dispersed supported palladium clusters 
of up to 2nm (150 atoms) in size  act as 
highly active catalysts in hydrogenation 
processes [7], having much higher 
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selectivity in the conversion of triple to 
double bonds than that of bulk 
palladium.[8] It is important to 
determine the geometrical structure of 
transition metal clusters because it is a 
major factor in controlling their physical 
and chemical properties.  This leads to 
an impressive effort towards a better 
understanding of the cluster properties 
such as geometry, bond strength and 
reactivity in several experimental and 
theoretical studies.  Cluster properties 
such as ionization potential, electron 
affinity, reactivity[9-11] and magnetic 
behavior[12,13] are studied 
experimentally.  Mass spectroscopy 
measurements observe the clusters of 
particular stability (magic numbers) [14]  
However, it is difficult to determine the 
geometrical structures of the clusters 
experimentally, especially in the gas 
phase.  In this context theoretical 
calculations can complement 
experimental investigations in finding 
out the equilibrium geometry of the 
metallic clusters.  
In the present work, most stable 
structures of Pdn clusters for n=1–13 are 
investigated using density functional 
theory (DFT) with the aim of 
understanding the trends of 
characteristics (e.g., average bond 
length, binding energy per atom, 
reactivity etc.) with growing cluster size.    
2. Computational Details 
All the density functional calculations 
reported here were carried out using the 
DMol3 program [15,16]  DMol3 is a 
widely used real-space first-principles 
cluster method, and has been 
successfully applied to many problems 
such as structural stability of molecular 
clusters, chemisorptions and surface 
reconstruction. It can perform accurate 
and efficient self-consistent calculation 
and structural optimization. The 

equilibrium structure can be obtained by 
relaxing atom until the energy gradients 
are deemed to be zero. DMol3 supports 
several exchange-correlation functionals.  
Among these, we have used the most 
popular nonlocal exchange-correlation 
functional, BLYP for the generalized 
gradient approximation (GGA).  The 
exchange functional developed by Becke 
[17] is combined with the gradient 
corrected correlation functional by Lee, 
Yang and Parr [18] leading to the BLYP 
functional.  In the local density 
approximation (LDA), the exchange-
correlation energy of the uniform 
electron gas is obtained by adding the 
correlation functional developed by 
Vosko, Willk, and Nusair[19] in 1980 to 
the exchange functional, which is, apart 
from the perfactor, equal to the form 
found by Slater [20] in his 
approximation of Hartree-Fock 
exchange and was originally derived by 
Bloch and Dirac [21] in the late 1920s.    
We have used the DNP basis set [22] in 
our calculations.  DMol3 realizes the use 
of a double set of numerically tabulated 
basis functions. Generation of an entire 
second set of functions results in 
doubling the basis set size; this is 
referred to as a double-numerical (DN) 
set.  Here the basis functions are 
represented numerically as values on 
atomic centered spherical polar mesh 
rather than as analytic functions (i.e., 
Gaussian orbitals), with cubic spline 
interpolations between mesh points.  The 
angular portion of each function is the 
appropriate spherical harmonics Ylm 
(Ө,Ф).  The radial portion F(r) is 
obtained by numerically solving the 
atomic KS equations with the 
corresponding approximate exchange-
correlation functional.  The basis set can 
be significantly improved by adding 
higher angular momentum valence 
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polarization functions and also by core 
polarization functions.  Additional basis 
functions, including polarization, are 
obtained by several procedures viz. DFT 
excited-state atom calculations, DFT 
atomic ion calculations or Hydrogenic 
orbitals.  The occupied orbitals obtained 
from the neutral atom calculations 
comprise a minimal basis set for 
molecular systems.  Greater variational 
flexibility beyond this minimal basis set 
is achieved by including orbitals from 
calculations for the atomic ions with a 
+2 charge, except for hydrogen where a 
nuclear charge of +1.3 is used.  This 
basis functions provide a reasonable DN 
basis set. Adding a function on each 
atom with one angular momentum unit 
higher than that of its highest occupied 
orbital leads to a double numerical with 
polarization (DNP) basis set. The DNP 
basis is comparable to Gaussian 6-
31G**basis set[23-25]. 

The stability of clusters is discussed in 
terms of the total interaction energy 
Vcluster, the binding energy Eb and the 
bond energy BE of the clusters defined 
as  Vcluster = (En-nE1) 
   Eb = Vcluster /n 
 BE= Vcluster/m 
where n is the number of Pd atoms and 
m is the number of Pd-Pd bonds in the 
cluster, En is the energy of cluster Pdn 
and E1 refers to the atomic ground state 
(1S). 
3. Results and discussions 

Full geometry optimizations have 
been carried out with DFT using 
relativistic LDA and GGA functionals 
for the lowest energy structures of Pd 
clusters, for 2 ≤ N ≤ 13 [26-28].  The 
optimized geometries adopted by these 
Pd clusters are displayed in Figure 1. 
The symmetric point groups and the 
calculated average bond length of the 
clusters are given in Table 1.  

Table 1.Calculated average bond lengths <d> (in Å) for various Pd clusters from 
relativistic LDA and GGA calculations and the corresponding point group symmetry.  

  <d>/Å 

Cluster PG LDA GGA 
Pd2 D∞h 2.445 2.596 
Pd3 D3h 2.467 2.580 
Pd4 Td 2.556 2.676 
Pd5 C4v 2.562 2.683 
Pd6 Oh 2.599 2.697 
Pd7 D5h 2.635 2.750 
Pd8 D2d 2.610 2.736 
Pd9 C2v 2.612 2.742 
Pd10 C3v 2.623 2.749 

Pd11 C2v 2.659 2.752 
Pd12 C5v 2.670 2.770 
Pd13 Ih 2.659 2.751 
bulk — — 2.750 
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Figure 1. The geometries adopted by clusters Pdn, n=1-13, optimized by DFT using 
VWN and BLYP exchange-energy functionals. 
The Pd2 dimer is optimized with a 
symmetric point group of D∞h. The Pd3 
trimer forms an equilateral triangle in 
D3h symmetry. The optimization of Pd4 
gives a tetrahedron in Td symmetry. Pd5 
is optimized with C4v symmetry. The 
lowest energy structure of Pd6 is an 
octahedron in Oh symmetry. The most 
stable isomer of Pd7 shows a decahedral 
structure with D5h symmetry. The lowest 
energy for Pd8 is found in D2d symmetry. 
The most stable structure of Pd9 can be 
described as a decahedron or 
equivalently, as a portion of an 
icosahedron in C2v symmetry. 

Decahedral pattern of Pd10 forms the 
most stable isomer with C3v symmetry. 
The most stable structure of Pd11 is 
found for the structure in C2v symmetry.  
An icosahedron with one vertex 
removed in C5v symmetry gives the most 
stable structure of Pd12. The icosahedron 
with Ih symmetry is most stable for Pd13 
cluster. 
In Figure 2. the average Pd-Pd bond 
length is plotted as a function of cluster 
size for the different exchange-
correlation functionals. Each value 
corresponds to the statistical average of 
the different values of Pd-Pd bond 
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lengths calculated in different Pdn, n=1-
13 clusters for every value of n (the 
number of atoms in the cluster). The 
values of the bond lengths calculated 
with the LDA method are found to be 
almost similar with those of the SIESTA 
results of Rogan et al [26] Error! 
Bookmark not defined.  For the 
dimmer, the bond length is found to be 
2.45Å which is in good agreement with 
the accepted value of 2.48Å [19,30].  The 
bond length increases to a value of 
2.66Å for the Pd13. The results obtained 
from the LDA calculations are slightly 
shorter than those of Nava et al. and 
Kumar and Kawazoe[31]. The values for 
the bond lengths calculated with the 
GGA approach considerably 

overestimates the results of the LDA 
approach and also for the smaller sized 
clusters these values are found to be 
quite higher than those reported by 
Kumar and Kawazoe [30]..  The average 
bond length results of both LDA and 
GGA method are almost similar with 
those of Krüger et al. [32]  The bond 
distances found with the GGA functional 
are about 0.1- 0.15Å longer than those 
with the LDA, almost independent of the 
cluster size in agreement with the results 
of Krüger et al. [32] As an overall trend, 
the bond lengths increase with cluster 
size irrespective of the exchange-
correlation energy functional used in the 
DFT calculation. 
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Fig. 2. Non-relativistic LDA (triangles) and GGA (squares) results of average bond 
lengths of clusters Pdn, n=1-13, as a function of the cluster size. 
 

In Figure 3. we display the variation of 
the average bond lengths of the Pdn, 
n=1-13 clusters with the average 
coordination number. The average 
coordination number is defined as sum 

of the coordination numbers of all n 
atoms of a cluster divided by n. The 
relation of bond length and average 
coordination number is found to be 
linear.  
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Figure 3. LDA(triangles) and GGA(squares) results for the average bond lengths as a 
function of average coordination. 
 
The relative stability of the Pd clusters is 
investigated in terms of the evolution of 
the binding energy Eb. The total energy, 
the cluster energy, the binding energy 
and the bond energy of the clusters are 
given in the Table 2.  The values of 
binding energy in both the LDA and 
GGA method increase with the cluster 
size. It shows that the stability of the 
clusters increases with the size of the 
clusters. The cluster energy and the 
binding energy values obtained with the 
GGA method agree well with the Voter 
& Chen [33] and Murell & Mottram[34].  
These values are found to be little less 
than the results of [27,30] whereas the 
corresponding LDA results are quite 
higher.  The binding energy for the Pd 
dimer, calculated with the GGA method 
is found to be 1.12 eV, which in close 
agreement with the trustworthy value 
(1.03 ± 0.16 eV)[35,36] The results 
show that even if the binding energies 
increase with increasing cluster size, the 
bond energies decrease with an 
exception for Pd8 and Pd13. This is in 
agreement with the statement of the 
bond energy conservation principle [37].  
Our results for the binding energy as a 

function of cluster size are shown in 
Figure 4.  From the graph it is seen that 
there is a dip in the vicinity of n=13, 
which corresponds to a region of 
enhanced stability (magic number). 
We also calculated the first and second 
energy differences, ∆(1)E and ∆(2)E 
respectively defined as  
 ∆(1)E = Eb(n)- Eb(n-1) 
 ∆(2)E = Eb(n-1)- Eb(n+1). 
The difference in Eb and ∆(1)E gives the 
change in stability of the clusters from 
the bulk limit while a minimum of ∆(2)E 
indicates an enhanced stability of a 
cluster relative to its heavier and lighter 
neighbors.  Actually ∆(2)E is a measure 
of stability of the clusters which is in 
general is correlated with experimental 
mass spectral intensities, rather than with 
the binding energy [30].  The second 
energy differences are plotted as a 
function of cluster size in Figure 5.  
Large negative minima of ∆(2)E 
corresponds to the most stable Pd 
clusters.  Both of the LDA and GGA 
values for ∆(2)E are shown in Figure 5 
identify Pd4, Pd6, Pd8 and Pd10 as the 
most stable structures.  
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Table. 2. The total energy, the cluster energy, the binding energy and the bond energy of 
various clusters Pdn, n=1-13 using exchange-energy functionals VWN (LDA) and BLYP 
(GGA). 

Cluster Total energy (eV) Cluster energy 
(eV) 

Binding energy 
(eV/atom) 

Bond energy 
(kcal/mol) 

 LDA GGA LDA GGA LDA GGA LDA GGA 

Pd -139126.44 -139266.85 — — — — — — 
Pd2 -278254.62 -278534.81 -1.74 -1.12 -0.87 -0.56 -40.08 -25.88 
Pd3 -417384.43 -417803.89 -5.1 -3.36 -1.7 -1.12 -39.18 -25.82 
Pd4 -556514.38 -557073.07 -8.61 -5.69 -2.15 -1.42 -33.1 -21.85 
Pd5 -695643.69 -696341.7 -11.47 -7.47 -2.29 -1.49 -33.07 -21.55 
Pd6 -834773.75 -835610.27 -15.09 -9.2 -2.51 -1.53 -29 -18.57 
Pd7 -973903.13 -974879.29 -18.03 -11.38 -2.58 -1.63 -25.99 -16.4 
Pd8 -1113033.06 -1114148.26 -21.51 -13.5 -2.69 -1.69 -27.56 -17.3 
Pd9 -1252162.94 -1253417.18 -24.95 -15.58 -2.77 -1.73 -25.02 -15.62 
Pd10 -1391292.96 -1392686.15 -28.53 -17.7 -2.85 -1.77 -24.37 -15.12 
Pd11 -1530422.88 -1531955.09 -32 -19.8 -2.91 -1.8 -23.81 -14.73 
Pd12 -1669552.98 -1671224.07 -35.66 -21.92 -2.97 -1.83 -22.85 -14.04 
Pd13 -1808683.06 -1810493.24 -39.3 -24.25 -3.02 -1.87 -23.85 -14.72 
bulk — — — — — — — -15.00 

 

We used the density functional based 
reactivity descriptors to investigate the 
reactivity of the Pd clusters.  The 
reactivity of the clusters are defined in 
terms of the Fukui functions, f+ which 
are evaluated using Hirshfeld population 
analysis (HPA) and Mulliken population 
analysis (MPA) schemes.  The average 
of Fukui functions are shown in Table 3.  
The values of the average Fukui 
functions, f+ calculated with the LDA 
and GGA methods are found to be same.  

Figure 6 displays the variation of the 
reactivities with the number of atoms in 
the Pd clusters.  It is observed that the 
reactivity decreases as the number of 
atoms increases in the cluster.  This 
decrement in reactivity in Pdn is fast for 
n=1 to 6 while it is slow from n=7 to 11 
and ultimately it becomes constant for 
n=12 and 13.  
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Figure 4. Energy per atom, as a function of cluster size. The triangles and the squares 
correspond to the LDA and the GGA results respectively. 
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Figure 5. LDA(triangles) and GGA(squares) results of second energy difference 
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Figure 6. Variation of average Fukui functions f+  obtained from LDA (triangles) and 
GGA (squares) with cluster size. 
Table 3. Average Fukui functions (f+) of Pdn, n=1-13, clusters using LDA and GGA 
methods. 

Cluster Average Fukui function (f+) 

 LDA GGA 

Pd 1 1 

Pd2 0.5 0.5 

Pd3 0.33 0.33 

Pd4 0.25 0.25 

Pd5 0.2 0.2 

Pd6 0.17 0.17 

Pd7 0.14 0.14 

Pd8 0.13 0.13 

Pd9 0.11 0.11 

Pd10 0.1 0.1 

Pd11 0.09 0.09 

Pd12 & Pd13 0.08 0.08 
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4. Conclusion 
With the help of density functional 

theoey we have calculated the Pd-Pd 
bond lengths of palladium nanoparticles 
of upto 13 atoms.  The results show a 
clear contraction of the average bond 
lengths with decreasing cluster size 
irrespective of the functionals used for 
calculation.  This is in very good 
agreement with the previous theoretical 
and experimental studies.  It is also seen 
from the results that the bond distances 
obtained from LDA calculations are 
more accurate than those from GGA 
calculations.  The stability of the clusters 
is measured in terms of cluster energy, 
binding energy and bond energy.  Both 
GGA and LDA calculation showed that 
the binding energies increase whereas 
the bond energies decrease with the 
cluster size.  It is observed that GGA 
calculation is more reliable than that of 
LDA for the study of stability of 
clusters.  Also from the second energy 
differences we have found Pd4, Pd6, Pd8 
and Pd10 as the most stable clusters.  The 
reactivity of the clusters are studied with 
the help of average Fukui functions f+, 
which is found to decrease with 
increasing cluster size. 
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