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Three-dimensional cubic ordered mesoporous carbon (CMK-8) as highly efficient
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a b s t r a c t

In this work, Pd nanoparticles were supported on two types of three-dimensional cubic highly ordered
mesoporous carbon (CMK-8) by the sodium borohydride reduction method and the activity of the Pd/
CMK-8 electro-catalysts towards formic acid oxidation was evaluated and compared with that of
commercial Pd/C (E-TEK) catalyst. The catalysts were characterized by transmission electron microscopy
(TEM), X-ray diffraction (XRD), cyclic voltammetry, and chronoamperometry. Cyclic voltammetry
revealed Pd/CMK-8 with larger pores as being the most electroactive with a mass specific activity
(mAmgPd�1) of 486.4 that exceeded not only that of the Pd/C (E-TEK) (386.5 mAmgPd�1) but also that of
recently reported Pd/CNT (200 mAmgPd�1), Pd/Graphene (210mAmgPd�1) and Pd/Vulcan XC 72 (193 mAmgPd�1).
As demonstrated with chronoamperometry, the larger pore Pd/CMK-8 also proved to be the most stable
catalyst. This exceptional performance can be ascribed to the very high surface area and Ia3d symmetry
that yields a relatively isotropic graphitized structure with a high conductivity. In addition, the open
framework of the 3-D bicontinous channels and highly ordered mesopores allows for an advanced mass
transfer characteristics. The results show that CMK-8 support would significantly improve the power
output and stability of Pd-based electro-catalysts for formic acid oxidation.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recently there has been increased interest in the development
of direct formic acid fuel cells (DFAFCs) [1e8]. The advantage of
direct formic acid fuel cells as power sources are the lower fuel
crossover through the polymer membranes, the lower toxicity of
formic acid as a fuel (however, it should be noted that formic acid is
corrosive) and the fast oxidation kinetics of formic acid in
comparison with methanol make their application in portable
devices more advantageous than direct methanol fuel cells [9,10].

It is well known that Pt is a good catalyst for formic acid electro-
oxidation, with the oxidation following the dual path mechanism
represented by the following Eqs. (1) and (2):

HCOOH/ CO2þ 2 Hþþ 2e� (deprotonation step) (1)

HCOOH/ COadsþH2O/CO2þ 2 Hþþ 2 e� (dehydration step) (2)

According to the above equations, the oxidation of formic acid
on Pt follows two pathways. The first is the direct mechanism in
which formic acid is oxidized completely into CO2 through depro-
tonation (Eq. (1)). In the second, formic acid is oxidized through
dehydration by the formation of a reactive intermediate (CO) which
is further oxidized into CO2; the later mechanism is called the
indirect mechanism (Eq. (2)) [11]. The direct mechanism is bene-
ficial because intermediates are not formed during the oxidation
process thus preventing poisoning of the catalyst surface with CO
molecules which is the main problem with Pt electro-catalyst.
Catalyst poisoning blocks the platinum active sites available for
further formic acid oxidation and reduces the efficiency of the
oxidation process during long-term operations. While bi- and
multimetallic Pt catalysts have been successfully implemented to
lower CO poisoning [12], the high price of platinum is also a setback
to its use for commercial applications.

In an effort to reduce the cost of catalysts used for formic acid
oxidation, attention has shifted to non-Pt materials such as Pd [13].
Results obtained show that Pd is a good electro-catalyst for formic
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acid oxidation on which the mechanism of oxidation follows the
deprotonation pathway thus preventing catalysts poisoning [11].

In addition to the development of efficient electro-catalysts,
another approach to improve fuel cell performance is to develop
alternative catalysts supports. Carbon black (e.g. Vulcan XC 72) is
the commonly used support material. However, it is essentially
nonporous with a low surface area, leading to low utilization of Pt
catalysts. The most important factors affecting the choice of
support are its chemical nature as well as the presence of surface
functional groups. These functional groups can determine the
dispersion and stability of the metal nanoparticles as well as the
electronic properties of the metal. They also influence metal
support interactions, the degree of alloying in multimetallic cata-
lyst, mass transfer resistance, and the ohmic resistance of the
catalyst layer. Carbon nanofibers (CNF) [14e16], carbon nanotubes
(CNT) [17e19], nitrogen doped carbon nanotubes (N-CNT) [20e22]
and ordered mesoporous carbon (OMC) [23e25] provide alterna-
tive promising candidates as carbon support [26] for fuel cell
applications. Ordered mesoporous carbon (OMC) would be an ideal
electro-catalyst support in fuel cell electrodes due to its high
surface area, high conductivity and enhanced mass transport
within the pore channels [27,28].

In this study, three-dimensional cubic ordered mesoporous
carbon (CMK-8) with two different pore diameters was used as
support to prepare Pd-based electro-catalysts (Pd/CMK-8) for for-
mic acid electro-oxidation. The performance of the prepared cata-
lysts was compared with commercial Pd supported on carbon black
(Pd/C).

2. Experimental

2.1. Synthesis of three-dimensional cubic ordered mesoporous
carbon (CMK-8)

Mesoporous silica was synthesized as follows [29]. Typically, 6 g
Pluronic P123 (poly(ethylene oxide)epoly(propylene oxide)e
poly(ethylene oxide), PEO20ePPO70ePEO20) was dissolved in
217 g of deionized water and 11.628 g of 37 wt% conc. HCl solution
with stirring at 35 �C. After complete dissolution, 6 g of butanol was
added at once with vigorous stirring. After 1 h of stirring, 12.9 g of
tetraethyl-orthosilicate (TEOS) was added at once to the homoge-
nous clear solution while still stirring. The mixture was left under
vigorous and constant stirring for 24 h at 35 �C. Afterwards, the
mixturewas placed in an oven at 100 �C and left for 24 h under static
conditions in a closed polypropylene bottle. The solid product
obtained after hydrothermal treatment was filtered while hot and
then dried at 100 �Cwithoutwashing. To complete the synthesis, the
templatewas removedbyextraction in an ethanoleHClmixture; this
wasdoneby stirring thefiltrate for1e2 h inamixtureof 300e400 ml
ethanolwith20e30 ml37%conc.HCl followedbycalcination inair at
550 �C for 6 h. Two different silica templates labeled KIT-6-I and II
were obtained by varying themole ratio of reactants in the following
order: TEOS:P123:HCl:H2O:BuOH (1:0.0167:1.83:194.7:1.31) and
(2:0.0259:1.83:194.7:2.03), respectively.

The mesoporous carbon was prepared using a slight modifica-
tion of a reported procedure [30]. Typically 1.25 g of sucrose and
0.14 g H2SO4 were added to 5 g of deionized water. This was mixed
with 1 g of KIT-6 mesoporous silica. The mixture was dried in an
oven at a temperature of 100 �C for 6 h; the temperature was
increased to 160 �C and maintained for another 6 h. To the partially
decomposed sucrose was added a sucrose solution prepared with
0.75 g sucrose and 0.08 g H2SO4 in 5 g of water and the drying
procedure was repeated. The carbonesilica composite was pyro-
lyzed in flowing nitrogen at a temperature of 900 �C (N2 flow:
50 mlmin�1; heating rate 2 �Cmin�1) for 4 h. The carbon was

recovered by dissolving the silica template in 1 M ethanolic sodium
hydroxide (50% watere50% ethanol v/v), filtering and washing with
ethanol. Finally, the resultant carbon was dried at 100 �C for 12 h.
CMK-I and II were obtained by using KIT-6-I and II as hard
templates, respectively.

2.2. Synthesis of the electro-catalysts

In this work carbon supported Pd nanoparticles electro-catalyst
with 20% wt of metal loading on carbon were prepared using a wet
chemical reduction method. Typically, the mesoporous carbon
(40 mg) was ultrasonically dispersed in a mixture of ultra-pure
water and isopropyl alcohol (with a volume ratio of 1:1) for
20 min after which the desired amount of 0.01 M PdCl2 in deion-
ized water was added. The mixture was stirred for 30 min. The pH
of the ink was adjusted to pH¼ 9 by adding a drop NaOH solution
and then its temperature was increased to 80 �C. Twenty-five
milliliters of 0.2 mol L�1 solution of sodium borohydride was
added into the ink drop by drop, and the bath was stirred for 1 h.
The mixture was cooled, dried and washed repeatedly with ultra-
pure water (18.2 MU cm�1) to remove excess chlorides. The cata-
lyst powder was dried in an oven. All chemicals used were of
analytical grade. The catalysts prepared with CMK-I and CMK-II
were denoted as Pd/CMK-8-I and Pd/CMK-8-II, respectively.

2.3. Catalyst characterization

Powder X-ray diffraction was recorded on a PAN analytical
X’Pert Pro MPD diffractometer using CuKa radiation. For trans-
mission electronmicroscopic studies, catalysts dispersed in ethanol
were placed on a copper grid and transmission electron micro-
graphs (TEM) were taken using a Tecnai G2 F20 X-Twin (FEI
company, Eindhoven, the Netherlands), operating at an acceler-
ating voltage of 200 keV. Nitrogen porosimetry using a Micro-
meritics ASAP 2000 was used to determine pore size distribution
and surface area of mesoporous carbon. Metal loading was deter-
mined by thermogravimetric analysis (TGA) carried out on a Perkin
Elmer TGA7 with a heating rate of 10 �Cmin�1 in air with a flow
rate of 40 mlmin�1 up to a temperature of 800 �C. Under these
conditions the carbon is completely oxidized, allowing for the
determination of Pd loading.

2.4. Electrochemical measurement

All electrochemical measurements were performed using an
Autolab PGSTAT128N potentiostat/galvanostat. A three compart-
ment electrochemical cell has been used in which the catalyst
coated glassy carbon (0.155 cm2), Pt foil and Ag/AgCl (saturated KCl
solution) were used as working, counter and reference electrodes,
respectively. All the electrochemical experiments were carried out
at room temperature in 0.5 M H2SO4 and 0.5 M HCOOH/0.5 M
H2SO4. The electrolyte solution was purged with high purity
nitrogen for 30 min prior to a series of voltammetric experiments.
The base voltamogram for all electrodes was recorded after
reproducible voltammograms in 0.5 M H2SO4 were obtained and
the cycle number 50 in 0.5 M HCOOH/0.5 M H2SO4 was used for
electro-catalytic activity evaluation. To test the stability and dura-
bility of electro-catalysts, chronoamperometric measurements
(currentetime curves) were recorded at 0.3 V for 3600 s in 0.5 M
HCOOH/0.5 M H2SO4.

2.5. Preparation of the working electrode

A glassy carbon electrode (0.155 cm2) was polished to a mirror
finish with 1 mm and 0.3 mm alumina suspension successively. The
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polished electrodewas washedwith ethanol/water solution (1:1, V/
V) and then ultrasonicated in ultra-pure water each for 10 min.
After that, the electrode is ready to serve as an underlying substrate
of the working electrode. The electrodes for the electrochemical
measurements were fabricated by dispersing 2.5 mg of Pd/CMK-8
in 150 mL isopropanol and 50 mL of Nafion solution (5% wt.) and
then sonicated for 1 h and stirring for at least 3 h. Five microliters of
the suspensionwere dropped on to the glassy carbon electrode and
the solvent was evaporated at room temperature.

3. Results and discussions

3.1. Physicochemical characterization

Fig. 1 shows the TEM images of the KIT-6 template (1a) and
CMK-8 ordered mesoporous carbon (1b). The highly regular pore
structure of both the template and themesoporous carbon is clearly
visible in these figures. The structural properties of the synthesized
ordered mesoporous carbon (CMK-8) were obtained with N2

porosimetry. The mesoporous carbon (CMK-8) exhibits remarkably
higher surface area than Vulcan XC 72R (235 m2 g�1) [31]. The BET
specific surface areas of the mesoporous carbons are 1060 and
1149 m2 g�1 for CMK-8-I and CMK-8-II, respectively, while the
respective pore diameters are 4.9 and 3.2 nm. [32]. Three-
dimensional ordered mesoporous carbons (CMK-8) thus obtained
are furthermore characterized by high surface area (>1000 m2 g�1),
large pore volumes, and a highly regular interconnected pore
structure that could allow for a good dispersion of catalyst nano-
particles. Thus, they have been used as catalyst support for Pd

nanoparticle electro-catalysts prepared as detailed in Section 2. The
amount of Pd present in each type of catalysts was determined by
TGA and the values are tabulated in Table 1. The average weight
percentage of Pd obtained from measurements was found to be
w20% for all the catalysts prepared in this work.

The X-ray powder diffraction patterns of all catalysts used in this
study (Pd/CMK-8-I, II and Pd/C) are shown in Fig. 2. Note that the
broad peak centered at ca. 25� corresponds to the carbon used as
the supporting matrix; therefore, it is invariably observed in all the
patterns. For all the samples, all peaks expected for an fcc lattice,
corresponding to the structure of the pure bulk Pd metal are
observed. The average crystallite size of the Pd can be calculated
using the DebyeeScherrer formula [33,34]:

d ¼ 0:89l=B2qcos q

where d is the crystallite size, l is the wavelength, B2q is the full
width at half maximum of the peak and q is the diffraction angle.

The crystallite size was calculated from the peak corresponding
to Pd (220) crystal face in order to avoid the influence of the carbon
support. Table 1 summarizes the average crystallite sizes of the
catalysts estimated by the Scherrer formula [33,34]. The average
size of Pd crystallites decreases slightly from 4.7 to 4.5 nmwhen the
pore size increases, while Pd/C possesses the smallest Pd
crystallites.

Fig. 3 shows the TEM images of the Pd catalysts used in this
study. It can be seen that for all supported Pd catalysts, the particles
are uniformly dispersed and studded on the surface of the carbon,
with Pd/C showing additionally highly agglomerated particles. As

Fig. 1. TEM images of (a) KIT-6-I and (b) CMK-8-I ordered mesoporous carbon.

Table 1
Comparison of activity for formic acid oxidation on various electro-catalysts.

S.No Electro-catalysts Particle size (nm) Pd wt.%
by TGA
method

EASA
(cm2mgPd�1)

Mass
specific
activity
(mAmg�1

Pd)

XRD TEM

1 Pd/Vulcan XC-72 e e e e 193a

2 Pd/CNT 5.4 6.2 e e 200b

3 Pd/Graphene e 10 e e 210a

4 Pd/C (E-TEK) 3.7 4.7 22 210 386.5
5 Pd/CMK-8-I 4.5 3.6 20.48 287 486.4
6 Pd/CMK-8-II 4.7 4.1 20.26 256 470.3

a From Ref. [44].
b From Ref. [45].

Fig. 2. XRD patterns of (a) 20% Pd/CMK-8-II; (b) 20% Pd/CMK-8-I; and (c) 20% Pd/C
electro-catalysts.
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can be seen from Fig. 3b, there are metal particles dispersed on the
outside of ordered mesoporous carbon. Though the ordered mes-
ochannels are somewhat unapparent in the TEM images of Pd/
CMK-8, they exhibit that the particles are dispersed within the

carbon support uniformly. The mean particle sizes of about 4.1 and
3.6 nm are in fairly good agreement with the crystallite sizes
obtained with XRD (see Table 1). However, larger particles are also
present (see Fig. 3) which may indicate that parts of the

Fig. 3. TEM images and the corresponding histogram for particle size distribution of (a) Pd/C; (b) Pd /CMK-8-I; and (c) Pd/CMK-8-II catalysts.
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nanoparticles are deposited on the outer surface of the support.
Notably, TEM images clearly reveal that even after the metal
loading, the highly ordered structure of mesoporous carbon (CMK-
8) was maintained which is important for fast diffusion of formic
acid to the catalytic sites.

Due to their advantageous properties, as demonstrated above,
the three-dimensional ordered mesoporous carbons (CMK-8) are
promising supports for stabilizing Pd nanoparticle electro-
catalysts. The highly ordered mesoporous structure could allow
for an efficient mass transport (reactants/products and electro-
lytes). The materials were thus tested as electro-catalyst for formic
acid oxidation.

3.2. Electrochemical characterization

The electrochemically active surface area (ECSA) can provide
important information on the available active sites of catalysts.
Cyclic voltammograms of the Pd/CMK-8 and Pd/C electro-catalysts
in 0.5 M H2SO4 solution carried out in the range of �0.2 to 1.0 V
(Ag/AgCl) with a sweep rate of 100 mV s�1 are shown in Fig. 4. It is
clear from the figure that all electro-catalysts showed the expected
behaviorof aPdelectrode in sulfuric acid solutionwith characteristic
andwell defined hydrogen adsorption/desorption peaks around 0 V
and a PdOx reduction peak in the reverse scan at ca. 0.5 V. Also, the
formation of PdOx at higher potential in the forward scan can be
detected. All these features are typical for Pd catalysts in sulfuric acid
solution and agree well with the reported data [35e38]. The only
difference between the CVs is that the Pd supported on CMK-8
showed higher double layer capacitance and this may be attrib-
uted to higher surface area of CMK-8 in comparison with carbon
Vulcan XC 72R used as a support in the commercial catalyst. Since
the hydrogen adsorption/desorption on Pd may be overlapped by
hydrogen absorption/dissolution in Pd [39], we calculate the elec-
trochemical surface area using the charge consumed during the
PdOx reduction in the course of the cathodic scan andusing the value
of 0.424 mC cm�2 as charge consumed for monolayer oxide reduc-
tion, a procedure which is well established in literature [40,41]. The
electrochemical surface areas are listed in Table 1; the ECSA of Pd/
CMK-8-I, Pd/CMK-8-II and Pd/C (E-TEK) catalysts were
287 cm2mgPd�1, 256 cm2mgPd�1 and 210 cm2mgPd.�1 Both Pd/CMK-8
catalysts have a higher electrochemical specific surface area than
the commercial Pd/C catalysts, and the increase in surface area
agreeswellwith thedecrease inparticle size determinedbyTEM.On
the other hand, it does not fit to the order of crystallite sizes deter-
mined by XRD, which, however, is attributed to the fact that crys-
tallite sizes and not particle sizes are determined by XRD and
agglomeration of individual particles or amorphous overlayers will
not be detected. The higher electrochemically active surface area
(ECSA) of Pd obtained with the three-dimensional ordered meso-
porous carbon (CMK-8) support compared to that obtainedwith the
VulcanXC72R support (Table 1) confirms thebetterdispersionof Pd,
while Pd/C shows some agglomeration (see Fig. 3a). The high
dispersion of Pd nanoparticles is due to the higher surface area
(>1000 m2 g�1) of the three-dimensional ordered mesoporous
carbon (CMK-8) support compared to those of Vulcan XC 72 R
(235 m2 g�1) [31]. Highest utilization of Pd has been achieved with
the three-dimensional ordered mesoporous carbon (CMK-8-I)
support with the larger pore diameter. This suggests that the pore
diameter of three-dimensional ordered mesoporous carbon (CMK-
8-I) has a decisive effect on the electrochemical surface area and Pd
utilization. One reason might be a more facile nanoparticle forma-
tion inside these pores compared to CMK-8-II and thus less accu-
mulation of larger particles on the outside (see also particle size
distribution in Fig. 3) aswell as a better stabilizationof nanoparticles
compared to Vulcan XC 72 R.

3.3. Electro-catalytic activity of catalysts towards formic acid
oxidation

The electro-catalytic activity of all catalysts was evaluated by
recording the CVs for all catalysts in 0.5 M HCOOH/0.5 M H2SO4.

Fig. 4. Cyclic voltammograms of (a) Pd/C; (b) Pd/CMK-8-I; and (c) Pd/CMK-8-II electro-
catalysts in 0.5 M H2SO4 solution at a scan rate of 100 mV s�1, 25 �C.
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Fig. 5 shows the respective CVs. During the forward scan, all the
catalysts showed a very small peak at about �0.13 V due to
hydrogen oxidation and the main peak for formic acid oxidation in
the potential range between 0.35 and 0.45 V. The later peak
corresponds to the oxidation of formic acid through the direct
mechanism (deprotonation pathway) [42]. On the other hand, only
Pd supported on CMK-8-II with smaller pores showed a second
broad peak at higher potential (>0.6 V) adjacent to the first peak at
0.35 V, which in the other CVs is visible, if at all, only as very small
shoulder. This peak could be attributed to the oxidation of adsorbed
CO and formic acid on available active sites recovered by CO
removal. The same behavior has been reported for formic acid
oxidation on bulk Pd electrodes [43]. However, it is more likely that
this peak can be attributed to adsorbed CO only since it is detected
in the higher potential region (>0.6 V), i.e. the same region at which
PdOx is formed (Fig. 4, CV in H2SO4), which is inactive for formic
acid oxidation. This result indicates that the formic acid oxidation
on the surface of Pd supported on CMK-8-II with smaller pores
likely proceeds via the dual pathway mechanism to a much larger
extent than on the other catalysts. The theory behind this cannot be
fully explained at the moment.

The as prepared Pd/CMK-8-I catalyst manifests a very high
activity for formic acid electro-oxidation. It is clear from Fig. 5 that
the oxidation current for formic acid in the forward scan is higher
than that for reverse scanwhich reflects the higher activity and fast
oxidation of adsorbed species on these catalysts. On the other hand,
the commercial catalysts showed the opposite (a higher current ib
for the reverse scan). The electro-catalytic activity was evaluated
based on the current density at the peak potential in the forward
scan and normalized to the metal loading in the electrode. The
results are tabulated in Table 1. Among all the catalysts, the Pd
supported on CMK-8-I with large pores showed the highest mass
specific electro-catalytic activity for formic acid electro-oxidation
reaction. The higher activity of Pd/CMK-8-I catalysts compared to
Pd/C catalyst could be due to high conductivity of the CMK-8
support and highly distributed Pd nanoparticles. Pd/CMK-8-I
catalysts have higher ECSA and higher activity compared to Pd/
CMK-8-II catalysts. It should be pointed out that Pd/CMK-8-I
exhibits a very high mass activity of 486 mAmg�1, which is
nearly double that of recently reported palladium supported gra-
phene (210 mAmg�1), Pd/CNT (200 mAmg�1) and Pd/C catalysts
(190 mAmg�1) [44,45].

3.4. Stability test

Chronoamperometric (CA) measurements are used to test the
initial stability of the prepared catalysts. Fig. 6 shows the CA curves
recorded at 0.3 V for 1 h in 0.5 M HCOOH/0.5 M H2SO4. The current
of a typically prepared Pd/CMK-8-I electrode for formic acid
oxidation remains higher than the other catalysts, which indicates
that the Pd/CMK-8-I has a better catalytic activity for formic acid
oxidation and a higher stability during the tested time period. It can
also be observed that during the first 15 min, the commercial
catalysts showed higher current density. However, during one hour
of operation, the activity of the commercial catalyst decreased
dramatically. On the other hand, the Pd catalysts supported on the
CMK-8 showed better activity and stability over the entire length of
time. A frequent spike in the CA curve for Pd/CMK-8-II with smaller
pores is observed due to the removal of CO2 bubbles accumulated
on the electrode surface. Thesewere produced during the oxidation
process of formic acid. From CA measurements we can conclude
that Pd electro-catalysts supported on ordered mesoporous carbon
have a higher electro-catalytic activity and stability than the
commercial catalysts. This significant activity and stability is
expected from the higher surface area of the support which

maintains high dispersion and small nanoparticle size of the
prepared catalysts. The Pd/CMK-8-I sample was found to possess
the best electro-catalytic performance and improved durability
thus substantiating its potential as a promising anodic electro-
catalyst in formic acid fuel cells.

Fig. 5. Cyclic voltammograms of formic acid electro-oxidation on (a) Pd/C; (b) Pd/
CMK-8-I; and (c) Pd/CMK-8-II electro-catalysts in 0.5 M H2SO4/0.5 M HCOOH solution
at a scan rate of 100 mV s�1 (recorded after 50 scans), 25 �C.
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4. Conclusion

In summary, three-dimensional cubic ordered mesoporous
carbons (CMK-8) were synthesized and palladium catalysts
prepared with CMK-8 as supports by an impregnation-reduction
method. The mass specific activities for formic acid oxidation of
Pd/CMK-8-I and Pd/CMK-8-II were higher than that of Pd/C as
revealed from cyclic voltammetric investigations. It was also shown
that the three-dimensional cubic ordered mesoporous carbon
influenced significantly the electro-catalytic activity of Pd/CMK-8-I
and Pd/CMK-8-II. Pd/CMK-8-II displayed the highest formic acid
oxidation activity as a result from the very high surface area and the
larger pore diameter which make diffusion of reactant and product
easier. However, the effect of the pore diameter of the three-
dimensional cubic ordered mesoporous carbon (CMK-8) on the
electro-oxidation formic acid is yet to be fully investigated. Chro-
noamperometric measurements revealed Pd/CMK-8 as being more
stable than the commercial Pd/C catalysts. These improvements in
electrochemical activity and stability make Pd/CMK-8 more
advantageous for applications in direct formic acid fuel cells.
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