The Pennsylvania State University

The Graduate School

Department of Energy and Mineral Engineering

PHOTOINDUCED ACTIVATION OF CO₂ ON TiO₂ SURFACES: QUANTUM CHEMICAL MODELING OF GROUND AND EXCITED STATES, AND IN SITU EPR STUDIES

A Dissertation in

Energy and Geo-Environmental Engineering

by

Venkata Pradeep Indrakanti

© 2009 V. Pradeep Indrakanti

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

May 2009

The dissertation of Venkata Pradeep Indrakanti was reviewed and approved* by the following:

Harold H. Schobert Professor of Fuel Science Dissertation Advisor Co-Chair of Committee

James D. Kubicki Associate Professor of Geosciences Co-Chair of Committee

Kwadwo Osseo-Asare Distinguished Professor of Metallurgy and Energy and Geo-Environmental Engineering

Chunshan Song Professor of Fuel Science and Chemical Engineering Director, EMS Energy Institute Associate Director, Penn State Institutes of Energy and Environment

Adri C.T. van Duin Associate Professor of Mechanical and Nuclear Engineering

Yaw Yeboah Professor of Energy and Mineral Engineering Head of the Department of Energy and Mineral Engineering

*Signatures are on file in the Graduate School

ABSTRACT

The conversion of CO_2 using light energy (CO_2 photoreduction) has the potential to produce useful fuels or valuable chemicals while decreasing CO_2 emissions from the use of fossil fuels. This thesis describes computational and experimental studies on the initial steps of photoinduced CO_2 activation on TiO₂ surfaces necessary to develop a mechanistic understanding of CO_2 photoreduction. Initially, the state of the art in the field is reviewed, and the performance of CO_2 photoreduction catalysts is compared to that of solar hydrogen production catalysts.

To design efficient CO_2 photoreduction catalysts, we need to understand the intermediates and energetics of various reactions involved in the photoreduction of CO_2 in greater detail. As a first step in this process, the ground states of CO_2 chemisorbed on small clusters from various anatase surface planes were modeled (Chapter 2). We find favorable agreement for the existence of three different CO_2 -surface complexes on small TiO₂ clusters (Ti₂O₉H₁₀) extracted from the (010), (001) and (101) anatase surface planes.

Secondly, identifying the mechanism and the active sites involved in the formation of negatively charged CO_2 species on TiO_2 surfaces represents a significant advance in our understanding of CO_2 photoreduction. Both post-Hartree-Fock calculations on small model surface clusters as well as density-functional theory (DFT) calculations on larger clusters indicate that conduction band electrons in irradiated, stoichiometric TiO_2 surfaces may not be transferred to CO_2 . On the other hand, oxygen vacancies may act as the active sites for CO_2 photoreduction (Chapter 3).

The role of oxygen vacancies in promoting the light-induced conversion of CO_2 (CO_2 photoreduction) on TiO_2 surfaces is discussed Chapter 4 of this thesis. Two different side-on bonded bent-CO₂ (bridging Ti-CO₂^{δ +}-Ti species) were formed on the reduced rutile (110) and anatase (010), (001) surfaces. Consistent with CO₂ adsorption on other n-type metal oxides such as ZrO₂, the bent-CO₂ species do not gain further charge from the TiO₂ surface under illumination and are likely photodesorbed as neutral species. Additionally, although the formation of species such as CO and HCHO is thermodynamically possible, we find that the energy needed to regenerate the oxygen vacancy on TiO₂ surfaces is greater than that available through band-gap illumination. Therefore, CO₂ reactions with water on irradiated anatase TiO₂ surfaces are likely to be stoichiometric.

The role of lanthanide doping of TiO₂ in influencing electron-hole recombination was investigated using EPR (electron paramagnetic resonance) spectroscopy. In situ pulsed-EPR experiments on calcined TiO₂ samples provide evidence for surface electron and hole-centers on TiO₂ (Chapter 5). However, contrary to expectations, no additional paramagnetic centers created due to lanthanide doping of TiO₂ could be detected in the EPR experiments. Additionally, irradiating TiO₂ in the presence of CO₂ did not create paramagnetic signals corresponding to the CO₂^{*6-} radical anion.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
PREFACE
ACKNOWLEDGEMENTS
Chapter 1 Photoinduced activation of CO ₂ on Ti-based heterogeneous catalysts: Current State, Chemical Physics-based Insights and Outlook
1.1 Abstract. 1 1.2 Introduction. 2 1.2.1 CO ₂ Utilization 2 1.2.2 CO ₂ photoreduction- 5 1.3 Current state of CO ₂ photoreduction on TiO ₂ -based catalysts 7 1.4 Comparisons of CO ₂ photoreduction rates to solar H ₂ generation 11 1.5 Thermodynamics and initial steps of CO ₂ activation and further conversion. 16 1.6 Surface state description of CO ₂ activation on TiO ₂ . 19 1.7 Surface site description of CO ₂ activation on TiO ₂ . 23 1.8 Utility of surface state and surface site approaches in understanding the elementary reactions involved in CO ₂ photoreduction on Ti-based 26
catalysts 26 1.8.1 Effects of alkali and transition metal doping on CO ₂ photoreduction26 1.8.2 Visible light performance of dye-sensitized TiO ₂ catalysts mediating CO ₂ photoreduction 29 1.8.3 Isolated Ti-species acting as active sites for CO ₂ photoreduction in micro/mesoporous materials 30 1.8.4 Effect of oxygen vacancies created by cation doping or thermal treatment of TiO ₂ on the activity towards CO ₂ 32 1.8.5 Discussion 34 1.9 Challenges for CO ₂ photoreduction on Ti-based catalysts 36 1.11 References 37
on Anatase (001), (101) and (010) TiO ₂ Surfaces
2.1 Introductory Comment

2.5 Results	54
2.6 Discussion	61
2.7 Conclusions	67
2.8 References	69
Chapter 3 Quantum mechanical modeling of CO ₂ interactions with irradiated	
stoichiometric and oxygen-deficient anatase TiO ₂ surfaces: Implications for	
the photocatalytic reduction of CO ₂	72
3.1 Introductory Comment	72
3.2 Abstract	73
3.3 Introduction	73
3.4 Computational Methods	77
3.4.1 Details of cluster preparation and parameters used for SAC-CI	70
calculations in G05	19
5.4.2 Details of cluster preparation and parameters used for DF1	01
calculations in Turbomole	81 04
3.5 Kesuits.	84
3.6 Discussion	90
3.7 Conclusions	102
3.8 References	102
rutile (110) and anatase (010), (001) surfaces: Implications for spectroscopic studies and photoreduction of CO_2 on irradiated TiO_2	107
4.1 Abstract	107
4.2 Introduction	108
4.3 Computational Methods	113
4.3.1 Adsorption of CO_2 on oxygen vacancies on the rutile (110) surface	114
4.3.2 Adsorption of CO_2 on oxygen vacancies on the anatase (010) and	
(001) surfaces	115
4.3.3 Excited state calculations of various bent- CO_2 species on anatase	
surface planes	115
4.4 Results and Discussion	116
4.4.1 Adsorption of CO_2 on oxygen vacancies on the rutile (110) surface 4.4.2 Adsorption of CO_2 on oxygen vacancies on the anatase (010) and	116
(001) surfaces	120
4.4.3 Vibrational frequencies of relayed bent CO ₂ species	120
4.4.5 violational frequencies of relaxed bent-CO ₂ species on rutile and anatase surface	122
nlanes	125
4.5 Conclusions	120
4.6 References	130
	131
Chapter 5 Experimental studies of CO ₂ photoreduction : Catalyst syntheses and EPR studies	134

5.1 Abstract	134
5.2 Introduction.	134
5.3 Experimental Methods	137
5.3.1 Catalyst Synthesis	137
5.3.2 X-ray diffraction (XRD) Characterization and Photoreactions	138
5.3.3 EPR Experiments.	139
5.4 Results.	141
5.4.1 XRD characterization and Photoreactions	141
5.4.2 EPR Experiments	144
5.5 Conclusions and Future Work	147
5.6 References	147
Chapter 6 Summary and Future Work	149
6.1 Summary	149
6.2 Implications for Future Work	151
6.3 References	156
Appendix A Supplementary Information for Chapter 2	158
A.1 Cartesian coordinates for (010), (101) and (001) Ti ₂ O ₉ H ₁₀ CO ₂ clusters	158
A.2 Unscaled C-O stretch frequencies of the CO_3 group for the (010), (001)	
and (101) clusters	160
A.3 CO ₂ adsorption on the 4-c (110) $Ti_2O_7H_6CO_2$ cluster	160
A.4 Linear CO ₂ species	162
Appendix B Supplementary Information for Chapter 3	163
B.1 SAC-CI excitation energies, excited state configurations and canonical melacular orbitals for the (110) Ti 4aCO2 alustar	162
D 2 SAC CL excitation energies, excited state configurations and cononical	105
D.2 SAC-CI excitation energies, excited state configurations and canonical molecular orbitals for the (001) Ti watCO2 eluster	165
P 2 Contesion accordinates	165
D.5 Cartesian coordinates	100
Appendix C Supplementary Information for Chapter 4	174
C.1 Cartesian coordinates for bent-CO ₂ clusters modeled using the b3lyp/def2-SV(P) model chemistry	174

LIST OF FIGURES

Figure 1-1: Comparison of the greenhouse gas (GHG) abatement potential (in megatonnes of CO ₂ equivalents (MtCO ₂ e)/year) for selected technology options
Figure 1-2: The highest specific rates of CO ₂ photoreduction (μmol CO ₂ converted/g TiO ₂ /h) obtained using various doped and undoped Ti-based catalysts in selected recent articles
Figure 1-3: Scope of the aspects of CO ₂ photoreduction discussed in this review:13
Figure 1-4: Amount of CO ₂ converted to reduced-C species per unit of CO ₂ evolved from lamp operation (assuming coal-fired power generation), from recent literature data on CO ₂ photoreduction using Ti-based catalysts
Figure 1-5: Location of the conduction band of TiO_2 (rutile) particles at the point- of-zero charge (pzc) with respect to the standard energy states associated with the CO_2/CO_2^{\bullet} couple
Figure 1-6: The variation in the energy of the LUMO of gaseous CO ₂ with the O-C-O bond angle, calculated using constrained quantum chemical calculations at the B3LYP/6-31+G(d) level of theory25
Figure 2-1: Optimized geometries of CO ₂ and CO ₂ ⁻ calculated at the QCISD(T)/6-311+G(3df) level
Figure 2-2: Ball-and-stick representations of the clusters (showing nearest neighboring atoms to titanium atoms) from the (001), (101) and (010) surfaces of anatase TiO ₂ considered in this study
Figure 2-3: Ground state (001) C ₂ symmetric Ti ₂ O ₉ H ₁₀ CO ₂ cluster optimized at B3LYP/6-31+G(d) level of theory, bond distances in Å, angles in degrees55
Figure 2-4: Ground state (010) C ₂ symmetric Ti ₂ O ₉ H ₁₀ CO ₂ cluster optimized at B3LYP/6-31+G(d) level of theory, bond distances in Å, angles in degrees56
Figure 2-5: Ground state (101) $Ti_2O_9H_{10}CO_2$ cluster optimized at B3LYP/6- 31+G(d) level of theory, bond distances in Å, angles in degrees57
Figure 2-6: Comparison of experimental C-O IR frequencies to those calculated using B3LYP/6-31+G(d) calculations on the (001), (010) and (101) Ti ₂ O ₉ H ₁₀ CO ₂ clusters
Figure 2-7: One possible pathway for the formation of surface carbonates from polydentate carbonate groups on a Ti-O-Ti cluster

Figure 3-1: Schematic of semiconductor-mediated CO ₂ photoreduction75
Figure 3-2 : Left, (001) Ti-watCO2 (Ti(OH) ₄ H ₂ O-CO ₂) cluster, right, Ti-4cCO2 (Ti(OH) ₄ H ₂ O-CO ₂) cluster, optimized at the G03-B3LYP/6-31+G(d) level of theory
Figure 3-3: Ground-state (1A) (010) C ₂ symmetric Ti ₂ O ₉ H ₁₀ CO ₂ cluster optimized with G03-B3LYP/6-31+G(d) model chemistry, bond distances in Å, angles in degrees
Figure 3-4: Percentage of charge transferred to CO ₂ , calculated from single point excited-state relaxed density population analyses
Figure 3-5: Changes in summed atomic charges of the CO ₂ (CO2), surface species (CO3) and the bare cluster (Ti2O9H10) over the SAC ground-state, calculated with unrelaxed excited-state SAC-CI densities (from single point calculations) using the 6-31+G(d) basis set.1
Figure 3-6 : Location of the photogenerated electron and hole in various triplet Ti6- clusters
Figure 3-7: Local geometry around the Ti atom interacting with CO ₂ in various triplet Ti6-CO ₂ clusters, from TM-B3LYP/def2-SV(P) calculations91
Figure 3-8: TM-B3LYP/def2-SV(P) optimized geometry of the singlet (010) Ti6(Vo)-5cCO2-bent (Ti ₆ O ₂₀ H ₁₈ -CO ₂) cluster.l
Figure 3-9: TM-B3LYP/def2-SV(P) optimized geometry of the singlet (010) Ti6(Vo)-5cCO2-linear (Ti ₆ O ₂₀ H ₁₈ -CO ₂) cluster
Figure 3-10: Natural charges of CO ₂ species calculated from TM-B3LYP/def2- SV(P) level calculations on Ti6-5cCO2 clusters from various surface planes96
Figure 3-11: Positions of the bottom of the conduction band (LUMO) and top of the valence band (HOMO) for singlet Ti(OH) ₄ H ₂ O (010), Ti(OH) ₄ H ₂ O (001) clusters compared with those of a CO ₂ molecule in the gas phase at the GO3-B3LYP/6-31+G(d) level
Figure 3-12: The highest occupied molecular orbitals of various (010) Ti6- clusters with and without CO ₂
Figure 4-1: Initial configurations for CO ₂ adsorption on reduced rutile Ti2Vo_110 clusters
Figure 4-2: Partially relaxed geometries, using initial configurations shown in Figure 4-1, (denoted as Ti2Vo_110_CO2(a-e)), from B3LYP/def2-SV(P) calculations

ix

Figure 4-3: Partially relaxed geometries of bent-CO ₂ species from anatase surfaces from B3LYP/def2-SV(P) calculations
Figure 4-4: Comparison of vibrational frequencies of fully relaxed bent-CO ₂ clusters from anatase (001) , (010) and rutile (110) surfaces from B3LYP/def2-SV(P) calculations with experimental IR frequencies of $CO_2^{\delta^*-}$ species on reduced TiO ₂
Figure 4-5: C-O IR frequencies from the 2-Ti atom clusters from the rutile (110) surface (Ti2Vo_110_CO2c, Ti2Vo_110_CO2d) are consistent with those obtained from in situ FTIR spectroscopic studies of CO ₂ adsorption on TiO ₂ 125
Figure 4-6 : Frontier molecular orbitals of the ground state singlet, neutral Ti6Vo_010_CO2 μ_1 - η^2 cluster, from B3LYP/def2-SV(P) calculations, shown at an isocontour value of 0.03 e ^{1/2} /Å ^{3/2}
Figure 4-7: Relative energetics of reactions involving the formation of reduced C ₁ species from gas phase CO ₂ and water molecules on model cluster from the (010) anatase surface (Ti6_Vo_010)
Figure 5-1 : Procedure for the preparation of rare earth-doped TiO ₂
Figure 5-2: Experimental setup used for photoreactions at the University of Nottingham
Figure 5-3 : Experimental setup for photoreactions at Penn State
Figure 5-4: XRD spectra of La-doped TiO ₂ compared with anatase and P25 TiO ₂ 142
Figure 5-5 : Results using 2.5% w/w La-TiO ₂ -coated glass plates in the continuous flow reactor
Figure 5-6: X-band pulsed-EPR spectra of calcined sol-gel TiO ₂ at 20 K 145
Figure 5-7: X-band pulsed-EPR spectra of calcined sol-gel TiO ₂ and 3 Torr CO ₂ at 20 K
Figure 6-1: A comparison of the stages of development of various technologies converting solar energy into chemical energy of C ₁ compounds
Figure A-1: Carbonate formation on the 4-c (110) Ti ₂ O ₇ H ₆ cluster modeled using the B3LYP/6-31+G(d) model chemistry
Figure A-2: Geometry of the (010) $Ti_2O_9H_{10}CO_2$: linearly adsorbed CO_2 on a constrained cluster (CO_2 , Hs optimized, Ti, O fixed at their lattice positions) at B3LYP/6-31+G(d) with normal optimization criteria

Figure B-1 : Canonical molecular orbitals of the (110) Ti-4cCO2 cluster, plotted at	
an isocontour value of 0.1	.164
Figure B-2: Canonical molecular orbitals of the (001) Ti-watCO2 cluster, plotted	
at an isocontour value of 0.1	.166

LIST OF TABLES

Table 1-1: Summary of results from recent literature on isolated Ti-species used as photocatalysts mediating CO ₂ reduction. 8	
Table 1-2: Summary of recent literature on doped-TiO ₂ used as photocatalyst mediating CO ₂ reduction	
Table 2-1: Comparisons of B3LYP, MP2 and QCISD results with the observed properties of CO ₂ ⁻	1
Table 2-2: Comparisons of scaled IR frequencies and the intensity ratios for CO_2 adsorbed on anatase TiO_2 (1800-1100 cm ⁻¹ region)	8
Table 2-3: Counterpoise corrected interaction energies (based on electronic energy of fixed geometries and Gibbs free energy of relaxed geometries) of CO ₂ on (001), (010) and (101) Ti ₂ O ₉ H ₁₀ clusters (positive values indicate exergonic reaction)	0
Table 2-4: Natural atomic charges, bond distances and Δv_3 splittings of (010), (001) and (101) Ti ₂ O ₉ H ₁₀ CO ₂ clusters calculated with the B3LYP/6-31+G(d) model chemistry	1
Table 2-5: Comparison of Wiberg bond indices in the natural atomic orbital (NAO) basis for the (001), (010) and (101) Ti ₂ O ₉ H ₁₀ CO ₂ clusters at the B3LYP/6-31+G(d) level	3
Table 2-6 : Natural bonding orbital (NBO) analyses showing the occupancies and % C and %Ti contributions to various orbitals of (010), (001) and (101) $Ti_2O_9H_{10}CO_2$ clusters at the B3LYP/6-31+G(d) level	5
Table 3-1 : Excitation energies (for the first 4 excited-states) of CO ₂ linearly adsorbed on clusters from (110) and (001) anatase TiO ₂ surfaces (Ti-4cCO ₂ , Ti-watCO ₂), calculated at the SAC-CI/6-31+G(d) level of theory	5
Table 3-2: Excited-state symmetries, excitation energies and oscillator strengths for the first four excited singlet states of the (010) Ti ₂ O ₉ H ₁₀ CO ₂ cluster (carbonate-like species) calculated by SAC-CI and TD-DFT using 6-31+G(d) basis set	7
Table 3-3: Counterpoise uncorrected electronic interaction energies of CO ₂ adsorption on various singlet and triplet (010), (101) and (001) defect-free clusters and those of singlet and triplet (010) oxygen-deficient cluster, calculated at the TM-B3LYP/def2-SV(P) level	5

Table 3-4: Comparison of energies of LUMO of CO ₂ with the highest SOMO of defect-free and oxygen-deficient Ti6- clusters and the highest SOMO of the surface complex ((010) Ti6(Vo)-5cCO2)	95
Table 4-1: Type of bonding, C-O bond lengths, OCO bond angles and CO_2^{δ} natural charges for bent-CO ₂ species on anatase and rutile TiO ₂ clusters	118
Table 4-2 : Counterpoise uncorrected electronic interaction energies of various configurations of CO ₂ adsorbed on rutile (110), obtained by B3LYP/def2-SV(P) calculations.	119
Table 4-3: Experimental IR frequencies attributed to bent-CO ₂ species on TiO ₂ (from literature).	123
Table A-1: Unscaled C-O stretch frequencies (cm ⁻¹) of the CO ₃ group for the (001), (010) and (101) clusters	160

PREFACE

This thesis comprises a series of four papers either published or in-submittal in journals. In chronological order, these papers are:

- Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Quantum chemical modeling of ground states of CO2 chemisorbed on anatase (001), (101), and (010) TiO2 surfaces. Energy & Fuels 2008, 22, (4), 2611-2618. (Chapter 2)
- Indrakanti, V. P.; Kubicki, J. D.; Schobert, H., Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, accepted for publication in Energy and Environmental Science, 2009. (Chapter 1)
- Indrakanti, V. P.; Schobert, H.; Kubicki, J. D., Quantum mechanical modeling of CO2 interactions with irradiated stoichiometric and oxygen-deficient anatase TiO2 surfaces: Implications for the photocatalytic reduction of CO2, to be submitted to Energy & Fuels. (Chapter 3)
- 4. Indrakanti, V. P.; Schobert, H.; Kubicki, J. D., A density functional theory study of CO2 adsorption on oxygen vacancies on rutile (110) and anatase (010), (001) surfaces: Implications for spectroscopic studies and photoreduction of CO2 on irradiated TiO2., to be submitted to Energy & Fuels. (Chapter 4)

Chapters 1, 2, 3 and 4 of this thesis are in part, verbatim reproductions of the text of the above journal chapters. In all cases, first-authorship establishes my principal role in developing and executing the analyses. Therefore, any reference to "we" indicates me, and not the co-authors of these journal publications.

ACKNOWLEDGEMENTS

"Knowledge is in the end based on acknowledgement."

- Ludwig Wittgenstein

I deeply thank Dr. Harold Schobert and Dr. James Kubicki for their inputs and mentorship during my PhD. This thesis could not have been possible without their encouragement and support. I express my gratitude to Dr. Mercedes Maroto-Valer, for her guidance and her confidence in my ability to successfully complete this rollercoaster ride. I also thank my committee members, Dr. Kwadwo Osseo-Asare, Dr. Chunshan Song, Dr. Adri van Duin and a former committee member Dr. Yaw Yeboah for their feedback and interest in my work. I also thank Dr. Sarma Pisupati for supporting me as a Teaching Assistant for three semesters. The assistance of Dr. David Doetschman and his research group towards conducting EPR experiments at Binghamton University is greatly appreciated. Likewise, I also thank Dr. Gianluca Li Puma for photoreactor access at the University of Nottingham. Discussions with Dr. Alexander Mitin also helped shape this work.

Financial support from the Center for Environmental Chemistry and Geochemistry (CECG), the Earth and Environmental Systems Institute (EESI), the Graduate School, and the Materials Research Institute (MRI) helped conduct the research in this thesis. A number of people at Penn State, including the late David Clifford, Parvana Gafarova, Dania Fonseca, Ron Wasco, and the staff at the EMS Energy Institute and the EME department provided me timely help and advice. I also thank all my colleagues and friends, especially Brandie, Denis, George, Goutham, Meredith, Marielle, Nari, Prabhat, and Prasanna for enriching my academic life during the course of our hikes, games, and discussions.

Finally, I thank my parents for their belief in my abilities and their unconditional support. I am greatly appreciative of everything they have done for me.

Chapter 1

Photoinduced activation of CO₂ on Ti-based heterogeneous catalysts: Current State, Chemical Physics-based Insights and Outlook

1.1 Abstract

This chapter is a review of current knowledge of the chemical physics of carbon dioxide (CO_2) conversion to fuels using light energy and water (CO_2 photoreduction) on titania (TiO₂)-based catalysts and Ti-species in porous materials. Fairly comprehensive literature reviews of CO_2 photoreduction are available already. However, this chapter is focused on CO₂ photoreduction on Ti-based catalysts, and incorporates fundamental aspects of CO_2 photoreduction, knowledge from surface science studies of TiO_2 and the surface chemistry of CO₂. Firstly, the current state of development of this field is briefly reviewed, followed by a description of and insights from surface state and surface site approaches. Using examples such as metal-doping of TiO₂, dye-sensitization, oxygen vacancies in TiO_2 and isolated-Ti centers in microporous/mesoporous materials, the utility of these approaches to understand photoinduced reactions involved in CO_2 activation is examined. Finally, challenges and prospects for further development of this field are presented. Enhanced understanding of the CO₂:TiO₂ system, with a combination of computational and experimental studies is required to develop catalysts exhibiting higher activity towards CO₂ photoreduction.

1.2 Introduction

"Chemistry began by saying it would change the baser metals into gold. By not doing that it has done much greater things."

- Ralph Waldo Emerson

1.2.1 CO₂ Utilization

There is a growing need to mitigate CO₂ emissions. Some of the strategies to mitigate CO₂ emissions are energy conservation, carbon capture and storage and using CO₂ as a raw material in chemical processes as well as in enhanced oil recovery (EOR) (CO₂ utilization). Catalytic reactions involving CO₂ and producing value-added products are reviewed by Xu and Moulijn¹. More recent reviews by Song², Sakakura et al.³ and Aresta and Dibenedetto⁴ detail additional opportunities to use CO₂ as a feedstock. Reactions involving CO₂ typically require energy input and/or a high energy substrate. As pointed out by Song², processes involving CO₂ could be endergonic (or endothermic) and can still be feasible, provided the products are valuable enough. Moreover, as carbon legislation becomes imminent, a price for CO₂ (either as a carbon tax, or as a CO₂ offset in a cap-and-trade system) would benefit processes having a positive net CO₂ balance.

What is the potential for utilizing CO_2 by the use of various renewable energy technologies? Current global industrial consumption of CO_2 (approximately 115 mega (metric) tonnes (Mt)/year⁵) is insignificant compared to anthropogenic CO_2 emissions (~26 gigatonnes (Gt) of CO_2 /year). However, we note that U.S. CO_2 consumption for enhanced oil recovery as well as chemical synthesis (~40 Mt/year⁶) is similar in scale to other projected means of U.S. greenhouse gas (GHG) reduction (data from a McKinsey

report⁷), such as using solar PV electricity, wind energy and cellulosic biofuels, as shown in Figure 1. With the caveat that most processes utilizing CO_2 would need reducing power and/or a source of energy that is not reflected in the dotted lines shown in Figure 1-1, we note that comparatively larger amounts of GHG mitigation could be possible if CO_2 is converted into fuels. This conversion leads to a reduction in CO_2 emissions only if the underlying energy infrastructure is not based on primary fossil fuels⁵.

Figure 1-1: Comparison of the greenhouse gas (GHG) abatement potential (in megatonnes of CO_2 equivalents (MtCO₂e)/year) for selected technology options. Aresta and Dibenedetto⁸ project that globally, direct solar conversion of CO_2 to fuels would mitigate 300-700 Mt CO₂/year. This is comparable in scale to U.S. GHG mitigation via carbon capture and storage (CCS)

For example: the quantity of U.S. CO₂ emissions mitigated by solar PV technologies (50 Mt $CO_2e/year$ by 2030) represents approximately 50% of the CO_2 currently utilized by the global chemical industry. The data shown in Figure 1 for solar photovoltaic (PV) technologies could be considered as representing the upper limits for converting light energy to electricity. Solar fuel production could be thought of as involving solar PV electricity production, followed by generation of hydrogen or reduction of CO_2 using the electrical energy. If we assume (simplistically) that the efficiency of conversion dictates the potential size of the market, using 10% efficiency for this solar-electricity-chemicals conversion results in a 5 Mt CO₂/year potential for the abatement of greenhouse gas emissions using solar photoreduction (of CO₂ or water). Given reasonable economies of scale, and conversion efficiencies, the costs of producing fuels from sunlight and CO₂ could be offset by CO₂ emission credits (under a carbon capand-trade framework) and the sale of the hydrocarbons produced. On the other hand, Aresta and Dibenedetto⁸ point that global CO₂ utilization to make chemicals and fuels could reach 300-700 Mt CO₂/year globally in the near- to long-term. Therefore, the potential for the indirect utilization of CO₂ by using renewable electricity/hydrogen would be less than the direct solar conversion of CO_2 and water to chemicals or fuels.

Although CO_2 utilization may not make an impact on directly reducing emissions, it may provide a means to limit the use of fossil fuels and thereby contribute indirectly. As noted by Aresta and Dibenedetto⁹, a life cycle analysis (LCA) approach should be used to determine whether a given process indeed decreases fossil fuel use and the carbon intensity.

1.2.2 CO₂ photoreduction

 CO_2 photoreduction refers to the conversion of CO_2 to reduced C_1 and C_2 compounds using light-induced reactions. Since CO_2 does not absorb either visible or UV radiation in the wavelengths 200-900 nm, this process requires suitable photosensitizers. Both metal complexes and semiconductors have been utilized to absorb visible/UV radiation and transfer this energy to CO_2^{10} . Additionally, various Ti species in silicate-based micro/mesoporous materials are also active towards CO_2 photoreduction. These include isolated, tetrahedral Ti species substituting framework-Si in mesoporous silicates^{11, 12}, TiO²⁺ species prepared via ion-exchange in microporous aluminosilicates¹³, isolated^{14, 15} and bimetallic¹⁶ Zr⁴⁺- and Ti⁴⁺-containing species grafted onto the pore surface of mesoporous materials.

Whereas the semiconductor-mediated reduction of CO_2 involves the generation of electron-hole pairs and their subsequent transfer to CO_2 and a reductant respectively, the metal complexes undergo local charge transfer transitions leading to electron transfer to CO_2 . Analogously, the isolated and bimetallic Ti-centers in micro/mesoporous silicates also undergo local ligand-to-metal charge transfer (LMCT) and metal-to-metal charge transfer (MMCT) transitions respectively. Although the metal complex photocatalysts exhibit comparatively higher yields and turnovers towards CO_2 photoreduction, a sacrificial electron donor (typically an amine) is required to regenerate the photocatalyst. On the other hand, a semiconductor that has its conduction and valence bands placed suitably to transfer electrons to CO_2 and oxidize inexpensive reductants, such as water, can be designed. Among various semiconductors, TiO₂ is widely used in many photoinduced processes because of its comparatively low cost, low toxicity¹⁷ and its ability to resist photocorrosion¹⁸. TiO₂ is a wide-band gap semiconductor ($E_g \sim 3.2 \text{ eV}$) and occurs as three polymorphs: anatase, rutile and brookite. Among these, anatase is obtained via "soft" chemical syntheses, and transforms upon heating (to temperatures greater than 700-800 K) to the rutile phase. Surface science aspects of TiO₂ have been described in detail by Diebold¹⁹. Anatase is the more photocatalytically active form of TiO₂, though not for all applications. Anatase also has a larger band gap compared to rutile. However, surface science studies of anatase single crystals have only begun in the past eight years²⁰⁻²⁸, whereas the rutile surfaces have been studied more extensively²⁹⁻³³.

A semiconductor photocatalyst mediating CO_2 reduction and water oxidation needs to absorb light energy, generate electron hole pairs, spatially separate them, transfer them to redox active species across the interface and minimize electron hole recombination. This requires the semiconductor to have its conduction band electrons at higher energy compared to the CO_2 reduction potential while the holes in the valence band need to be able to oxidize water to O_2 . A single semiconductor does not usually satisfy these requirements. Moreover, current CO_2 photoreduction catalysts do not perform as effectively as current solar hydrogen generation catalysts. Therefore, to develop better Ti-based CO_2 photoreduction catalysts, one needs to understand interactions between CO_2 on ground and excited state TiO₂ surfaces or Ti-based catalyst sites.

1.3 Current state of CO₂ photoreduction on TiO₂-based catalysts

Titania (TiO₂) based photocatalysts have been used to convert CO₂ to useful compounds, both in gas and aqueous phase photoreactions. The conversion of CO₂ and water to simple C products such as formic acid and formaldehyde using irradiated aqueous suspensions of titania was first demonstrated by Inoue et al.³⁴. Researchers have also used homogeneous metal complexes in solution to reduce CO_2^{35} . A summary of recent literature on CO₂ photoreduction involving isolated Ti-species as well as bulk TiO₂ materials is given in Table 1-1 and Table 1-2.

Some recent developments in this field have been moves towards rational photocatalyst design, the use of highly active isolated Ti-species in mesoporous and microporous materials^{11, 14, 15, 36-40}, metal-doping of TiO₂, development of catalysts active at longer wavelengths than can be achieved with commercially available titania, and the elucidation of reaction mechanisms through in situ spectroscopic studies^{14, 41}. A comparison of the CO₂ conversion rates from various studies is shown in Figure 1-2. Although it would be more instructive to compare the conversion efficiencies and quantum yields of various TiO₂-based catalysts, often such data are not readily available. The data in Figure 1-2 illustrate typical rates of CO₂ photoreduction, and are dependent upon many variables such as metal doping, CO₂:H₂O ratios, dispersion of Ti, coordination of Ti species, light intensity, type of lamp used, etc., which are already discussed in detail in the literature (see for example, Usubharatana et al.¹⁰, and references therein). In references b-c, f and g in Figure 1-2. Anpo and coworkers used Ti-species in

microporous or mesoporous silicates as catalysts whereas the rest of the works cited used

doped/undoped TiO₂.

Catalyst	Reaction system used	T, (K) and	CO ₂ :H ₂ O mole ratio	Light source used	Notes	References
		P, (Pa)				
Pt impregnation of a) Ti-ion- exchanged zeolites and, b) framework-Si substituting Ti-MCM-48.	Gas-solid system. Flat- bottomed quartz cell connected to conventional vacuum system $(1x10^{-4} Pa),$ 88 ml	(14) 328 K, pCO ₂ = 734 Pa	0.2	75 W high- pressure Hg lamp, $\lambda > 280$ nm	Pt addition increased selectivity towards CH ₄ compared to CH ₃ OH, and quenched photoluminescence yields.	Anpo et al. ¹³ , Yamashita et al. ³⁷ , Anpo et al. ¹¹
Fluorination of Ti-FSM-16	do	323 K	0.2	100 Whigh- pressure Hg lamp, $\lambda > 250$ nm	Fluorination (hydrophobicity) increased selectivity towards CH ₃ OH over CH ₄ .	Ikeue et al. ³⁸
Ti-containing porous silica thin film photocatalyst	do	323 K	0.2	100 W high- pressure Hg lamp, $\lambda > 250$ nm	Thin film photocatalyst exhibited high quantum yield (0.28%).	Ikeue et al. ³⁹
Framework- Si substituting Ti-MCM-41	Miniature infrared vacuum cell, 3.4 ml	298 K, P = 0.1 MPa	61.67	266 nm	CO, O ₂ detected as products of single photon, two- electron transfer. H ₂ O confirmed as a stoichiometric electron donor.	Lin et al. ¹⁵
Ti(IV)-Sn(II) bimetallic redox centers in MCM-41	Infrared vacuum cell	-	-	Third harmonic emission of a Nd:YAG laser, 355 nm	Ti^{3+} centers formed under 355 nm and visible light irradiation due to $Sn(II) \rightarrow Ti(IV)$ MMCT.	Lin and Frei ¹⁶

Table 1-1: Summary of results from recent literature on isolated Ti-species used as photocatalysts mediating CO_2 reduction.

Table 1-2: Summary of recent literature on doped-TiO $_2$ used as photocatalyst mediating CO $_2$ reduction

Catalyst modification	Reaction system used	T, (K) and P, (Pa)	CO ₂ :H ₂ O	Light source	Notes	References
Cu(II) impregnation of JRC-TiO-4	Gas-solid system. Flat- bottomed quartz cell connected to conventional vacuum system (1.33x10 ⁻⁴ Pa), 60 ml	275 K	0.33	75 W high- pressure Hg lamp, λ > 290 nm	Increased selectivity towards CH ₃ OH over CH ₄ .	Yamashita et al. ⁴²
Cu(I) doping of TiO ₂ , sol-gel synthesis	Slurry photoreactor, 300 ml	~323 K, P = 0.1 MPa	-	8 W Hg lamp, UV-C, $\lambda = 254$ nm	Increased selectivity towards CH ₃ OH over CH ₄ , Cu(I) active species.	Tseng et al. ⁴³
Cu(I) doping of TiO ₂ , sol-gel	Gas-solid continuous optical fiber photoreactor (OFPR), 120 optical fibers	348 K, pCO ₂ = 0.1 MPa	50	$\lambda = 365 \text{ nm}$	Cu ₂ O clusters influenced CH ₃ OH formation.	Wu et al. ⁴⁴
Nanoscale Ag- coated TiO ₂ particles embedded in Nafion membrane	High-pressure optical cell, stacked catalyst films. 2 ml H ₂ O added after irradiation	pCO ₂ = 13.7 MPa	-	990 W Xe arc source, water filter.	Small TiO ₂ nanoparticles (4-6 nm) embedded in ionomer. CH ₃ OH main product after Ag-coating of TiO ₂ . Catalyst films could be reused and were chemically stable.	Pathak et al. ⁴⁵
Dye $([Ru(Bpy)_3]^{2+},$ perylene diimide based)-sensitized, Pt-promoted, thin and thick film- TiO ₂ photocatalysts	Glass chamber connected to a vacuum line	298 K, pCO ₂ = 0.09 MPa	34.5	75 W visible daylight lamp, 150 W UV A lamp	Pt-impregnation resulted in higher CH ₄ yields under UV irradiation compared to sol-gel synthesized Pt/TiO ₂ . Organic sensitizers decreased catalytic activity under UV light and resulted in CH ₄ evolution under visible light irradiation.	Ozcan et al. ⁴⁶
TiO ₂ -coated Pyrex glass pellets, H ₂ , H ₂ O as reductants	Packed bed, circulated photocatalytic reactor	316 K	1, H ₂ :CO ₂ = 90	4 near-UV lamps, $\lambda = 365$ nm	CH ₄ , CO and C ₂ H ₆ formed as reaction products.	Lo et al. ⁴⁷

Table 1-2 continued

Catalyst modification	Reaction system used	T, (K) and P, (Pa)	CO ₂ :H ₂ O	Light source	Notes	References
Cu, Fe substitution in TiO ₂ -SiO ₂ , sol-gel synthesis	Same as above, 216 fibers	348 K	-	150 W high- pressure Hg lamp, $\lambda = 320$ - 500 nm, concentrated sunlight, $\lambda =$ 500-800 nm,	Fe substitution resulted in full visible light absorption. Cu- Fe/TiO ₂ favors C_2H_2 formation, Cu- Fe/TiO ₂ -SiO ₂ favoredCH ₄ formation (quantum yield: 0.0235%). Dye sensitization	Nguyen et al. ^{48, 49}
Ruthenium dye (N3)-sensitized Cu-Fe/TiO ₂ catalysts	Same as above, 216 ml	348 K	-	same as above, I ^{solar} = 20 mW/cm ² , I ^{lamp} = 225 mW/cm ²	resulted in higher CH ₄ yields under concentrated sunlight due to stronger absorption bands in the visible spectrum. N3 dye stable after 6 h- photoreactions.	Nguyen et al. ⁵⁰
Mixed phase TiO ₂ nanocomposite prepared by TiCl ₄ hydrolysis in the presence of anatase powder	Annular glass reactor, isopropanol hole scavenger, 1280 ml	293 - 298 K	-	450 W, medium- pressure Hg lamp, UV- visible irradiation	Anatase-rutile nanocomposite exhibited higher CH_4 evolution rates compared to Degussa P-25 TiO ₂ and pure anatase catalysts. Effective charge separation between anatase and rutile phases postulated to explain the higher photoactivity.	Li et al. ⁵¹

Figure 1-2: The highest specific rates of CO₂ photoreduction (µmol CO₂ converted/g TiO₂/h) obtained using various doped and undoped Ti-based catalysts in selected recent articles. (A): Yamashita et al., $(1994)^{52}$, (B): Anpo et al.¹³, (C): Yamashita et al.³⁷, (D): Kaneco et al.⁵³, (E): Kaneco et al.⁵⁴, (F): Ikeue et al.³⁸, (G): Ikeue et al.³⁹, (H): Tseng et al.⁴³, (I): Wu et al.⁴⁴, (J): Nguyen et al.^{6, 55}

1.4 Comparisons of CO₂ photoreduction rates to solar H₂ generation

Although CO_2 photoreduction has been studied since the 1970s, to the authors' knowledge, there are no studies on its performance versus alternative approaches. Comparing the rates of CO_2 photoreduction with other photosynthetic processes, such as solar hydrogen generation, presents another means to assess the viability of CO_2 photoreduction to limit GHG emissions. To better understand the current state of CO_2

photoreduction using Ti-based catalysts, we converted the specific weights in Figure 1-2 to units of micromoles CO_2 converted/hour, using the catalyst weights, and titania weight percentages. These data were used to determine the ratio of CO_2 converted by photoreactions to the amount of CO_2 emitted during lamp operation (all references in Figure 1-4 used UV lamps) These data indicate that current Ti-based photoinduced CO_2 conversion processes emit more CO_2 than that converted. As a caveat, we note that only minimal efforts were likely made to improve the light absorption in the references cited in Figure 1-4. This might be one reason why the overall efficiency (kg CO_2 converted/kg CO_2 emitted by lamp) is low. However, significant improvements, both in the specific rate of CO_2 reduction (as indicated by the arrow in Figure 1-4) as well as the quantum yield of the photoreaction, are needed to make this process economically feasible.

There are two conceptual routes to producing renewable C-containing fuels using solar energy. The first, the topic of this review, is the direct photoreduction of CO_2 using water as a reductant, whereas the second route involves the photolysis of water to generate hydrogen and further reaction of this hydrogen with carbon dioxide, forming C₁-C₂ fuels. Both the efficiency of the conversion of solar energy to useful chemical energy as well as the rates of photoreduction of hydrogen/reduced C₁-C₂ compounds are pertinent parameters that determine economic feasibility of such processes. Assuming that the efficiency of solar energy conversion is almost the same in the two routes, the choice between direct and indirect hydrogenation of CO_2 is determined by the rates of photoreduction.

Figure 1-3: Scope of the aspects of CO_2 photoreduction discussed in this review: (a): Surface state models indicating the location of the CO_2^-/CO_2 energy levels in comparison with the conduction and valence bands of TiO₂, Surface site models of CO₂ on Ti-based catalysts, (b): CO₂ adsorption on doped/undoped TiO₂ surfaces, (c): CO₂ interacting with isolated model Ti sites in meso/microporous materials such as titanosilicates

Figure 1-4: Amount of CO_2 converted to reduced-C species per unit of CO_2 evolved from lamp operation (assuming coal-fired power generation), from recent literature data on CO_2 photoreduction using Ti-based catalysts.¹Current Ti-based photoinduced CO_2 conversion processes emit more CO_2 than they convert. References same as those in Figure 1-2.

On the other hand, typical rates of CO_2 photoreduction in aqueous systems containing suspended metal oxides (TiO₂, BaTiO₃ etc.) are much lower, approximately 1 µmol/h C₁/C₂ product/h under UV radiation³⁶. Using copper-doped TiO₂ and by conducting the photoreduction under a pH bias, Tseng and Wu⁵⁶ obtained a slightly higher methanol formation rate of 12 µmol/h. In gas-solid systems, using isolated Ti-sites

¹ A lamp power of 150 W was assumed in Wu et al.(2005). All references except Tseng et al.(2002) used lamp wattages \geq 75 W.

in micro/mesoporous materials, Anpo and co-workers¹¹⁻¹³ obtained CH_4/CH_3OH formation rates of approximately 0.05 µmol/h. Although the intensity of the light used in these various studies is not the same, the above numbers indicate that current CO_2 photoreduction catalysts do not perform well in comparison with solar-hydrogen generating catalysts, both in terms of product formation rates, and the wavelengths of light needed to sustain reaction. This is because both water oxidation as well as fuels formation from CO_2 are multi-electron transfer reactions. Whereas oxygen evolution via water oxidation is the major limiting factor in solar hydrogen production, both CO_2 photoreduction as well as water oxidation have to occur simultaneously in a photoreactor using water as the reductant. In this connection, we also note that a recent design for a 100 T/year pilot plant producing methanol⁵⁷ from CO_2 using a heterogeneous catalyst and not the direct photoreduction of CO_2 . Additionally, Zeman and Keith propose producing carbon-neutral hydrocarbons from atmospheric CO_2 and renewable hydrogen⁵⁸.

Although the kinetics of CO_2 photoreduction are two-three orders of magnitude slower than hydrogen photoreduction, one advantage of the direct photoreduction of CO_2 compared to hydrogen evolution is the lower energy needed per electron transferred to convert CO_2 to CH_4 or CH_3OH , Additionally, the use of carbon-based solar-derived fuels likely does not need significant investments in infrastructure, unlike solar hydrogen generation and further reactions with CO_2 . The thermodynamics of CO_2 photoreduction are discussed in the following section.

1.5 Thermodynamics and initial steps of CO₂ activation and further conversion

"Activation" refers to the transformation of a relatively inert species (such as CO₂, CH₄) to more reactive forms using some form of energy input and/or an *activating* agent. The activating agent may or may not be regenerated after the process. Because of its significance in steam reforming and methanol production processes, CO₂ activation on the surfaces of metals such as Pt, Fe, Ni etc. has been studied in detail, both through in situ experiments on well defined surfaces⁵⁹ as well as by computational modeling (see for example, Wang et al.⁶⁰, and references therein). Metals belonging to the platinum-group are however either expensive or will be in limited supply in the future. Nevertheless, metals play an important role in industrial catalytic processes where CO₂ is either a reactant or a product. For example: Ni-based supported catalysts are used in CO_2 reforming/steam reforming of methane. The similarities between homogeneous metal complexes of CO₂ and heterogeneous metal-CO₂ surface species have been noted by Gibson in a review⁶¹. As an example, a study by Wovchko and Yates demonstrated the activation of CO_2 by a metal complex ($Rh^{I}(CO)_2$) immobilized on an alumina support⁴¹. Similar studies would lead to the rational design of photocatalysts mediating CO_2 reduction. The surface chemistry of CO_2 on metals and oxide surfaces was reviewed by Freund and Roberts⁶².

 CO_2 is one of the most stable compounds of carbon. Gaseous CO_2 is linear and does not have a dipole moment. However, the oxygen atoms each have a lone pair of electrons and can donate these electrons to surface Lewis acid centers. The carbon atom could also gain electrons from Lewis base centers such as oxide ions, forming carbonatelike species. Additionally, the (C-O) π electrons can also participate in reactions with electron centers. Therefore, reactions of CO₂ involving Lewis acid and base centers and the π orbitals constitute the initial steps of its activation. The simplest reduction products that could be produced from CO₂ reduction are CO and HCOO⁻. One, two, four, six and eight electron reduction potentials (vs.NHE) for CO₂ reduction and H₂O oxidation at pH 7 and 25°C assuming unit activities for all gaseous and aqueous species are given in Scheme **1.1**⁶³

Reactio	n	E_{redox}^0 ,V vs. NHE	
2H⁺+ 2e⁻	$\longrightarrow H_2$	-0.41	
H ₂ O	$\longrightarrow 1/2O_2+2H^++2$	e ⁻ -0.82	
$CO_2 + e^-$	$\longrightarrow CO_2^{\Box}$	-1.90	
$CO_2 + H^+ + 2e^-$	$\longrightarrow \text{HCO}_2^-$	-0.49	
$CO_2 + 2H^+ + 2e^-$	\longrightarrow CO + H ₂ O	-0.53	
$CO_2 + 4H^+ + 4e^-$	\longrightarrow HCHO + H ₂ O	-0.48	
$CO_2 + 6H^+ + 6e^-$	\longrightarrow CH ₃ OH + H ₂ O	-0.38	
$CO_2 + 8H^+ + 8e^-$	$\longrightarrow CH_4 + 2H_2O$	-0.24	

From Scheme 1.1, it is clear that CO_2 photoreduction is not a single-step reaction. Additionally, single electron transfer to CO_2 is highly endergonic, because of the negative adiabatic electron affinity of CO_2^{62} . CO_2 activation involves the formation of a negatively charged $CO_2^{\delta^*}$ species^{62, 64}. The first plausible step in CO_2 photoreduction on TiO₂ surfaces is therefore its activation to form a $CO_2^{\delta^*}$ species. $CO_2^{\bullet^*}(g)$ is a 23 electron radical anion. It is significantly distorted from the linear $D_{\infty h}$ geometry due to the repulsion among the two lone electron pairs on the oxygen atoms and the unpaired electron on the carbon atom. Therefore, the lower the O-C-O bond angle, the higher the charge of the CO_2^{δ} moiety. CO_2^{δ} can be detected via infra red spectroscopy⁶⁵ as well as electron paramagnetic resonance (EPR) spectroscopy⁶⁶.

The initial step in the photocatalytic reduction of CO_2 is the generation of electron-hole pairs upon absorption of photons of energy greater than or equal to the band gap of the photocatalyst. The time scale of this electron-hole recombination is two to three orders of magnitude faster than other electron transfer processes. Therefore, any process that inhibits electron-hole recombination would greatly increase the efficiency and improve the rates of CO_2 photoreduction. The kinetics of CO_2 photoreduction are also dependent upon many other factors such as incident light intensity, fraction of the incident light absorbed by the photocatalyst, the specific surface area of the photocatalyst absorbing the light, etc.. In this chapter, we examined four such factors: (a) the use of titania-supported noble metals, (b) the use of isolated Ti-tetrahedral centers in micro/mesoporous materials, (c) the use of dye-sensitized TiO₂ to shift the absorption spectrum to the visible region and (d) the role of oxygen vacancies in electron trapping and activating CO_2 .

Charge transfer from excited TiO₂ surface to CO_2 is influenced by both bulk and local interactions. Two different approaches for understanding electron transfer to CO_2 are using surface sites and surface states⁶⁷. A surface site is a collection of atoms on the surface that is reactive in some manner. It may be a coordinatively under-saturated metal atom, oxygen vacancy or a combination of various other surface features resulting in a orbital having unusual electron affinity. A surface state is a localized energy level at the surface. The location of the surface state with respect to the Fermi energy (E_F) of the solid determines its occupation. The surface site and surface state approaches to CO_2 photoreduction on TiO_2 will be described in detail in the following sections.

1.6 Surface state description of CO₂ activation on TiO₂

The main questions addressed by a surface state approach are:

- 1. Is electron transfer from the TiO_2 conduction band to CO_2 feasible upon UV illumination?
- 2. How do surface states (created, for example: by metal doping) affect the reactivity towards CO₂ photoreduction?

A knowledge of surface state energy levels for the CO_2/CO_2 couple at the TiO₂ surface is required to determine the feasibility of electron transfer to CO₂ from the conduction band of TiO₂ A methodology to determine the energy levels (of the surface states) at the solid-gas interface has been proposed by Morrison⁶⁸. Accordingly, for the case of a non-interacting redox couple on a solid surface, the location of the standard redox potential in the absolute vacuum scale (AVS) units with respect to the edges of the conduction and valence bands of the solid at the point-of-zero-charge (pzc) determines the potential for electron transfer. Because this chapter concerns the gas-solid photoreduction of CO₂, the relevant states in question are those at the TiO₂-CO₂ in gas-liquid systems to that in gas-solid systems. The location of the energy levels associated with the CO₂/CO₂⁻ redox couple in various media (gaseous, aqueous solutions) are shown in comparison to the location of the conduction band edge of TiO₂ at pzc in Figure 5. The

standard reduction potential of the CO_2/CO_2^{\bullet} redox couple vs. the standard hydrogen electrode (SHE) is ~1.9 V⁶⁹. On the absolute vacuum scale (AVS), this potential is 2.6 V, which corresponds to a redox state with an energy level at -2.6 eV. The main contributions to this energy are the electron affinity of CO_2 (-0.6 eV) and the solvation of CO_2^{\bullet} in water (-3.2 eV). The high free energy of solvation indicates that solvent reorganization energy will be significant. Therefore, a fluctuating energy level mechanism is needed to describe energy levels of CO_2 and CO_2^{\bullet} . Nevertheless, without any specific interaction with the catalyst/electrode surface, it is clear from Figure 1-5 that the reduction of CO_2 on TiO₂ surfaces in aqueous solutions is unlikely because the energy level associated with the CO_2/CO_2^{\bullet} redox couple is higher in energy compared to the conduction band of TiO₂.

$$CO_{2(g)} + e_{(g)}^{-} \longrightarrow CO_{2(g)}^{-} 1.2$$

$$\Delta G = -EA$$

$$CO_{2(g)}^{-} \xrightarrow{Surface} CO_{2(ad)}^{-}$$

$$\Delta G = \Delta G_{ad}^{0}$$

$$CO_{2(g)} + e_{(g)}^{-} \xrightarrow{Surface} CO_{2(ad)}^{-}$$

$$E_{vac, energy}^{0} = \frac{[\Delta G_{ad}^{0}(CO_{2}^{-}) - EA]}{F}$$

In Scheme 1.2, EA is the adiabatic electron affinity of gaseous CO₂ (in kJ/mol) and ΔG_{ad}^{0} is the heat of chemisorption of CO₂[•] on the surface (in kJ/mol). F is the Faraday's constant (the charge of a mole of electrons). The overall free energy change of the reaction is $\Delta G^{0} = [\Delta G_{ad}^{0}(CO_{2}^{\bullet}) - EA]$. In the absolute vacuum scale (AVS), the energy level associated with such a conversion will be $E_{vac,energy}^{0} = \Delta G_{ad}^{0}/F$ (eV). In other

words, the effect of interactions of CO_2 with the surface is to decrease the energy required for CO_2 reduction.

Figure 1-5: Location of the conduction band of TiO_2 (rutile) particles at the point-ofzero charge (pzc) with respect to the standard energy states associated with the $\text{CO}_2/\text{CO}_2^-$ couple. Photoinduced electron transfer from stoichiometric TiO_2 to CO_2 is not possible because the surface state is not lower than the Fermi energy (E_F) of the electrons in photoexcited TiO_2 . The bands are shown at the flat band condition. The exact locations of the Fermi energy levels for electrons and holes (nE_F^{*} and pE_F^{*}) are not to scale.

Compared to the solid-liquid interface, measurement of band edges and surface states at the solid-gas interface is relatively more difficult. The exact location of the CO_2^{-} (surface)/ $CO_{2(g)}$ surface state on TiO₂ is currently not known. One way to estimate this value
is using the an approach analogous to that used by Koppenol⁶⁹. CO_2^{\bullet} adsorption on metal oxide surfaces can be conceptually thought of as the capture of an electron by CO_2 molecule in vacuum/gas-phase forming the anion radical, followed by its adsorption on the metal oxide surface. (In practice, CO_2 adsorbed on a hydrated/hydroxylated metal oxide surface captures a trapped electron either from the defect sites or trapping sites.)

Typical values for the heat of chemisorption of CO₂⁻⁻ on metal surfaces (Ni) are of the order of ~50 of kJ/mol⁶⁰. If the heats of chemisorption CO_2^{\bullet} on TiO₂ surfaces were approximately 100 kJ/mol CO₂, the surface state associated with the CO_2/CO_2^{-1} couple will be lowered approximately 1.3 eV from its gas-phase value, resulting in values of $E_{energy,AVS}^{0}(CO_{2(g)}/CO_{2(ad)})$ of -0.7 eV, which is much more negative than that in aqueous solution. This simplistic analysis is not fully accurate, because the heat of chemisorption (arising out of local interactions of CO_2^{\bullet} with the TiO₂ surface) is comparable to the gas-phase electron affinity of CO₂. Moreover, the electrostatic contribution (due to the Madelung potential of TiO₂) is ignored. To understand this further, one needs to study the exact bonding between CO_2/CO_2^{\bullet} couple and the surface. CO_2 is plausibly bonded to TiO_2 surface differently compared to CO_2^{-} . Therefore, the so called "Frank-Condon splitting" of surface state energy levels also needs to be taken into account, which requires some description of the interaction of CO₂[•] with the surface atoms. One example of this is a recent study by Bonapasta et al.⁷⁰ where the energy levels of neutral and electron-attached states of O₂ adsorbed on (100) anatase TiO₂ surface were calculated using a surface molecule description of adsorbates in combination with periodic density functional theory calculations.

Experimentally, such surface states may be identified by spectroscopic studies of CO_2 adsorbed on well-defined rutile TiO₂ surfaces. Using ultraviolet photoemission spectroscopy (UPS) and metastable impact electron spectroscopy (MIES), Krischok et al.⁷¹ found that CO₂ interacted with rutile TiO₂ single crystals weakly, forming linearly adsorbed species. This is also supported by the results of an ab initio periodic study of CO₂ adsorption on rutile⁷². CO₂ therefore does not form a surface state upon linear adsorption (involving Lewis acid-base interactions) in the ground-electronic state (without irradiation). Irradiation with light of energy greater than the band gap creates electron-hole pairs in TiO₂, with the electrons populating the conduction band. Using the previous analysis, the energy of conduction band electrons in TiO₂ is likely to be lesser than that required for CO₂ reduction to CO₂^{*6-}.

In conclusion, the above analysis indicates that the major factors controlling the surface state energy levels for $\text{CO}_2^{\bullet}_{(ad)}$ are the electron affinity of CO_2 (in the gas phase) and the local interaction of $\text{CO}_2/\text{CO}_2^{\bullet}$ redox couple with the TiO₂ surface. It is clear that a description of the energy levels of $\text{CO}_2/\text{CO}_2^{\bullet}$ couple on TiO₂ surfaces requires a combination of local and collective approaches. Therefore, we describe the surface site model of CO₂ activation on TiO₂ in the next section.

1.7 Surface site description of CO₂ activation on TiO₂

In recent years, knowledge of surface photocatalytic processes has progressed from a surface state approach to a more detailed understanding of specific surface adsorbate structures that are involved in the charge transfer. Nowotny et al. ⁷³ noted this,

using photooxidation of water as an example.. Compared to the understanding of the initial steps of H₂O oxidation on TiO₂ surface, not much is known about the initial steps of CO₂ activation during the photocatalytic reduction. As noted in the earlier section, to better understand the nature of this charge transfer, one also needs to understand local chemistry at surface sites where activated species are formed. CO_2 can be adsorbed as a carbonate and a linear species on TiO₂ surfaces. Various ground-state adsorbate configurations of CO₂ on TiO₂ surfaces have been studied^{72, 74-76}. CO₂ acts as a net donor of electrons when it adsorbs with the oxygen end on Ti Lewis acid sites, and a net acceptor of electrons when the electrophilic C atom interacts with surface electron centers or Lewis basic sites (surface O atoms)⁶². A limiting case of the electrophilic interaction between the C atom of CO₂ and the surface oxygen atoms is the formation of surface carbonate and bicarbonate species. On the other hand, if CO₂ does not interact strongly with TiO₂ in the ground state, the LUMO of adsorbed CO₂ may not be lowered enough to ensure electron transfer from the TiO₂ surface. The primary questions addressed by a surface site approach are:

- 1. Upon illumination of the surface, how does electron transfer from the TiO_2 conduction band to CO_2 occur?
- 2. What specific sites and specific CO_2 configurations on the TiO_2 surface promote this electron transfer? Can these sites be engineered?

The mechanisms proposed for CO_2 photoreduction over TiO_2 or Ti-based catalysts assume that CO_2 gains electrons from the conduction band of TiO_2^{10} . This indicates a strong interaction between CO_2 and the TiO_2 surface. Photoexcitation of TiO_2 produces electron-hole (Ti^{3+} -O⁻) centers in TiO_2 . In the next step, these Ti^{3+} centers are

proposed to interact with CO₂ forming CO₂^{δ *-} species adsorbed on the surface. These carbon dioxide radical anions then undergo further reactions to form C radicals and CH_xO_y end products. Electron transfer from Ti³⁺ surface electron centers to CO₂ requires the presence of suitable unoccupied molecular orbitals on CO₂. Electronic interaction between the surface and CO₂ is necessary for CO₂ to gain electrons. Freund and Roberts⁶² indicate that the lowest unoccupied molecular orbital (LUMO) of CO₂ decreases with the O-C-O bond angle. This variation of the LUMO of CO₂ with the O-C-O bond angle is shown in Figure 1-5.

Figure **1-6**: The variation in the energy of the LUMO of gaseous CO_2 with the O-C-O bond angle, calculated using constrained quantum chemical calculations at the B3LYP/6-31+G(d) level of theory. Decreasing the O-C-O bond angle (via surface interactions) may facilitate charge transfer to CO_2 by lowering its LUMO

One role of the surface might be to interact with CO_2 reducing the bond angle. In the limiting case, this corresponds to the formation of carbonate-like species on the surface. This principle is not limited to CO_2 activation on irradiated metal oxides alone. Similar interactions of CO_2 with the electrocatalyst are supposed to decrease the overpotential for CO_2 reduction⁷⁷ during electrochemical reduction of CO_2 .

Techniques such as Fourier transform infra red (FT-IR) spectroscopy have been used to study CO₂ adsorbed on surface electron centers (Ti³⁺) created due to oxygen vacancies⁷⁴. CO₂ adsorption on reduced TiO₂ surfaces generated IR signals corresponding to $CO_2^{\delta^{\bullet-}}$ species.

In the following section, we will examine the use of these two (surface state, surface site) approaches to understand photoinduced reactivity of Ti-based catalysts towards CO₂

1.8 Utility of surface state and surface site approaches in understanding the elementary reactions involved in CO₂ photoreduction on Ti-based catalysts

1.8.1 Effects of alkali and transition metal doping on CO₂ photoreduction

Some approaches to make the thermodynamics of CO_2 reduction on TiO_2 more favorable are the use of promoters such as potassium (K) or through impregnation with noble metals. Alkali promotion of CO_2 activation on TiO_2 has been well studied³³. The added alkali atom donates an electron to CO_2 , forming CO_2^{\bullet} species. This reacts with the surface oxygen to form a surface carbonate species. Such promoters are stoichiometrically consumed upon charge transfer to CO_2 because they usually cannot be regenerated (photo)catalytically in an environment containing water vapor and oxygen. On the other hand, the modification of TiO_2 surface with metals such as Pt, Rh etc. may affect both the thermodynamics as well as kinetics of CO_2 activation and further conversion.

In a study of photoinduced CO_2 dissociation on titania-supported noble metals, the activity towards CO₂ dissociation correlated with the work function of the polycrystalline metal for titania-supported Pt, Rh and Ir/TiO₂⁷⁶. The following mechanism was proposed to account for photoinduced CO2 activation on titaniasupported noble metal catalysts: Chemisorption of CO_2 on polycrystalline metal islands results in a bent $CO_2^{\delta^{-}}$ species formed by back donation between the metal d-orbitals and the (C-O) π^* orbitals. This electron transfer results in the "depopulation" of the metal surface state. Photogenerated electrons generated upon band gap illumination would be transferred from the conduction band of TiO₂ to the metal island (because the work function of these metals is higher than that of reduced TiO₂). Therefore, illumination of TiO₂-supported noble metal catalysts in a CO₂ atmosphere increased the intensity of signals corresponding to CO_2^{δ} species. We note that such *activation* reactions require a concomitant oxidation reaction to be photocatalytic. Additionally, the study by Raskó⁷⁶ demonstrates that an understanding of both surface states as well as surface sites is needed to understand CO₂ activation on such TiO₂-supported metal photocatalysts. The case of Rh/TiO₂ is especially interesting, from a catalytic viewpoint if not from a practical perspective, rhodium being one of the most expensive metals in the world currently.

Recently, CO oxidation on gold clusters supported on TiO₂ has been studied extensively, both by experimental⁷⁸ and modeling^{79, 80} studies. We note that CO oxidation also involves the formation of a $CO_2^{\delta^*}$ intermediate. Therefore, a good CO oxidation catalyst may also promote CO_2 activation. Most studies have been performed on metallic clusters of gold on TiO₂. In these cases, density functional theory (DFT) calculations have shown that the binding strength of low-coordinated Au clusters with gaseous CO is a crucial parameter in the oxidation of CO^{81} . Moreover, promotion effects may also contribute to the observed low temperature oxidation of CO to CO_2 in the presence of gaseous oxygen. In contrast, a Mars-van Krevelen mechanism was proposed by Chrétien and Metiu⁸² to account for the activity of gold doped TiO₂, where the gold atom is positively charged and substitutes a five coordinate Ti atom on the rutile (110) surface.

In addition to activating CO₂, noble metal impregnation may also decrease the photogenerated electron-hole recombination rates, leading to higher product yields. Using femtosecond time resolved measurements of the intensity dependence of electron hole recombination in TiO₂ nanoclusters, Colombo et al.⁸³ found that more than half of the conduction band electrons underwent recombination within 20 picoseconds (ps). The remaining electrons were trapped at surface sites resulting in a longer lived species. Therefore, from an overall system perspective, the greatest gain in efficiency in CO₂ photoreduction may result by slowing down the rates of electron-hole recombination. Using surface photovoltage spectroscopy (SPS) measurements on Pd and Pd/RuO₂ doped TiO₂, Wang et al.⁸⁴ showed that the rates of CO₂ photoreduction to formate in aqueous solutions correlated with the surface photovoltage measured in air. Two pertinent conclusions could be drawn from their study. Firstly, surface modification of TiO₂ with

noble metals could lead to the formation of surface states, increasing the photogenerated electron-hole pair lifetimes. Secondly, the fact that photovoltages observed in air correlated with the yields in aqueous solutions indicates that electron-hole pair separation appears to be the primary control over the reactivity.

1.8.2 Visible light performance of dye-sensitized TiO₂ catalysts mediating CO₂ photoreduction

Another means to decrease electron-hole recombination rates and use higher wavelengths of the solar spectrum is the dye-sensitization of TiO₂. Closely related to this is the dye sensitized solar cell (DSSC), (see McConnell⁸⁵ and references therein for details about operation and comparisons). Briefly, the DSSC is a solar electric device where the light absorption and charge transport are physically separated. The organometallic dye attached to porous TiO₂ absorbs sunlight, and injects electrons into the conduction band of TiO₂, which flow through an external circuit, creating electricity. The oxidized dye is reduced by a mediator that in turn, is reduced at the metallic cathode of the solar cell. This concept has been applied to the photosensitization of TiO₂ anodes in photoelectrochemical (PEC) cells. A brief description of the operation of a dyesensitized photoanode is provided by Bak et al.⁸⁶. However, in the case of dye-sensitized TiO₂ used for photocatalytic CO₂ reduction applications^{46, 50}, it is less clear how the oxidized dye would be regenerated when the photoelectrochemical cell is short-circuited and no defined pathway for electron transport exists. Sacrificial photooxidation of the dye or other reagents probably occurs unless the oxidized state of dye has a surface state level $(Dye_{(surf)}^{+}/Dye_{(surf)})$ lower than that for water oxidation $(O_{2(surf)}/H_2O_{(surf)})$.

Nevertheless, Nguyen et al.⁵⁰ found substantial improvements in the photoactivity of (Cu,Fe)-TiO₂ photocatalysts towards CO₂ photoreduction in the presence of water and concentrated sunlight in an optical fiber photoreactor (OFPR). The higher activity was attributed to full visible light absorption, whereas TiO₂ only absorbs a fraction of the radiation above 400 nm. Only CH₄ was produced under sunlight, and the photocatalyst was reported to be stable for 6h. Whereas dye-sensitization of TiO₂ enables the use of visible light, we note that future studies should consider ¹³CO₂-isotope testing to ensure that the reduced C-products are due to CO₂ reduction, and not the sacrificial oxidation of the dye.

To summarize, both metal doping as well as dye-sensitization reduce the rates of electron-hole recombination, but the mechanisms involved are different. In the case of metal-doped TiO_2 , the electrons are transferred from the conduction band of TiO_2 to the metal, whereas on a dye-sensitized photocatalyst, the dye injects electrons into the conduction band of TiO_2 .

1.8.3 Isolated Ti-species acting as active sites for CO₂ photoreduction in micro/mesoporous materials

As discussed in Table **1-1**, isolated tetrahedral Ti⁺⁴ species in zeolites or mesoporous sieves were used as catalysts by Anpo and coworkers^{13,37,38,39} as well as Frei and coworkers^{14, 15}. The location of the Ti atoms in mesoporous silica depend on the synthetic technique used⁸⁷. Framework Ti-substituted MCM-41 is prepared when the Ti precursors are included in the MCM-41 synthesis gel (Lin et al.¹⁵). On the other hand, Ti-grafted MCM-41 is prepared by post-synthesis grafting (e.g., Lin and Frei¹⁶). In such Ti-

grafted MCM-41, the Ti atoms are located at the surface of the silicate wall and are not a part of the framework. They are therefore more accessible to reactants. However, this might also make them more susceptible to leaching in aqueous solutions. Moreover, depending on the titanium content, a variety of configurations for Ti species is possible⁸⁸.

Using in situ X-ray fluorescence spectroscopy (XAFS) studies to probe the local environment around an isolated Ti atom, Yamashita et al.⁴⁰ studied the effects of the hydrophobic-hydrophilic properties of Ti- β zeolites in the photocatalytic reduction of CO_2 with H₂O. Adsorption of CO_2 did not change the XANES spectra of Ti- β zeolite catalysts. On the other hand, the addition of water increased the coordination number of Ti atom from 4 to 6. Therefore, in the ground state, H₂O interacted more strongly with Ti- β zeolites compared to CO₂. In situ photoluminescence (PL) spectroscopy measurements on irradiated Ti- β zeolites indicated that the lifetime of the charge transfer excited state decreased in the presence of CO₂ and/or H₂O molecules. Therefore, while CO_2 interacted with the excited state of the Ti- β zeolite, water interacted with the Ticenters in both excited and ground electronic states. Additionally, using in situ FT-IR spectroscopy to study the initial steps of CO₂ photoreduction with methanol as a sacrificial oxidant in a Ti silicalite molecular sieve, Ulagappan and Frei⁸⁹ recorded the formation of formic acid as the primary electron transfer product. They proposed that the initial step in this reaction involved electron transfer from the photoexcited LMCT state of the catalyst to CO_2 concurrent with methanol oxidation to form CO_2^- and CH_3OH^+ species which react further to produce formic acid and formaldehyde.

Although the above isolated tetrahedral Ti-centers in zeolites/mesoporous materials are active towards CO_2 photoreduction, the absorption of these materials lies in

the deep-UV (UV-C) region of the electromagnetic spectrum. To activate CO₂ using visible light, Frei's research group demonstrated metal-metal charge transfer (MMCT), involving two different metal ions grafted in a mesoporous material¹⁶. Examples include Ti-O-Cu(I) and Ti-O-Sn(II) as well as Zr-O-Cu(I) grafted in Mobil crystalline material (MCM)-41 molecular sieve. Irradiation of the binuclear Zr-O-Cu(I)/MCM-41 catalyst under a CO₂ atmosphere resulted in the growth of IR signals corresponding to CO and H₂O⁹⁰. Only Zr-O-Cu(I) complexes showed CO formation. CO₂ dissociation was not observed on Ti-O-Cu(I) complexes. Lin and Frei attributed this to the higher reducing power of the Zr³⁺ transient ion. Similar studies using various other redox couples (ex: Ti⁴⁺/Fe²⁺, Ti⁴⁺/Mn²⁺) could reveal visible light-absorbing catalysts active towards CO₂ photoreduction.

Although the primary charge transfer mechanism in isolated-Ti species is localized, overall reactivity is also affected by the bulk properties. For example, Yamashita et al. ³⁷ attributed higher C₁ photoproduct yields using Ti-MCM-48 compared to Ti-MCM-41 or TS-1 to the larger pore size and the three-dimensional channel structure of the MCM-48 catalyst. Additionally, electrostatic fields in the zeolite/mesoporous material could stabilize the CO_2^{\bullet} radical ion and thereby affect the product yield and selectivities.⁹¹

1.8.4 Effect of oxygen vacancies created by cation doping or thermal treatment of TiO₂ on the activity towards CO₂

 CO_2 does not interact with stoichiometric rutile TiO_2 surfaces. The band gaps of rutile and anatase are not widely different; therefore, this might also be expected to apply

to anatase TiO_2 . Defects such as oxygen vacancies control most of the chemistry at many metal oxide surfaces. These defects could be created either by doping TiO_2 with other anions or cations or by thermal treatments of stoichiometric TiO_2 .

One example of this defect creation due to thermal treatments is the work of Yamashita et al.⁵², who studied the photoreduction of CO_2 with H₂O on rutile TiO₂ (100) and TiO_2 (110) single crystals. Structure-dependent reactivity was observed, with the TiO_2 (100) surface being more active towards CO_2 photoreduction compared to the TiO_2 (110) surface. Yamashita et al.⁵² explained this by stating that the Ti:O atomic ratio on the (100) surface was greater than the (110) surface. A pretreatment procedure involving degassing at 725 K, followed by a 4h reoxidation in O₂ at 725 K, followed by subsequent catalyst degassing at 725 K for 4h at $\sim 10^{-6}$ Torr was used in the study. We note that this pretreatment procedure might create oxygen vacancies on the TiO₂ surface. For example: Thompson et al.⁹² note that surface oxygen vacancies could be created with annealing temperatures as low as 600 K with rutile TiO₂ under ultra-high vacuum (UHV) conditions. Additionally, stoichiometric reactions between CO2 and water on oxygendeficient rutile surfaces to yield reduced C_1 - C_2 products are well known in the literature⁹³. In such cases, in situ surface characterization of the catalyst under light irradiation would provide information on the oxidation state of the surface, because the surface-Ti⁴⁺ and Ti³⁺ can be differentiated using XPS 2p core-level spectra⁹⁴.

In addition to creating oxygen vacancies, transition metal doping of TiO_2 also may create specific surface structures affecting the CO_2 photoreduction activity. Tseng et al.⁴³ and Wu et al.⁹⁵ found that Cu(I) doped TiO_2 promoted the formation of CH₃OH compared to undoped TiO_2 . Pathak et al.⁴⁵ also observed selectivity for CH₃OH formation over HCOOH using Ag-coated nanoscale TiO_2 immobilized in Nafion ionomer membranes. Apart from influencing the electron-hole recombination rates (as noted in the discussion on surface states) and affecting product specificity and yields, transition metal doping of TiO_2 also results in red-shifting of the absorption spectrum of TiO_2 . This apparent bandgap-narrowing is attributed to transitions from localized surface states above the conduction band of TiO_2 and not due to bulk band-gap modification⁹⁶.

1.8.5 Discussion

One of the major factors limiting CO_2 photoreduction is the electron-hole recombination in semiconducting materials under band-gap illumination. The use of isolated Ti-species partly resolves this issue, but most Ti-O LMCT transitions occur at UV-C wavelengths (~ 270 nm). Both local as well as bulk factors influence the activity of catalysts mediating CO_2 photoreduction. For example: cation doping of TiO₂ not only creates oxygen vacancies, but also creates localized intra-bandgap states which contribute to charge transfer transitions by absorbing light wavelengths below the bandgap.

Both *collective* and *local* approaches are required to understand such lightinduced electron transfer reactions. The collective, surface state approach indicates that pure TiO₂ is likely to be a poor photocatalyst for CO₂ activation. On the other hand, localized surface sites such as oxygen vacancies have been implicated in CO₂ activation.Using the surface state and surface site approaches, we have shown that both bulk and local variables affect the photoreduction of CO₂. Fundamental understanding of the initial steps of CO₂ activation on TiO₂ surfaces and a detailed knowledge of how these bulk and local phenomena affect photoreactivity is required to design better catalysts.

1.9 Challenges for CO₂ photoreduction on Ti-based catalysts

As discussed in the earlier sections, significant improvements in the quantum yields and selectivities of Ti-based catalysts is required to bring CO_2 photoreduction using these materials closer to commercialization. Materials not based on Ti have been used to mediate CO_2 photoreduction. For example, metal chalcogenides (CdS, CdSe, ZnS) and other metal oxides (ZnO, MgO) have also been used as photocatalysts (see Usubharatana et al.¹⁰ and references therein). In most cases, the improvements in efficiency are incremental at best. On the other hand, higher quantum efficiencies are possible with homogeneous metal complexes, but a sacrificial reagent is often required to regenerate the photosensitizer³⁵. Breakthroughs in related fields such as solar-electric conversion, solar production of hydrogen using water and catalytic CO_2 activation will enable the further development of this field.

Essentially, the main challenges for CO_2 photoreduction using Ti-based catalysts involve finding suitable photosensitizers that can absorb visible light to produce electronhole pairs and transfer the electrons to CO_2 with minimal losses. Additionally, the photosensitizer has to be regenerated with a relatively inexpensive reductant such as water. Choi et al.⁹⁷ noted that interfacial electron/hole transfer involves charged pair generation, followed "trapping" of the charged particles, their subsequent release and migration to the surface prior to the transfer. Electron-hole recombination occurs parallel to the interfacial charge transfer, at all stages of this process. As pointed out in a report on solar energy utilization⁹⁸, potential breakthroughs in CO_2 photoreduction can result from significantly increasing the lifetime of the charge-separated state, designing materials that can work under visible light, catalyzing proton-coupled multi-electron transfer to CO_2 . This requires a combination of experimental and computational studies.

1.10 Conclusions

In this chapter we provided a review of the mechanistic aspects of CO_2 photoreduction using TiO₂-based metal oxides or Ti-species in micro/mesoporous materials. CO_2 utilization has a significant role in mitigating CO_2 emissions, especially in comparison to other means of CO_2 abatement. The conversion of CO_2 to fuels using solar energy is one of the "grand challenges" for a variety of scientific disciplines. Significantly increased specific rates (~tens of millimoles CO_2 converted/g-TiO₂/h) under visible light irradiation are required to make this process economically feasible. Paradigm shifts in TiO₂ photocatalysis such as the use of bimetallic redox species in mesoporous materials, novel reactor design configurations (OFPR), the use of catalysts absorbing visible radiation, decreasing electron-hole recombination rates, surface modifications via doping or other chemical treatments, will continue to be required to drive innovation in this field.

1.11 References

1. Xu, X.; Moulijn, J. A., Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products. *Energy & Fuels* **1996**, 10, (2), 305-325.

2. Song, C. S., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. *Catalysis Today* **2006**, 115, (1-4), 2-32.

3. Sakakura, T.; Choi, J. C.; Yasuda, H., Transformation of Carbon Dioxide. *Chem. Rev.* **2007**, 107, (6), 2365-2387.

4. Aresta, M.; Dibenedetto, A., Utilisation of CO2 as a chemical feedstock: opportunities and challenges. *Dalton Transactions* **2007**, (28), 2975-2992.

5. Mazzotti, M.; Abanades, J. C.; Allam, R.; Lackner, K. S.; Meunier, F.; Rubin, E.; Sanchez, J. C.; Yogo, K.; Zevenhoven, R., Mineral Carbonation and Industrial Uses of Carbon dioxide. In *IPCC 2005: IPCC Special Report on Carbon dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change.*, Metz, B.; Davidson, O.; de Coninck, H. C.; Loos, M.; Meyer, L. A., Eds. Cambridge University Press: Cambridge, United Kingdom and New York, USA, 2005; p 333.

6. Herzog, H. J.; Drake, E. M., Carbon dioxide recovery and disposal from large energy systems. *Annual Review of Energy and the Environment* **1996**, 21, (1), 145-166.

7. McKinsey&Company, Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost? (<u>http://www.mckinsey.com/clientservice/ccsi/pdf/US_ghg_final_report.pdf</u>), accessed 11/24/2008.

8. Aresta, M.; Dibenedetto, A., The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. *Catalysis Today* **2004**, 98, (4), 455.

9. Aresta, M.; Quaranta, E.; Tommasi, I., Utilization of carbon dioxide: a strategy for the control of its level in the atmosphere. The role of the photoconversion technology. *Photochem. Convers. Storage Sol. Energy, Proc. Int. Conf., 8th* **1991**, 517-50.

10. Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P., Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. *Industrial & Engineering Chemistry Research* **2006**, 45, (8), 2558-2568.

11. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. *Catalysis Today* **1998**, 44, (1-4), 327-332.

12. Zhang, S. G.; Fujii, Y.; Yamashita, K.; Koyano, K.; Tatsumi, T.; Anpo, M., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. *Chemistry Letters* **1997**, (7), 659-660.

13. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. *Journal of Physical Chemistry B* **1997**, 101, (14), 2632-2636.

14. Lin, W.; Frei, H., Photoactivation of Ti centers in mesoporous silicate sieve under visible and UV light. *Studies in Surface Science and Catalysis* **2004**, 153, (Carbon Dioxide Utilization for Global Sustainability), 283-288.

15. Lin, W. Y.; Han, H. X.; Frei, H., CO2 splitting by H2O to CO and O-2 under UV light in TiMCM-41 silicate sieve. *Journal of Physical Chemistry B* **2004**, 108, (47), 18269-18273.

16. Lin, W.; Frei, H., Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve. *Comptes Rendus Chimie* **2006**, 9, 207-213.

17. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. *Progress in Solid State Chemistry* **2004**, 32, (1-2), 33-177.

18. Xu, Y.; Schoonen, M. A. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. *American Mineralogist* **2000**, 85, (3-4), 543-556.

19. Diebold, U., The surface science of titanium dioxide. *Surface Science Reports* **2003**, 48, (5-8), 53-229.

20. Gong, X.-Q.; Selloni, A.; Batzill, M.; Diebold, U., Steps on anatase TiO2(101). *Nature Materials* **2006**, *5*, (8), 665.

21. Gong, X. Q.; Selloni, A.; Dulub, O.; Jacobson, P.; Diebold, U., Small au and pt clusters at the anatase TiO2(101) surface: Behavior at terraces, steps, and surface oxygen vacancies. *Journal Of The American Chemical Society* **2008**, 130, 370-381.

22. Gong, X. Q.; Selloni, A.; Vittadini, A., Density functional theory study of formic acid adsorption on anatase TiO2(001): Geometries, energetics, and effects of coverage, hydration, and reconstruction. *Journal of Physical Chemistry B* **2006**, 110, (6), 2804-2811.

23. Gong, X. Q.; Selloni, A., Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface. *Journal of Physical Chemistry B* **2005**, 109, (42), 19560-19562.

24. Diebold, U.; Ruzycki, N.; Herman, G. S.; Selloni, A., One step towards bridging the materials gap: surface studies of TiO2 anatase. *Catalysis Today* **2003**, 85, 93-100.

25. Ruzycki, N.; Herman, G. S.; Boatner, L. A.; Diebold, U., Scanning tunneling microscopy study of the anatase (100) surface. *Surface Science* **2003**, 529, L239-L244.

26. Lazzeri, M.; Selloni, A., Stress-driven reconstruction of an oxide surface: The anatase TiO2(001)-(1x4) surface. *Physical Review Letters* **2001**, 87, (26).

27. Liang, Y.; Gan, S. P.; Chambers, S. A.; Altman, E. I., Surface structure of anatase TiO2(001): Reconstruction, atomic steps, and domains. *Physical Review B* **2001**, 63, (23).

28. Hengerer, R.; Bolliger, B.; Erbudak, M.; Gratzel, M., Structure and stability of the anatase TiO2 (101) and (001) surfaces. *Surface Science* **2000**, 460, (1-3), 162-169.

29. Gopel, W.; Rocker, G.; Feierabend, R., Intrinsic defects of titanium dioxide(110): Interaction with chemisorbed oxygen, hydrogen, carbon monoxide, and carbon dioxide. *Physical Review B: Condensed Matter and Materials Physics* **1983**, 28, (6), 3427-38.

30. Nerlov, J.; Christensen, S. V.; Weichel, S.; Pedersen, E. H.; Moller, P. J., A photoemission study of the coadsorption of CO2 and Na on TiO2(110)-(1x1) and -(1x2) surfaces: Adsorption geometry and reactivity. *Surface Science* **1997**, 371, (2-3), 321-336.

31. Gutiérrez-Sosa, A.; Walsh, J. F.; Lindsay, R.; Wincott, P. L.; Thornton, G., Carbonate co-adsorption geometry on TiO2(110)1×1-Na. *Surface Science* **1999**, 433-435, 538.

32. Krischok, S.; Höfft, O.; Kempter, V., The chemisorption of H2O and CO2 on TiO2 surfaces: studies with MIES and UPS (HeI/II). *Surface Science* **2002**, 507-510, 69.

33. Brause, M.; Kempter, V., CO2 chemisorption on alkalated $TiO2(1 \ 0 \ 0)$ -(1×3) studied with MIES and UPS(HeI). *Surface Science* **2001**, 476, (1-2), 78.

34. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature (London, United Kingdom)* **1979**, 277, (5698), 637-8.

35. Fujita, E., Photochemical carbon dioxide reduction with metal complexes. *Coordination Chemistry Reviews* **1999**, 186, 373-384.

36. Anpo, M.; Yamashita, H., Photocatalytic Reductions - Photocatalytic Reduction of Carbon Dioxide with Water and Hydrogenation of Unsaturated Hydrocarbons with Water. In *Hetergeneous Photocatalysis*, Schiavello, M., Ed. John Wiley & Sons: Chichester, UK, 1997; p 136.

37. Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M., Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. *Catalysis Today* **1998**, 45, (1-4), 221.

38. Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T., Photocatalytic Reduction of CO2 with H2O on Ti-Beta Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties. *J. Phys. Chem. B* **2001**, 105, (35), 8350-8355.

39. Ikeue, K.; Nozaki, S.; Ogawa, M.; Anpo, M., Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts. *Catalysis Letters* **2002**, 80, (3), 111.

40. Yamashita, H.; Ikeue, K.; Takewaki, T.; Anpo, M., In situ XAFS Studies on the Effects of the Hydrophobic–Hydrophilic Properties of Ti-Beta Zeolites in the Photocatalytic Reduction of CO2 with H2O. *Topics in Catalysis* **2002**, 18, (1), 95.

41. Wovchko, E. A.; Yates, J. T., Jr., Photochemical Activation of CO2 on RhI(CO)2/Al2O3-CO2 Dissociation and Oxygen Atom Exchange. *Journal of the American Chemical Society* **1998**, 120, (30), 7544-7550.

42. Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H.; Ehara, S.; Kikui, K.; Palmisano, L.; Sclafani, A.; Schiavello, M.; Fox, M. A., Photocatalytic Reduction of Co2 With H20 on tiO2 and Cu/TiO2 Catalysts. *Research on Chemical Intermediates* **1994**, 20, 815.

43. Tseng, I. H.; Chang, W.-C.; Wu, J. C. S., Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. *Applied Catalysis, B: Environmental* **2002**, 37, (1), 37-48.

44. Wu, J. C. S.; Lin, H.-M.; Lai, C.-L., Photo reduction of CO2 to methanol using optical-fiber photoreactor. *Applied Catalysis A: General* **2005**, 296, (2), 194.

45. Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y.-P., Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. *Green Chemistry* **2005**, *7*, (9), 667-670.

46. Ozcan, O.; Yukruk, F.; Akkaya, E.; Uner, D., Dye sensitized CO2 reduction over pure and platinized TiO2. *Topics in Catalysis* **2007**, 44, (4), 523.

47. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. *Solar Energy Materials & Solar Cells* **2007**, 91, (19), 1765-1774.

48. Nguyen, T.-V.; Wu, J. C. S., Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier. *Applied Catalysis, A: General* **2008**, 335, (1), 112-120.

49. Nguyen, T.-V.; Wu, J. C. S., Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. *Solar Energy Materials & Solar Cells* **2008**, 92, (8), 864-872.

50. Nguyen, T.-V.; Wu, J. C. S.; Chiou, C.-H., Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. *Catalysis Communications* **2008**, 9, (10), 2073-2076.

51. Li, G.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A., Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photooxidation and photoreduction applications. *Journal of Catalysis* **2008**, 253, (1), 105-110.

52. Yamashita, H.; Kamada, N.; He, H.; Tanaka, K.; Ehara, S.; Anpo, M., Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single-crystals under uv-irradiation. *Chemistry Letters* **1994**, (5), 855-858.

53. Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. *Journal of Photochemistry and Photobiology A: Chemistry* **1998**, 115, (3), 223.

54. Kaneco, S.; Kurimoto, H.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. *Energy* **1999**, 24, (1), 21.

55. Nguyen, T.-V.; Wu, J. C. S., Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. *Solar Energy Materials and Solar Cells* **2008**, 92, (8), 864.

56. Tseng, I. H.; Wu, J. C. S., Chemical states of metal-loaded titania in the photoreduction of CO2. *Catalysis Today* **2004**, 97, (2-3), 113-119.

57. MCI, Mitsui Chemicals to Establish a Pilot Facility to Study a Methanol Synthesis Process from CO2 (<u>http://www.mitsuichem.com/release/2008/080825e.htm</u>), accessed 01/09/2008.

58. Zeman, F. S.; Keith, D. W., Carbon neutral hydrocarbons. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **2008**.

59. Solymosi, F., The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. *Journal of Molecular Catalysis* **1991**, 65, (3), 337.

60. Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J., Chemisorption of CO2 on nickel surfaces. *Journal Of Physical Chemistry B* **2005**, 109, (40), 18956-18963.

61. Gibson, D. H., Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? *Coordination Chemistry Reviews* **1999**, 185-186, 335-355.

62. Freund, H. J.; Roberts, M. W., Surface chemistry of carbon dioxide. *Surface Science Reports* **1996**, 25, (8), 227-273.

63. Keene, R. F., Thermodynamic, Kinetic, and Product Considerations in Carbon Dioxide Reactivity. In *Electrochemical and Electrocatalytic Reactions of Carbon Dioxide*, Sullivan, B. P.; Krist, K.; Guard, H. E., Eds. Elsevier Science: 1993; pp 1-17.

64. Rasko, J.; Solymosi, F., Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. *Journal of Physical Chemistry* **1994**, 98, (29), 7147-7152.

65. Hartman, K. O.; Hisatsune, I. C., Infrared spectrum of carbon dioxide anion radical. *Journal of Chemical Physics* **1966**, 44, (5), 1913-18.

66. Perissinotti, L. L.; Brusa, M. A.; Grela, M. A., Yield of carboxyl anion radicals in the photocatalytic degradation of formate over TiO2 particles. *Langmuir* **2001**, 17, (26), 8422-8427.

67. Morrison, R. S., The Chemical Physics of Surfaces. 1990, pp 1-3.

68. Morrison, R. S., The Chemical Physics of Surfaces. 1990, pp 329-331.

69. Koppenol, W. H.; Rush, J. D., Reduction potential of the CO2/CO2.- couple - a comparison with other C1 radicals. *Journal of Physical Chemistry* **1987**, 91, (16), 4429-4430.

70. Bonapasta, A. A.; Filippone, F., Photocatalytic reduction of oxygen molecules at the (100) TiO2 anatase surface. *Surface Science* **2005**, 577, (1), 59-68.

71. Krischok, S.; Hofft, O.; Kempter, V., The chemisorption of H2O and CO2 on TiO2 surfaces. Studies with MIES and UPS (HeI/II). *Surface Science* **2002**, 507-510, 69-73.

72. Markovits, A.; Fahmi, A.; Minot, C., A theoretical study of CO2 adsorption on TiO2. *Theochem-Journal of Molecular Structure* **1996**, 371, 219-235.

73. Nowotny, J.; Bak, T.; Nowotny, M. K.; Sheppard, L. R., Titanium dioxide for solar-hydrogen IV. Collective and local factors in photoreactivity. *International Journal of Hydrogen Energy* **2007**, 32, (14), 2651-2659.

74. Busca, G.; Lorenzelli, V., Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. *Materials Chemistry* **1982**, 7, (1), 89-126.

75. Ramis, G.; Busca, G.; Lorenzelli, V., Low-temperature carbon dioxide adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. *Materials Chemistry and Physics* **1991**, 29, (1-4), 425-35.

76. Rasko, J., FTIR study of the photoinduced dissociation of CO2 on titaniasupported noble metals. *Catalysis Letters* **1998**, **5**6, (1), 11-15.

77. Schmidt, M., The thermodynamics of CO_2 conversion. In *Carbon dioxide chemistry: Environmental issues*, Paul, J. P., Claire-Marie, Ed. The Royal Society of Chemistry: Cambridge, 1994; pp 22-30.

78. Chen, M. S.; Goodman, D. W., Interaction of Au with titania: the role of reduced Ti. *Topics in Catalysis* **2007**, 44, (1-2), 41-47.

79. Pala, R. G. S.; Liu, F., Nature of reactive O[sub 2] and slow CO[sub 2] evolution kinetics in CO oxidation by TiO[sub 2] supported Au cluster. *The Journal of Chemical Physics* **2006**, 125, (14), 144714.

80. Raj Ganesh, S. P.; Feng, L., Nature of reactive O[sub 2] and slow CO[sub 2] evolution kinetics in CO oxidation by TiO[sub 2] supported Au cluster. *The Journal of Chemical Physics* **2006**, 125, (14), 144714.

81. Remediakis, I. N.; Lopez, N.; Nørskov, J. K., CO Oxidation on Rutile-Supported Au Nanoparticles13. *Angewandte Chemie International Edition* **2005**, 44, (12), 1824-1826.

82. Chrétien, S.; Metiu, H., Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis. *Catalysis Letters* **2006**, 107, (3), 143.

83. Colombo, D. P., Jr.; Bowman, R. M., Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A Femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles. *Journal of Physical Chemistry* **1996**, 100, (47), 18445-18449.

84. Xie, T.-f.; Wang, D.-j.; Zhu, L.-j.; Li, T.-j.; Xu, Y.-j., Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2. *Materials Chemistry and Physics* **2001**, 70, (1), 103.

85. McConnell, R. D., Assessment of the dye-sensitized solar cell. *Renewable and Sustainable Energy Reviews* **2002**, 6, (3), 271.

86. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. *International Journal of Hydrogen Energy* **2002**, 27, (10), 991.

87. Chen, L. Y.; Chuah, G. K.; Jaenicke, S., Ti-containing MCM-41 catalysts for liquid phase oxidation of cyclohexene with aqueous H2O2 and tert-butyl hydroperoxide. *Catalysis Letters* **1998**, 50, (1-2), 107-114.

88. Yuan, Q.; Hagen, A.; Roessner, F., An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis. *Applied Catalysis A: General* **2006**, 303, (1), 81.

89. Ulagappan, N.; Frei, H., Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. *Journal of Physical Chemistry A* **2000**, 104, (33), 7834-7839.

90. Lin, W. Y.; Frei, H., Photochemical CO2 splitting by metal-to-metal chargetransfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. *Journal of The American Chemical Society* **2005**, 127, (6), 1610-1611.

91. Sogabe, K.; Hasegawa, A.; Yamada, Y.; Miura, M., Electron spin resonance studies of the carbon dioxide anion radical absorbed on X-type zeolites. *Bulletin of the Chemical Society of Japan* **1972**, 45, (11), 3362-6.

92. Thompson, T. L.; Diwald, O.; Yates, J. T., Jr., CO2 as a Probe for Monitoring the Surface Defects on TiO2(110)-Temperature-Programmed Desorption. *Journal of Physical Chemistry B* **2003**, 107, (42), 11700-11704.

93. Wilson, J. N.; Senanayake, S. D.; Idriss, H., Carbon coupling on titanium oxide with surface defects. *Surface Science* **2004**, 562, (1-3), L231-L237.

94. Kumar, P. M.; Badrinarayanan, S.; Sastry, M., Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. *Thin Solid Films* **2000**, 358, (1-2), 122.

95. Wu, J. C. S.; Lin, H.-M., Photoreduction of CO2 to methanol via TiO2 photocatalyst. *International Journal of Photoenergy* **2005**, *7*, (3), 115-119.

96. Serpone, N., Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? *The Journal of Physical Chemistry B* **2006**, 110, (48), 24287-24293. 97. Choi, W. Y.; Termin, A.; Hoffmann, M. R., The Role Of Metal-Ion Dopants In Quantum-Sized TiO2 - Correlation Between Photoreactivity And Charge-Carrier Recombination Dynamics. *Journal of Physical Chemistry* 1994, 98, (51), 13669-13679.
98. Lewis, N.; Crabtree, G., Report on the Basic Energy Sciences Workshop on Solar Energy Utilization (http://www.sc.doe.gov/bes/reports/files/SEU_rpt_print.pdf), accessed 11/30/2008.

Chapter 2

Quantum Chemical Modeling of Ground States of CO₂ Chemisorbed on Anatase (001), (101) and (010) TiO₂ Surfaces

2.1 Introductory Comment

"We are reaching the stage where the problems we must solve are going to become insoluble without computers. I do not fear computers. I fear the lack of them."

- Issac Asimov

The previous chapter discussed some challenges to developing better CO_2 photoreduction catalysts. Breakthroughs in solar photoconversion of CO_2 to fuels require a combination of computational and experimental studies. In this and the following three chapters, results using computational modeling of CO_2 interactions with anatase TiO_2 surfaces are presented. Whereas both local and bulk factors affect the photocatalytic activity towards CO_2 photoreduction, the primary charge transfer event likely involves chemisorbed CO_2 species. Using a surface site approach, the ground states of CO_2 are modeled using density functional theory calculations in this chapter. Modeling the ground states is important, because understanding excited states of CO_2 on TiO_2 surfaces requires a comprehensive knowledge of the surface adsorption complexes formed by CO_2 .

2.2 Abstract

To design efficient CO_2 photoreduction catalysts, we need to understand the intermediates and energetics of various reactions involved in the photoreduction of CO_2 in greater detail. As a first step in this process, the ground states of CO_2 chemisorbed on small clusters from various anatase surface planes are modeled in this study. We show that large basis sets with diffuse functions and high levels of electron correlation are needed to model the electron attached states of CO_2 , which may play a role in its photoreduction. Density functional theory (DFT) calculations of CO_2 adsorbed on small TiO₂ clusters (Ti₂O₉H₁₀) extracted from the (010), (001) and (101) surface plane structures point to the formation of different adsorbed species depending on crystal face atomic structure. The calculated infrared (IR) spectral properties of these species are compared against experimental data. We find favorable agreement for the existence of three different surface complexes. The formation of different surface species correlates well with the acid-base strength of the coordinatively unsaturated atoms. The implications of carbonate formation for CO_2 photoreduction are discussed.

2.3 Introduction

The interaction of small molecules such as CO_2 on titania (TiO₂) surfaces plays a significant role in chemical processes. For example, TiO₂ is used as a support for catalysts reducing nitrogen oxides, oxidizing carbon monoxide and ammonia¹. Mixed oxide titania-zirconia is also used as catalyst and as a catalyst support². CO_2 is used as a probe molecule for characterizing weakly basic surface sites on metal oxides³. TiO₂ is

also widely used as a photocatalyst affecting the mineralization of organic compounds⁴, where CO_2 is often the end product of photooxidation. Moreover, TiO_2 has been shown to mediate the photoreduction of CO_2 to useful organic compounds⁵⁻¹⁰. Photocatalytic activation of CO_2 to produce renewable carbon feedstocks holds promise to utilize intermittent solar energy and also lessen the consumption of fossil fuels. At a more fundamental level, the activation of CO_2 in the presence of metal oxides and light is by itself a captivating research problem that could have potential implications for abiotic photosynthesis and future human space exploration.

Titania occurs as three polymorphs, anatase, rutile and brookite; anatase being the most catalytically active polymorph, though not for all applications. CO_2 adsorption on rutile TiO₂ was studied by Markovits et al. using periodic Hartree-Fock calculations¹¹. The bare rutile (110) surface was predicted to be very acidic and the most probable model for CO₂ adsorption consisted of a perpendicular CO₂ molecule over a coordinatively undersaturated Ti cation (i.e., a Ti in 5-fold coordination rather than 6-fold as found in bulk rutile, forming a Ti-O=C=O complex). Similar studies of CO₂ adsorption on anatase TiO₂ have not been published.

To develop better CO_2 photoreduction catalysts, we need to understand the interaction of CO_2 with TiO_2 in greater detail. Various forms of CO_2 (adsorbed on surface Lewis acidic and basic sites) have been observed on TiO_2 surfaces^{12, 13}. For example: Ramis et al.¹³ assigned solid CO_2 , linearly adsorbed CO_2 , bent CO_2 and carbonate species to bands observed in low-temperature IR spectroscopic studies. Martra observed distinct carbonate and bicarbonate species on P25 TiO_2^{14} . Hadjiivanov et al.¹⁵ proposed the existence of Ti cation sites varying in electrophilic character, on different surface planes

of TiO₂ from their studies of probe molecule adsorption on anatase¹⁵. They suggested that the heterogeneity of surface acidic and basic sites resulted in various adsorbed species. The extent to which similar surface specificity influences the adsorption of CO₂ on anatase TiO₂ is not known. Knowledge of intermediate species in the TiO₂-catalyzed photoreduction of CO₂ will help us understand the reaction mechanism on a molecular level. Quantum chemical modeling can help identify intermediates by corroborating data from in situ spectroscopic measurements.

To accurately depict the surface processes occurring during CO_2 photoreduction, a detailed knowledge of the specific surface planes exposed is significant because different crystal faces can have different reactivities. For example: Hadjiivanov et al.¹⁵ suggested that the coordinatively undersaturated Ti cations exposed on the (010) and (101) surface planes are more electrophilic than similar cations on the (001) surface plane. A high-resolution transmission electron microscopy (HRTEM) investigation of the surface morphology of P25 TiO₂ (consisting of ~80% anatase) found that it mainly exposed the (001) and (010) surface planes¹⁴. The most common surfaces for anatase are generally the (001) and (101) planes¹⁶. Amongst (100), (001), (101) and (110) surface planes, quantum chemical calculations¹⁷ have shown that the (101) surface plane has the lowest surface energy. The (101) surface plane exposes both cations and anions having coordinative undersaturation (5-coordinate Ti (5-c Ti) and 2-coordinate O (2-c O)), as well as bulk (6-c Ti and 3-c O) atoms, whereas the (001) surface exposes 5-c Ti and 2-c O atoms. The (010) surface is isostructural with (100), exposing 2-c, and 3-c O atoms and 5-c and 6-c Ti atoms. The 3 surfaces modeled in this study are all possible under different conditions. For some anatase particles, only 2 of them may exist, but this does not

preclude us from comparing different faces. To compare reactivities among 5-c Ti atoms, only the (101), (010) and (001) surfaces will be discussed in this study. The results for the (110) surface are shown in Appendix A.

As an initial step in the process of understanding mechanisms of CO_2 photoreduction, this study aims at identifying ground states of CO_2 chemisorbed on various surface planes of anatase. Previous experimental results from in situ IR spectroscopic studies of CO_2 adsorption on TiO₂ are compared with DFT calculations of predicted vibrational frequencies of CO_2 adsorbed on 2 Ti atom clusters from the (001), (010) and (101) surface planes of anatase TiO₂.

2.4 Computational Methods

Small clusters of TiO₂ have been used in previous computational studies¹⁸ to understand reactions on titania surfaces. Although the use of 2 atom clusters does not model the bulk band gap of the solid, it allows us to understand the local chemistry of the system at a lower computational cost. Note that it is not unrealistic to model the reaction of CO₂ on small TiO₂ clusters. For example, Anpo's research group has used Ti exchanged zeolites as photocatalysts to activate CO₂^{5, 8, 9}. Their X-ray absorption extended fine structure spectroscopy (EXAFS) studies show that the active site is comprised of tetrahedrally coordinated Ti atoms in the zeolite cage. These Ti atoms typically have titanol (Ti-OH) or titanosilane (Ti-O-Si) linkages. Our calculations on two atom clusters may not be the same as a Ti atom in a zeolite cage, but there are precedents for modeling materials with molecular clusters for certain purposes¹⁹. For example, comparisons of similar clusters and periodic DFT calculations have shown good agreement with each other and experimental results for adsorption of oxyanions on Fe-hydroxide surfaces²⁰.

In order to assess the level of theory suitable for modeling CO_2 photoreduction, we have performed free energy calculations for the CO_2 - CO_2 system using different levels of theory (accounting more accurately for configuration interaction) and basis sets (Table 2-1). The optimized geometries using quadratic configuration interaction with single and double excitations (QCISD(T))^{21, 22} are shown in Figure 2-1.

As shown in Table 2-1 quantum mechanical calculations at the QCISD(T)/6-311+G(3df) level of theory model the structure and vibrational frequencies of CO_2^{\bullet} . (Within this chapter, the symbol CO_2^{\bullet} has been used to refer to carbon dioxide radical anion.) The calculated value of electron affinity for CO_2 (-0.62 eV) from QCISD(T)/6-311+G(3df) is consistent with the experimental value of -0.6 \pm 0.2 eV²³ and agrees with the value calculated by Yu et al. using the G2 method (-0.62 eV)²⁴.

Figure 2-1: Optimized geometries of CO_2 and CO_2^{-} calculated at the QCISD(T)/6-311+G(3df) level

Ideally, all CO₂-TiO₂ calculations would be performed at this level of theory, but such high-level calculations are not practical for the larger models necessary in this study. Consequently, Møller-Plessett (e.g., MP2/6-311+G(3df)) and hybrid molecular orbital/density functional theory (MO/DFT; e.g., B3LYP/6-31G(d)) calculations were performed to test their ability to reproduce results obtained for the higher level and more accurate theoretical methods. The results shown in Table 2-1 indicate that the B3LYP calculations with a diffuse basis set (6-31+G(d)) reproduce the bond angle, distance, atomic spin densities and IR vibrational frequencies of CO_2^{-1} as accurately as the more time-consuming QCISD methods. MP2 calculations with a large basis set also produce similar results. However, these lower levels of theory are not sufficient to reproduce the electron affinity of CO₂. While the B3LYP/6-31+G(d) method underestimates the electron affinity, the MP2 method overestimates this value. The use of larger basis set (B3LYP/6-311+G(3df) over B3LYP/6-31+G(d) does improve the value of the electronaffinity, but does not predict the bond angles and bond lengths of the carbon dioxide anion well. Diffuse functions (the "+" in the basis set description) are clearly needed to estimate the electron affinity or model the vibrational frequencies of the radical anion to any extent.

We therefore used the B3LYP/6-31+G(d) model chemistry for ground state geometry optimizations and frequency calculations. Higher level calculations will be necessary to accurately model the energetics of the photoreduction reaction and any radical or excited states that occur as intermediates. The B3LYP/6-31+G(d) results are useful as a starting point, however, because we can constrain which reaction pathways are most probable by comparing observed and modeled vibrational spectra.

Table 2-1: Comparisons of B3LYP, MP2 and QCISD results with the observed properties of CO_2^- , the highlighted results indicate the model chemistries whose results (IR frequencies, C-O bond lengths) are consistent with experimental values (shown at the bottom of the table)

(Method/basis set) or reference	Adiabatic Electron Affinity (at 0 K), eV	<0C0 CO2	ⁱⁿ C-O , Å	Frequencies, scaled,cm ⁻¹	Atomic spin densities of CO_2^{-1}
B3LYP/6- 31G(d)	-1.30	133.64	1.252	704, 1291, 1639	C: 0.677 O: 0.161
B3LYP/6- 31+G(d)	-0.22	137.13	1.239	651, 1191, 1690	C:0.967 O: 0.016
B3LYP/ 6-311+G(3df)	-0.38	138.25	1.227	647, 1178, 1711	C:1.160 O:-0.08
MP2/6- 311+G(3df)	-0.82	<mark>137.50</mark>	1.233	<mark>651, 1158,</mark> 1682	C: 0.944 O: 0.028
QCISD/ 6-311+G(3df)	<mark>-0.62</mark>	137.70	1.234	651, 1167, 1680	C:0.944 O: 0.028
Experimental values (Hartman and Hisatsune,1966)	-0.6±0.2	134		1671	

Cluster models containing 2 Ti atoms were constructed from the (010), (001) and (101) faces of anatase using the Cerius² software suite (Accelrys Inc., San Diego, CA). Figure 2-2 shows the principal atoms in the clusters, as located in the anatase crystal lattice. The coordination of the dangling bonds was saturated by adding protons and hydroxyl groups, resulting in a (formally) neutral $Ti_2O_9H_{10}$ cluster. To form a 2 Ti atom

cluster from the (010) surface plane, the bridging oxygen was made 2-c. The ground-state of stoichiometric TiO_2 is a singlet. Therefore, the ground state of the 2 atom cluster was modeled as a zero-charge singlet.

Figure 2-2: Ball-and-stick representations of the clusters (showing nearest neighboring atoms to titanium atoms) from the (001), (101) and (010) surfaces of anatase TiO_2 considered in this study. Red atoms represent O, pink atoms represent Ti.

All quantum calculations were performed using the computational chemistry package Gaussian 03^{25} . The ground states of the cluster were modeled using Becke's 3-parameter hybrid method²⁶ with the LYP correlation functional²⁷ (B3LYP). The following procedure was used to prepare a relaxed Ti₂O₉H₁₀CO₂ cluster:

- i. Ground-state bare cluster $(Ti_2O_9H_{10})$ geometries were initially calculated with a 3-21G* basis set, the H atoms were relaxed while the Ti,O atoms of the cluster were fixed.
- ii. B3LYP/6-31+G(d) calculations with fixed Ti,O geometries were subsequently performed with tight optimization convergence criteria and

ultra-fine DFT integration grids. Two-center electron integrals of magnitude less than 10^{-12} (default: 10^{-10}) were discarded. In this chapter, the term "bare constrained cluster" will be used to refer to this geometry.

- iii. Neutral, singlet CO_2 was optimized using similar method/basis set combination.
- iv. Subsequently, the CO_2 molecule was located over the $Ti_2O_9H_{10}$ cluster and its geometry was optimized (with constraints on the Ti, O atoms of the $Ti_2O_9H_{10}$ cluster) in the neutral, singlet state using B3LYP/6-31+G(d) model chemistry.
- v. In a subsequent B3LYP/6-31+G(d) optimization, the molecule from the above step was allowed to relax freely, removing all constraints.

To validate the choice of the B3LYP/6-31+G(d) basis set, harmonic vibrational frequencies were calculated using the fully converged, relaxed geometry and are compared with vibrational frequencies from in situ studies of CO₂ adsorption on TiO₂. The vibrational frequency scaling factor and the uncertainty in its estimation for the B3LYP/6-31+G(d) method/basis set combination were assumed to be the same as that for B3LYP/6-31+G(d,p) (0.964), taken from the <u>NIST Computational Chemistry</u> Comparison and Benchmark Database (CCCBDB). The scaling factors for B3LYP/6-311+G(3df), MP2/6-311+G(3df) and QCISD(T)/6-311+G(3df) were taken to be 0.967, 0.950 and 0.963 respectively. All results reported in this paper except for the interaction energies used fully relaxed, optimized (cluster+CO₂) geometries where no negative frequencies were calculated for the final structures.

The interaction energies of the CO_2 and $Ti_2O_9H_{10}$ moieties are calculated using electronic energies of the bare constrained ($Ti_2O_9H_{10}$) and constrained ($Ti_2O_9H_{10}CO_2$) clusters and free energies of the relaxed clusters as:

$$\Delta E^{\text{interaction}} = E_{CO_2} + E_{Ti_2O_9H_{10}} - E_{Ti_2O_9H_{10}CO_2}$$
 2.1

In Eq. 2.1, E could represent either electronic energy of the constrained cluster or the Gibbs free energy of the relaxed cluster. Counterpoise corrected²⁸ interaction energies (i.e., the basis set superposition error induced by bringing two molecules in proximity) were estimated . The free energies of interaction reported in Table 2-3 were derived from the energies of relaxed bare $Ti_2O_9H_{10}$, CO_2 and $Ti_2O_9H_{10}CO_2$ clusters (and hence cannot be compared with the (electronic) interaction energies reported in the same table). Population analyses and Wiberg bond indices in the natural atomic (NAO) basis and "natural" bonding orbitals (NBO) were calculated using the NBO program²⁹ included in Gaussian 03. The use of "natural" atomic orbitals has been shown³⁰ to decrease the basis set dependence of these quantities, which are not actual quantum mechanical observables and therefore cannot be extracted directly from the wave function.

2.5 Results

The ground state atomic structure of the $Ti_2O_9H_{10}CO_2$ clusters from (001), (010) and (101) surface planes are shown in Figure 2-3, Figure 2-4 and Figure 2-5 respectively. As shown in Figure 2-3, CO₂ located ~2.5 Å from the surface (Ti-O-Ti) atoms on the (001) $Ti_2O_9H_{10}$ fixed cluster adsorbed to form a bridged carbonate geometry with $r(C-O)^{(CO_2)} = 1.275$ Å.

Figure 2-3: Ground state (001) C_2 symmetric $Ti_2O_9H_{10}CO_2$ cluster optimized at B3LYP/6-31+G(d) level of theory, bond distances in Å, angles in degrees. The C-O bond lengths and O-C-O bond angles are different from other clusters shown in Figure 2-4, and Figure 2-5.

The H₂O groups which were fixed at the bottom of the Ti atoms in the initial fixed cluster relaxed to a C_2 symmetric cluster (undergoing rotation to be on opposite sides). The asymmetric and symmetric C-O stretch IR frequencies are consistent with those reported by Martra¹⁴ for surface carbonate species (1580, 1360 cm⁻¹).

Figure 2-4: Ground state (010) C_2 symmetric $Ti_2O_9H_{10}CO_2$ cluster optimized at B3LYP/6-31+G(d) level of theory, bond distances in Å, angles in degrees.

The (010) Ti₂O₉H₁₀CO₂ cluster (Figure 2-4) is distinct from the (001) cluster (Figure 2-3) because CO₂ forms another carbonate-like species with $r(C-O)^{(CO_2)} = 1.259$ Å. As mentioned earlier, the bridging oxygen of the cluster was made 2-coordinate to prepare a Ti₂O₉H₁₀ cluster. (Cluster geometries with 2 bridging oxygen atoms on the (010) surface, were not investigated in this study).The relaxed cluster is C₂ symmetric about the C-O^{bridging} axis. Initial (fixed) geometries with H₂O at the bottom (attached to Ti atoms) resulted in the cluster breaking apart and losing its symmetry upon relaxation. The C-O vibrational frequencies are similar to those found during in situ low temperature adsorption studies and assigned to "bent" CO₂ species on TiO₂¹³. The (C-O^(CO₂)) bond distances of the (001) cluster (Figure 2-3) are longer than corresponding distances in the

(010) cluster (Figure 2-4), which is consistent with the lower IR frequencies observed in (001) cluster. Ti- $O^{bridging}$ bond lengths are also longer in the (001) cluster.

Figure 2-5: Ground state (101) $Ti_2O_9H_{10}CO_2$ cluster optimized at B3LYP/6-31+G(d) level of theory, bond distances in Å, angles in degrees.

In comparison to the (001) and (010) surfaces, the (101) surface plane forms a corrugated structure exposing a 2-c oxygen and 5-c and 6-c Ti atoms. The fixed C_s symmetric (101) Ti₂O₉H₁₀CO₂ cluster upon relaxation reached a saddle point. Extremely tight optimization convergence criteria and calculations without symmetry constraints were used to move away from this saddle point resulting in a C₁ symmetric cluster with
some H-bonding between the O of CO₂ and one of the H atoms added for coordinative

Reference	Experimental vibrational frequencies, cm ⁻¹	Scale freque comput cn	ed IR encies, ational, n ⁻¹	Intensity ratio, experimental	Normalized intensity ratio, from computations	Raw IR intensities, km/mol	Comments
Ramis et al.,1991 ¹³	1750, 1150	1724	1203	1.96	2.52	737.25, 292.20	IR frequencies calculated for (101) $Ti_2O_9H_{10}CO_2$ cluster
Ramis et al.,1991 ¹³	1668, 1312	1659	1322	1.23	4.46	805.19, 180.51	(010) cluster
Martra, 2000 ¹⁴	1580, 1360	1582	1377	2.96	4.80	993.04, 206.71	(001) cluster

saturation. The optimized ground state geometry is shown in Figure 2-5.

Table 2-2: Comparisons of scaled IR frequencies and the intensity ratios for CO_2 adsorbed on anatase TiO₂ (1800-1100 cm⁻¹ region).

Similar to the (010) surface plane, the C-O IR frequencies are consistent with those observed by Ramis et al.¹³. The calculated C-O stretch frequencies for each configuration and the experimental IR frequencies are compared in Table 2-2. Each pair of calculated C-O stretch frequencies corresponds to a different CO_2 species adsorbed on TiO₂. In all three cases, CO_2 forms a carbonate-like species on the surface, but these configurations are different enough to be distinguished by their vibrational frequencies. C-O (scaled) IR vibrational frequencies at the B3LYP/6-31+G(d) level for the Ti₂O₉H₁₀CO₂ clusters from (001), (101) and (010) surface planes are shown in Figure 2-

6, and there is good agreement between the IR frequencies predicted by computations and those derived from experiments.

Figure **2-6**: Comparison of experimental C-O IR frequencies to those calculated using B3LYP/6-31+G(d) calculations on the (001), (010) and (101) $Ti_2O_9H_{10}CO_2$ clusters.

The (101) cluster shown in Figure 2-5 exhibits some hydrogen bonding between the water and carbonate groups. While this might shift the observed (C-O) stretch frequencies, this effect may not be entirely artificial. Real anatase surfaces (even under high vacuum) may have adsorbed water vapor that may form hydrogen bonds with (electron-rich) carbonate-like species. In this case, the anatase pre-treatment Ramis et al.¹³ adopted prior to adsorption studies is not clear. Moreover, the agreement between the calculated and experimental frequencies suggests that this effect may be of the same order of magnitude as the error in scaling these frequencies itself ($\sim \pm 20$ cm⁻¹), so this effect should not alter our interpretation.

The interaction energies along with other calculated properties of the $Ti_2O_9H_{10}CO_2$ clusters are shown in Table 2-3. Analysis of the "natural" atomic charges of the three clusters as shown in Table 2-4 shows that the CO₂ moiety gains ~ 0.4 electrons of charge upon adsorption and further relaxation.

Table 2-3: Counterpoise corrected interaction energies (based on electronic energy of fixed geometries and Gibbs free energy of relaxed geometries) of CO_2 on (001), (010) and (101) Ti₂O₉H₁₀ clusters (positive values indicate exergonic reaction).

	(001)	(010)	(101)
$\Delta E^{\text{electronic (0 K)}}$, fixed			
geometry, kJ/mol	51	83	70
ΔG^0 , relaxed			
geometry, kJ/mol	-110	-134	-86

End-on configurations of CO_2 on the $Ti_2O_9H_{10}$ cluster were formed upon constrained geometry optimization. (The geometry of the (010) $Ti_2O_9H_{10}CO_2$ constrained cluster with CO_2 adsorbed linearly is included in Appendix A) However, it was not feasible to follow the procedure described for the carbonate-like species to optimize the linear species since they desorbed from the bare cluster upon relaxation. Although linearly adsorbed species are also important species for CO_2 photoreduction, only carbonate-like species will be discussed in this work.

(001) Ti ₂ O ₉ H ₁₀ CO ₂	(010) Ti ₂ O ₉ H ₁₀ CO ₂	(101) $Ti_2O_9H_{10}CO_2$
213 (205)	350 (338)	540 (521)
1641, 1428	1721, 1371	1788, 1248
-1.236	-1.272	-1.207
-0.42	-0.435	-0.372
-0.82	-0.84	-0.83
3.78	3.85	3.88
-0.42	-0.43	-0.38
0.77	1.477	4.096
1.27457	1.25977	1.21827, 1.31205
	$(001) \\ Ti_2O_9H_{10}CO_2$ $213 (205)$ $1641, 1428$ -1.236 -0.42 -0.82 3.78 -0.42 0.77 1.27457	$\begin{array}{ccc} (001) & (010) \\ Ti_2O_9H_{10}CO_2 & Ti_2O_9H_{10}CO_2 \\ \\ 213 (205) & 350 (338) \\ \\ 1641, 1428 & 1721, 1371 \\ \\ 1641, 1428 & 1721, 1371 \\ \\ \\ -1.236 & -1.272 \\ \\ -0.42 & -0.435 \\ \\ -0.82 & -0.84 \\ \\ 3.78 & 3.85 \\ \\ -0.42 & -0.43 \\ \\ 3.78 & 1.477 \\ \\ 1.27457 & 1.25977 \end{array}$

Table 2-4: Natural atomic charges, bond distances and Δv_3 splittings of (010), (001) and (101) Ti₂O₉H₁₀CO₂ clusters calculated with the B3LYP/6-31+G(d) model chemistry.

2.6 Discussion

 CO_2 can interact with the Lewis acid centers (Ti⁴⁺) and/or with the Lewis base centers (O²⁻) of TiO₂. The carbon atom in CO₂ is slightly electrophilic while the O atom can interact with Lewis acid sites on metal oxide surfaces. The IR frequencies, bond lengths of the C-O^{bridging} bonds and the O-C-O bond angles indicate that these clusters correspond to chemisorbed CO₂ species. Moreover, the bond angles and C-O, O-Ti bond lengths correspond to polydentate carbonate-like species. As shown in Table 2-2, the C-O vibrational intensity ratios of the two frequencies also match well with experimental IR intensity ratios. However, according Ramis et al.¹³, the IR assignments for the species on the (010) and (101) $Ti_2O_9H_{10}CO_2$ clusters correspond to "side-on bent" CO_2 species, bonded on Lewis acid surface cationic centers (Ti^{4+} ions). These authors suggested that these species underwent nucleophilic attack forming surface carbonates upon heating.

Although the CO₂ species adsorbed on all three surface planes in our modeling results are partially negatively charged (~-0.3 to -0.45 e^{*}, suggesting that they could be precursors to reduction of CO₂), we note that these species correspond more closely to polydentate surface carbonates and do not have C-Ti bonds (C-Ti Wiberg bond indices close to zero, Table 2-5). This is significant, because as reported by Freund and Roberts³¹, the lowest unoccupied molecular orbital (LUMO) of CO₂ is lowered in energy upon decreasing the O-C-O bond angle from 180°. Therefore, it becomes relatively easier to reduce CO₂ as the O-C-O angle is lowered from 180°. One of the ways to achieve this distortion of the O-C-O angle is by CO₂ interacting with the anatase surface. The formation of surface polydentate carbonates reported in this paper can be thought of as a limiting case of such O-C-O angle distortion, where CO₂ gains electronic charge from the bare cluster/surface but the carbon atom does not get reduced.

The number of harmonic C-O vibrational modes calculated for the (010), (001) and (101) clusters (~6-7) (shown in Supporting Information) are consistent with a $CO_3^{2^2}$ - like species that has 3N - 6 = 6 total vibrational modes, (where N is the number of atoms) some of which are not IR active. Ramis et al.¹² proposed that (Ti)d-(C-O) π^* electron back-donation would stabilize the "bent" CO₂ species on the surface. However, analysis

of natural charges (calculated from Table 2-4) shows that most of the charge is transferred to the oxygen atoms of CO₂, not carbon. Moreover, the data shown in Table 2-6 indicates that the anti-bonding C-O NBOs are not occupied. Therefore, the assignments of IR vibrational frequencies (1773, 1750, 1150; 1668, 1312) as reported by Ramis et al.¹³ probably correspond to polydentate surface carbonate-like species and not "side-on bent" CO₂ coordinated with surface Ti atoms.

	(001) $Ti_2O_9H_{10}CO_2$	(010) Ti ₂ O ₉ H ₁₀ CO ₂	(101) $Ti_2O_9H_{10}CO_2$	CO_2
Ti-C	0.02	0.02	0.00, 0.00	
$C-O^{bridging}$	1.14	0.99	0.96	
$(C-O)^{(CO_2)}$	1.31	1.39	1.17, 1.63	1.89
Ti-O ^(OH)	0.94, 0.84	0.93, 0.83	0.84, 0.84, 0.79, 0.90, 0.88	
$(Ti-O^{(H_2O)})$	0.18	0.22	0.19, 0.18	
Ti-O ^{bridging}	0.22	0.32	0.43, 0.23	
$(Ti-O)^{(CO_2)}$	0.36	0.26	0.49, 0.06, 0.01, 0.00	
(O ^{CO₂} -H)			0.057	

Table 2-5: Comparison of Wiberg bond indices in the natural atomic orbital (NAO) basis for the (001), (010) and (101) $Ti_2O_9H_{10}CO_2$ clusters at the B3LYP/6-31+G(d) level.

From Table 2-4, the "natural" charges of Ti and O atoms (involved in bonding with CO_2) on the (010) cluster are higher than corresponding charges for the (001) cluster. This difference can be attributed to the difference in electrophilic character of the Ti cations on the (010) and (001) surface planes¹⁵. This difference might account for the slightly higher partial charge on the CO_2 moiety adsorbed on the (010) cluster compared

to the (001) cluster. As shown in Table 2-5 and Table 2-4, the greater charge on the O atoms of the (010) and (101) clusters also results in stronger $(C-O^{CO_2})$ bonds. In conclusion, the main differences among the three clusters are the relative acidity of Ti atoms (and the basicity of O atoms). The (001) cluster is the least acidic among the three which is reflected by the amount of electrons donated to CO_2 . The amount of electrons donated to CO_2 in the (101) cluster is lesser than that for the (010) cluster probably because one of the Ti atoms is 6-c, and is therefore less acidic. Analysis of the natural electronic configurations (from the NBO analysis) indicates that most of this donated charge resides primarily on the O(2p) orbitals of CO_2 .

The interaction energies of CO_2 on the three clusters (as calculated by Eq (1)) are shown in Table 2-3. Fixed geometry $Ti_2O_9H_{10}$ and $Ti_2O_9H_{10}CO_2$ clusters were used in the calculation because the bare cluster ($Ti_2O_9H_{10}$) relaxed more than the cluster with adsorbed CO_2 ($Ti_2O_9H_{10}CO_2$), resulting in positive free energies of reaction (or negative interaction energies), because the fully relaxed reactants had a lower free energy compared to fully relaxed products, $Ti_2O_9H_{10}CO_2$. Using the energetics of the partially constrained cluster is reasonable because lattice constraints will limit the relaxation of surface Ti and O atom on a real crystal face. The interaction energy on the (001) cluster is lower than that on the (010) cluster, which is consistent with the acid/base character of the surface cations and anions on these surface planes.

	(001) Ti ₂ O ₉ H ₁₀ CO ₂		(010) Ti ₂ O ₉ H ₁₀ CO ₂		(101) Ti ₂ O ₉ H ₁₀ CO ₂	
C-O bonds	Occupancy	%C	Occupancy	%C	Occupancy	%C
$(C-O)^{(CO_2)}$	1.960	33%	1.993	35%	1.988, 1.994	34%, 35%
$(C=O)^{(CO_2)}$	1.955	19%	1.983	21%	1.991	27%
C-O ^{bridging}	1.896	28%	1.989	31%	1.989	31%
C=O ^{bridging}	1.900	1%				
$(C-O^{(CO_2)})^*$	0.065	67%	0.064	65%	0.080, 0.060	66%, 65%
$(C=O^{(CO_2)})^*$	0.472	81%	0.450	79%	0.321	73%
$(\text{C-O}^{\text{bridging}})^*$	0.067	72%	0.106	69%	0.117	69%
$(C=O^{bridging})^*$	0.191	99%				
Ti-O bonds	Occupancy	%Ti	Occupancy	%Ti	Occupancy	%Ti
$(\text{Ti-O}^{(\text{CO}_2)})$	1.864	6%	1.887	7%	1.924	11%
Ti-O ^{bridging}			1.946	7%	1.944	10%
Ti=O ^{bridging}					1.822	3%
$(\text{Ti-O}^{(\text{CO}_2)})^*$	0.111	94%	0.148	94%	0.133	90%
(Ti-O ^{bridging}) *			0.123	93%	0.151	90%
(Ti=O ^{bridging}) *					0.213	97%

Table 2-6: Natural bonding orbital (NBO) analyses showing the occupancies and % C and %Ti contributions to various orbitals of (010), (001) and (101) $Ti_2O_9H_{10}CO_2$ clusters at the B3LYP/6-31+G(d) level. (Asterisk indicates antibonding NBOs.)

Table 2-4 shows that the carbonate Δv_3 frequency splitting of the three clusters increase from (001) to (101) Ti₂O₉H₁₀CO₂. Busca and Lorenzelli¹² have pointed out that Δv_3 carbonate splitting of ~200 cm⁻¹ was consistent with bidentate carbonate species whereas higher splitting (~300 cm⁻¹) was observed in bridged CO₃^{δ -} species. This is consistent with our observation that the IR frequencies for the (001) cluster correspond to a surface carbonate species. In the previous discussion, we showed that the IR frequencies for these higher Δv_3 splitting (i.e. higher C-O stretch frequencies) corresponded to polydentate CO₃ species whereas Busca and Lorenzelli¹² assigned them to "bent" CO₂ species.

A comparison of Wiberg bond order indices in the NAO basis for (001), (010) and (101) Ti₂O₉H₁₀CO₂ clusters is shown in Table 2-5. These results are consistent with the data from Table 2-4. C-O bond length of the CO₂ species on the (010) surface is shorter than that formed at the (001) surface plane. Similarly, the C-O^{bridging} bond and the Ti-O^{CO₂} bonds are weaker in CO₂ species at the (010) surface plane. This indicates that the electron density from the C=O bond of CO₂ (which has a C-O Wiberg bond order of 1.89) is more strongly delocalized in the (001) cluster. In addition, NBO analyses shown in Table 2-6 indicate that the occupancy of the C-O and C=O bonding orbitals of CO₂ increases from the (001) to the (101) cluster. The Ti-O^{bridging} bond in the (001) cluster is weaker compared to the (010) and (101) clusters, mainly because of lower electrophilic nature of the Ti cations. This weaker bonding between the Ti and bridging oxygen, (due to their relatively low electrophilic and nucleophilic character) effectively results in a CO₃ group bridged across two Ti cations on the (001) cluster; forming a surface carbonate species.

Ramis et al.¹³ suggested that the "bent" CO_2 species converted to surface carbonates and bicarbonates upon heating. From the previous discussion, it is not clear how polydentate carbonates could convert to surface carbonates. One possible mechanism might involve CO_2 desorption and further reaction with traces of adsorbed O_2 and/or surface hydroxyl groups. Another pathway might involve weakening of the Ti- $O^{bridging}$ bond of the cluster upon electron donation to the CO₂ species, as shown in Figure 2-7. As electron density is withdrawn from the O atom towards carbon, the Ti- $O^{bridging}$ bond becomes weaker (and longer, indicated with a dotted line) and the Ti- O^{CO_2} bond becomes stronger. This electron donation could weaken the Ti-O bond and

convert the polydentate species to a surface carbonate (effectively a $T_{i-O}C_{O-T_i}$ species). This is qualitatively seen in Table 2-5, the Ti-O^{bridging} bonds of the (001) cluster are weaker than similar bonds in the (010) and (101) clusters; while the Ti-O^{CO₂} bonds of the (001) cluster are stronger than similar bonds in the (001) cluster.

Figure 2-7: One possible pathway for the formation of surface carbonates from polydentate carbonate groups on a Ti-O-Ti cluster. Bridged carbonate-like species upon heating may be transformed to "*free*" carbonate. Singly hashed lines indicate weaker bonds, compared to single solid lines.

2.7 Conclusions

Large basis sets on the atoms of CO_2 (with diffuse functions) and high levels of electron correlation are required to model its anionic attached states. As a starting point for the excited state calculations, we have modeled the ground states of carbonate-like species adsorbed on $Ti_2O_9H_{10}$ surfaces. These B3LYP/6-31+G(d) DFT calculations on

 $Ti_2O_9H_{10}CO_2$ have accurately predicted the ground state geometry and vibrational spectra of CO_2 adsorbed onto different faces of anatase. We have shown that the spectra reported in the literature and assigned to "bent CO_2 species" on anatase TiO_2 are more consistent with polydentate carbonate-like species. The fact that significantly different reactions are predicted for the three clusters built from distinct crystal surfaces suggests that all the surface-specific information is not lost when the molecular cluster approximation is made. Furthermore, the results indicate that the dominant control over surface reactivities is local in nature to a first approximation. Consequently, molecular cluster model calculations in conjunction with periodic calculations and experimental studies can be used to effectively understand surface reaction mechanisms.

In addition to coordination, the geometrical arrangement of Ti and O atoms on the surface might also play a role in photoreduction. Yamashita et al.³² proposed that the atomic Ti/O ratio of top-surface Ti and O atoms capable of directly interacting with CO₂ and H₂O is higher on (rutile) TiO₂ (100) than TiO₂ (110). Similar considerations might play a significant role in affecting photoactivity on anatase surfaces as well. Existing mechanisms proposed for CO₂ photoreduction do not indicate the state of CO₂ adsorbed on TiO₂. This is important, because if the interaction between the surface atoms and CO₂ is very strong, CO₂ becomes irreversibly chemisorbed on the surface, while weak interactions at large inter-atomic distances will not result in efficient charge transfer from the photo-excited surface. Our modeling results show that localized, cluster approach to adsorption processes is helpful in determining the reactive species formed on metal oxide surfaces at a relatively lower computational cost (compared to periodic calculations).

2.8 References

1. Salem, I., Recent studies on the catalytic activity of titanium, zirconium, and hafnium oxides. *Catalysis Reviews-Science And Engineering* **2003**, 45, (2), 205-296.

2. Reddy, B. M.; Khan, A., Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst Supports. *Catalysis Reviews* **2005**, 47, (2), 257 - 296.

3. Lavalley, J. C., Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. *Catalysis Today* **1996**, 27, (3-4), 377-401.

4. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. *Progress in Solid State Chemistry* **2004**, 32, (1-2), 33-177.

5. Zhang, S. G.; Fujii, Y.; Yamashita, K.; Koyano, K.; Tatsumi, T.; Anpo, M., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. *Chemistry Letters* **1997**, (7), 659-660.

6. Rasko, J.; Solymosi, F., Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. *Journal of Physical Chemistry* **1994**, 98, (29), 7147-7152.

7. Lin, W. Y.; Han, H. X.; Frei, H., CO2 splitting by H2O to CO and O-2 under UV light in TiMCM-41 silicate sieve. *Journal of Physical Chemistry B* **2004**, 108, (47), 18269-18273.

8. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. *Catalysis Today* **1998**, 44, (1-4), 327-332.

9. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. *Journal of Physical Chemistry B* **1997**, 101, (14), 2632-2636.

10. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S., Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. *Journal of Electroanalytical Chemistry* **1995**, 396, (1-2), 21-6.

11. Markovits, A.; Fahmi, A.; Minot, C., A theoretical study of CO2 adsorption on TiO2. *Theochem-Journal of Molecular Structure* **1996**, 371, 219-235.

12. Busca, G.; Lorenzelli, V., Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. *Materials Chemistry* **1982**, 7, (1), 89-126.

13. Ramis, G.; Busca, G.; Lorenzelli, V., Low-temperature carbon dioxide adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. *Materials Chemistry and Physics* **1991**, 29, (1-4), 425-35.

14. Martra, G., Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. *Applied Catalysis, A: General* **2000,** 200, (1-2), 275-285.

15. Hadjiivanov, K. I.; Klissurski, D. G., Surface chemistry of titania (anatase) and titania-supported catalysts. *Chemical Society Reviews* **1996**, 25, (1), 61-&.

16. Diebold, U., The surface science of titanium dioxide. *Surface Science Reports* **2003**, 48, (5-8), 53-229.

17. Vittadini, A.; Casarin, M.; Selloni, A., Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. *Theoretical Chemistry Accounts* **2007**, 117, (5-6), 663-671.

18. de Lara-Castells, M. P.; Mitrushenkov, A. O.; Roncero, O.; Krause, J. L., Adsorption and nonadiabatic processes in the photodesorption of molecular oxygen from the reduced TiO2(110) surface. *Israel Journal of Chemistry* **2005**, 45, (1-2), 59-76.

19. Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V. R., Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. *Chemical Reviews* **1994**, 94, (7), 2095-2160.

20. Paul, K. W.; Kubicki, J. D.; Sparks, D. L., Sulphate adsorption at the Fe(hydr)oxide-H2O interface: comparison of cluster and periodic slab DFT predictions. *European Journal of Soil Science* **2007**, 58, (4), 978-988.

21. Gauss, J.; Cremer, D., Analytical Evaluation Of Energy Gradients In Quadratic Configuration-Interaction Theory. *Chemical Physics Letters* **1988**, 150, (3-4), 280-286.

22. Salter, E. A.; Trucks, G. W.; Bartlett, R. J., Analytic Energy Derivatives In Many-Body Methods.1. 1st Derivatives. *Journal of Chemical Physics* **1989**, 90, (3), 1752-1766.

23. Koppenol, W. H.; Rush, J. D., Reduction potential of the CO2/CO2.- couple - a comparison with other C1 radicals. *Journal of Physical Chemistry* **1987**, 91, (16), 4429-4430.

24. Sommerfeld, T.; Meyer, H. D.; Cederbaum, L. S., Potential energy surface of the CO2- anion. *Physical Chemistry Chemical Physics* **2004**, 6, (1), 42-45.

Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 25. Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision D.01, Gaussian Inc.: Wallingford, CT, 2004.

26. Becke, A. D., A New Mixing Of Hartree-Fock And Local Density-Functional Theories. *Journal of Chemical Physics* **1993**, 98, (2), 1372-1377.

27. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. *Physical Review B* **1988**, 37, (2), 785-789.

28. Boys, S. F.; Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. *Molecular Physics* **1970**, 19, (4), 553 - 566.

29. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. *NBO Version 3.1*.

30. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural-Population Analysis. *Journal of Chemical Physics* **1985**, 83, (2), 735-746.

31. Freund, H. J.; Roberts, M. W., Surface chemistry of carbon dioxide. *Surface Science Reports* **1996**, 25, (8), 227-273.

32. Yamashita, H.; Kamada, N.; He, H.; Tanaka, K.; Ehara, S.; Anpo, M., Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single-crystals under uv-irradiation. *Chemistry Letters* **1994**, (5), 855-858.

Chapter 3

Quantum mechanical modeling of CO₂ interactions with irradiated stoichiometric and oxygen-deficient anatase TiO₂ surfaces: Implications for the photocatalytic reduction of CO₂

3.1 Introductory Comment

"The thing is: The way I see it, these days there's a war on, right? and, ages ago, there wasn't a war on, right? So, there must have been a moment when there not being a war on went away, right? and there being a war on came along. So, what I want to know is: How did we get from the one case of affairs to the other case of affairs?"

- Baldrick in Blackadder Goes Forth: Goodbyee

Electron transfer from the TiO₂ surface to neutral CO₂, forming the carbon dioxide radical anion, constitutes the first step in the activation of CO₂. This chapter examines the feasibility of electron transfer to various forms of CO₂ adsorbed on TiO₂ surfaces. Results from ground state modeling of CO₂ chemisorbed on TiO₂ surfaces were presented in Chapter 2. Using a similar surface site approach, two complementary methodologies to study the excited states of CO₂ (likely formed under light irradiation) are presented in this chapter: (a) Density functional theory calculations of triplet TiO₂-CO₂ model clusters, and (b) Computationally-intensive single-point post-Hartree-Fock calculations of both linear and carbonate-like CO₂ species. It is expected that these results would reveal the roles played by the TiO₂ surface in transferring the photo-generated electron to CO₂.

3.2 Abstract

The conversion of CO₂ using light energy (CO₂ photoreduction) has the potential to produce useful fuels or valuable chemicals while decreasing CO₂ emissions from the use of fossil fuels. Identifying the mechanism and the active sites involved in the formation of negatively charged CO₂ species on TiO₂ surfaces represents a significant advance in our understanding of CO₂ photoreduction. To understand the role of the TiO₂ surface acting as a photocatalyst mediating CO₂ photocatalytic reduction, excited-state ab initio calculations of CO₂ adsorbed on clusters from the (010), (101) and (001) anatase surface planes were performed. Both post-Hartree-Fock calculations on small model surface clusters as well as density-functional theory (DFT) calculations on larger clusters indicate that conduction band electrons in irradiated, stoichiometric TiO₂ surfaces may not be transferred to CO₂. On the other hand, oxygen vacancies may act as the active sites for CO₂ photoreduction.

3.3 Introduction

Increasing anthropogenic CO_2 emissions present an opportunity to use CO_2 as a raw material for producing chemicals such as urea and polycarbonates¹. In addition to converting CO_2 to such chemicals, CO_2 could also be recycled to fuels (or fuel precursors) such as methane, carbon monoxide or methanol. This conversion of CO_2 to fuels is an endergonic process requiring a hydrogen source and/or energy. The most abundant sources of energy and hydrogen are sunlight and water, respectively. Solar photocatalytic reduction of CO_2 to produce fuels using water as the hydrogen source thus has the potential to store intermittent solar energy and to recycle CO_2 .

Titania (TiO₂) based photocatalysts have been used to convert CO_2 to useful compounds, both in gas and aqueous phase photoreactions. The conversion of CO_2 and water to simple C_1 products such as formic acid and formaldehyde using irradiated aqueous suspensions of titania was first demonstrated by Inoue et al.². The concept of semiconductor-mediated photocatalytic reduction of CO_2 is illustrated in Figure 3-1. Researchers have also used homogeneous metal complexes in solution to reduce CO_2^3 . Some recent developments in this field have been moves towards rational photocatalyst design, development of catalysts active at longer wavelengths than can be utilized by commercially available titania, and the elucidation of reaction mechanisms through in situ spectroscopic studies^{4, 5}.

Current photocatalysts for CO₂ reduction are inefficient. State-of-the-art CO₂ photoreduction catalysts do not perform as efficiently as the state-of-the-art catalysts for H₂ photogeneration. For example, doped metal oxide photoelectrodes for solar hydrogen generation have hydrogen evolution rates of 400-700 μ mol/h under visible irradiation⁷. This is well in excess of what current catalysts for CO₂ photoreduction have achieved to date (~1% conversion of CO₂ at a rate of ~1 μ mol product/h⁶⁻⁸). To develop better catalysts, we need to understand the initial steps of the reactions involved in this process. As a step towards that goal, we report excited-state molecular orbital (MO) calculations of CO₂ adsorbed on clusters from various surface planes of anatase TiO₂.

Figure 3-1: Schematic of semiconductor-mediated CO_2 photoreduction. Photogenerated electrons and holes are transferred to CO_2 and H_2O in a series of reactions leading to the formation of compounds such as CH_4 and O_2 respectively.

The mechanism proposed in the literature to account for CO_2 photoreduction involves the initial photo-excitation of the solid surface, creating electron-hole pairs, followed by their transfer to CO_2 and H_2O^9 . These charge carriers could also recombine or become localized at surface/bulk trapping sites. The surface state approach shown in Figure 3-1 does not indicate whether specific sites exhibiting enhanced reactivity towards the photoinduced activation of CO_2 exist on anatase TiO₂ surfaces. Identification of these surface sites could lead to the design of more effective catalysts for mediating CO_2 photoreduction. Moreover, the exact mechanism by which gaseous CO_2 interacts with the surface electron-hole centers on the TiO₂ surface is unknown. Additionally, although CO_2^{\bullet} , the electron attached state of CO_2 , has been proposed as a key intermediate in the activation of CO_2^{10} , only a single in situ experimental study presented evidence for CO_2^{\bullet} on illuminated, undoped TiO₂ catalysts¹⁰. Gaseous CO₂ also has a negative electron affinity¹¹⁻¹³. Therefore, identifying the mechanism and the active sites involved in the formation of negatively charged CO₂ species on TiO₂ surfaces represents a significant advance in our understanding of CO₂ photoreduction.

The conduction band of TiO₂ consists mainly of Ti(3d) orbitals, whereas the valence band is comprised of O(2p) orbitals. Xu and Schoonen¹⁴ have pointed out that semiconductor-mediated photo-induced electron transfer reactions require the electrons in the conduction band of the semiconductor to have greater energy than that of the lowest unoccupied molecular orbital (LUMO) of the electron-accepting species. Using the values for the energy of the TiO₂ conduction band and the standard reduction potential for the HCOOH/H₂CO₃ couple at pH 5, Xu and Schoonen¹⁴ suggested that the electrons in the conduction band of (bulk) TiO₂ may not be transferred to CO₂. This is contrary to currently proposed mechanisms for CO₂ photoreduction that suggest CO₂ gains electrons from the conduction band of TiO₂⁹. However, electronic interaction between the TiO₂ surface and the adsorbate (CO₂) could facilitate electron transfer by lowering of the LUMO of the adsorbate (for example, by forming a surface state in the band gap). Therefore, it is not known whether chemical interaction with anatase TiO₂ surfaces facilitates charge transfer to CO₂.

In this study, we address the following questions:

1. Does the interaction between CO_2 and anatase TiO_2 surfaces facilitate electron transfer to CO_2 ?

- 2. What specific surface sites on the anatase TiO_2 surface promote CO_2 photoreduction?
- 3. Is there a qualitative difference between different methods of electron correlation for studying excited states of CO₂ adsorbed on TiO₂ surfaces?

To answer these questions, we performed ab initio molecular orbital (MO) calculations of the gas-solid photoreduction of CO_2 on clusters from various low-index anatase TiO_2 surfaces. A combination of small cluster size with a high level of electron correlation and DFT level calculations with larger clusters was used. The results indicate that CO_2 does not gain electrons from defect-free TiO₂ clusters in the excited state.

3.4 Computational Methods

In this study, neutral TiO₂-CO₂ clusters obtained from unreconstructed, stoichiometric surfaces are referred to as being *defect-free*. Two computational tools were used to model excited states of these TiO₂-CO₂ clusters : Gaussian 03 (G03)¹⁵ and Turbomole V5.9¹⁶. Single-point post-Hartree-Fock (post-HF) Symmetry-Adapted Cluster-Configuration Interaction (SAC-CI)¹⁷ calculations were performed on relatively small clusters containing one or two Ti atoms in G03. The clusters modeled in G03 are: Ti₂O₉H₁₀-CO₂ (denoted as Ti₂-CO₂), Ti(OH)₄H₂O-CO₂ (Ti-watCO₂), and Ti(OH)₄-CO₂ (Ti-4cCO₂)). DFT level calculations on larger TiO₂-CO₂ clusters (Ti₆O₂₁H₁₈-CO₂, denoted as Ti6-5cCO₂) from the (101), (001), (010) surfaces and (110) Ti6- cluster (Ti₆O₂₂H₂₀, Ti6-4c) of anatase TiO₂ were performed in Turbomole.

The cluster-based approach has been used in this study because data in the literature suggest that localized processes (such as adsorption) on titania surfaces could be treated using small clusters, de Lara-Castells and Krause¹⁸ compared slab and cluster model calculations for the adsorption of O₂ on reduced TiO₂ (rutile) surfaces and concluded that localized phenomena such as chemisorption could be treated by small clusters. Adsorption of anionic species on oxide surfaces is also well described by hydrogen-saturated cluster models¹⁹. Cluster calculations of anion adsorption yielded results in agreement with periodic DFT calculations²⁰. An alternative technique to model the surface involves the use of embedded point charges instead of the hydrogen atoms. However, as pointed out by Belelli et al.²¹, the use of embedded charges leads to varying charges for equivalent atoms in the lattice. In the case of small molecules such as CO₂, long-range electrostatic effects are therefore expected to play a minor role in controlling adsorption. On the other hand, to accurately model the band gap of TiO_2 , larger clusters are required. We note that slightly larger Ti₇O₁₄ clusters have been used to model the photocatalytic oxidation of water on rutile (110) TiO_2 surface²². Ultimately, considering the computational costs, we used clusters comprising of 1-2 Ti atoms for SAC-CI calculations and 6-Ti atom clusters for DFT calculations. A detailed description of the parameters used and the cluster preparation procedures for each method is provided below.

3.4.1 Details of cluster preparation and parameters used for SAC-CI calculations in G03

Clusters of various sizes were cut from the (001), (010) and (110) surface planes of anatase using the Cerius² software suite (Accelrys Inc., San Diego, CA). The coordination of the dangling bonds was saturated by adding protons at the same location as the missing Ti atom. All O-H bond distances were initialized to 0.97 Å. ((Full geometry optimizations of a Ti(OH)₄CO₂ cluster at the B3LYP/6-31+G(d) level resulted in a O-H bond length of 0.967 Å). TiO₂-CO₂ clusters from the (001) and (110) surface planes containing a single Ti atom were obtained by minimizing the geometry of a cluster having a CO₂ molecule located over the Ti atom. Only Ti, O and CO₂ atoms in the TiwatCO2 and Ti-4cCO2 clusters were allowed to relax. This resulted in linearly adsorbed CO_2 species. The anatase (110) surface exposes 4-c Ti and 2-c oxygen atoms, whereas the anatase (001) surface exposes 5-c Ti atoms and 2-c and 3-c O atoms²³. Additionally, 4-c Ti atoms at the interface between anatase and rutile phases have been proposed to act as electron traps in Degussa P-25^{24, 25}. Therefore, comparing excited state calculations from these two clusters will provide insights into the role of surface coordination on electron transfer to linear CO₂ species.

Excited states of carbonate-like species adsorbed on (010) anatase surface plane (modeled using Ti2-CO2) clusters) were also calculated. Details of methods used to model the ground state of the $Ti_2O_9H_{10}$ -CO₂ are given in a previous publication²⁶. The ground states of these clusters were modeled using Becke's 3-parameter hybrid method²⁷ with the LYP correlation functional²⁸ (B3LYP), and the 6-31+G(d) basis set (as implemented in G03) with default optimization criteria.

For the excited state calculations, the SAC-CI method was chosen to overcome size limitations of the active space and to avoid pitfalls in selecting chemically relevant orbitals. SAC calculations on the ground-state singlet cluster indicate that it can be well described using single determinant wave functions. Therefore, the B3LYP/6-31+G(d) ground-state geometry could be used as a starting point for single point excited-state post-HF calculations. Excited-state calculations used the SD-R version of SAC-CI (with singles and doubles linked excitation operators). The following paragraphs describe the parameters and methods used for excited-state population analysis for clusters containing one and two Ti atoms.

In the case of clusters containing one Ti atom, excited-state calculations were performed without frozen core orbitals. The maximum R2 operators after perturbation selection (MaxR2Op) were set to 10^6 . Atomic charges (to be used as one indicator of CO₂ reduction) from the single-point excited-state calculations were calculated using relaxed density natural population analyses (using the NBO program²⁹ included in G03). It should be noted that the "relaxed density" corresponds to a one-particle density matrix consisting of a HF-contribution with a correlation correction, and does not refer to excited state orbitals. In this study, SAC-CI calculations were performed at the lowest threshold for the selection of double excitation operators. Single-point SAC-CI calculations for the first four excited-states were performed for both (001) Ti-watCO2 and (110) Ti-4cCO2 clusters, using the above criteria. The amount of charge gained by the CO₂ moiety in an excited state, compared to the SAC-ground-state, was calculated as shown in Eq. **3.1**:

% charge transferred to
$$CO_2 = (\Delta q CO_2) / (\Sigma \Delta q (O^{cluster})) \times 100$$
, **3.1**

where ΔqCO_2 refers to the change in charge of CO_2 compared to the SAC-ground-state and $\Sigma \Delta q(O^{cluster})$ refers to the change in the charge of all the oxygen atoms of the cluster.

Excited-state calculations with two Ti atoms (Ti2-CO2) used thirty frozen core orbitals. It was not possible to calculate relaxed density excited-state natural population analyses for the Ti2-CO2 clusters. Instead, unrelaxed excited-state Mulliken population analyses³⁰ for the first four excited-states are reported. Other parameters were the same as those for the Ti-watCO2 and Ti-4cCO2 clusters described above. We also compared the SAC-CI excitation energies and oscillator strengths to those obtained from time-dependent density functional theory (TD-DFT)³¹ calculations at the B3LYP/6-31+G(d) level to examine the possibility of using these computationally more efficient methods to model TiO₂-catalyzed CO₂ photoreduction.

3.4.2 Details of cluster preparation and parameters used for DFT calculations in Turbomole

To complement these SAC-CI calculations on small TiO_2 -CO₂ clusters, we also performed DFT level calculations on larger TiO_2 -CO₂ clusters (Ti6-5cCO2) using Turbomole. Similar to the smaller clusters, larger (Ti6-) clusters from bulk-terminated (101), (010) (001) and (110) surfaces were cut with Cerius² and the coordination of dangling bonds was saturated by adding protons at O-H distances of 0.97 Å. All Ti atoms in the clusters thus prepared have the same coordination as that of the defect-free surface. All added H atoms were fixed during geometry optimizations in Turbomole. In addition to CO_2 , only surface atoms and their next nearest neighbors were allowed to relax. This meant that different numbers of atoms were constrained for different surfaces.

The geometry of the ground-state neutral singlet bare cluster (without CO_2) was optimized with B3LYP/def2-SV(P) model chemistry using default optimization criteria. (The def2-SV(P) basis set³² is approximately equivalent to the Pople 6-31G(d) basis set. The implementation of the B3-LYP functional (incorporating the VWN(V) correlation) in Turbomole differs from that in G03 (VWN(III) correlation).) Henceforth, in this paper, TM-B3LYP denotes the Turbomole implementation, while G03-B3LYP will be used to refer to the G03 implementation. All Turbomole calculations used the Multipole-Accelerated-Resolution-of-Identity-*J* (MARI-*J*) approximation³³ with the def2-SV(P) auxiliary basis set on Ti, O and C atoms. The error in single point self-consistent-field (SCF) energy with the MARI-*J* approximation for a TiO₂ cluster containing 47 atoms was calculated at the TM-B3LYP/def2-SV(P) level of theory to be 1.2 mH.

Upon optimizing the ground-state, similar constraints were used to model the triplet state of the cluster. Subsequently, a CO₂ molecule (with r(C-O) = 1.167 Å and $<OCO = 180^{\circ}$) was located at a distance of ~2.2-1.9 Å from the Ti atom where the photogenerated electron was localized. A similar procedure has been reported in the literature for a study of O₂ and H₂O interactions on irradiated TiO₂²¹. Geometry optimization of the triplet Ti6-CO2 clusters was performed using constraints and model chemistry similar to that as the "bare" cluster. Atomic charges were calculated using natural population analysis (NPA)²⁹ for singlet and triplet states of the bare and CO₂-containing clusters.

The adsorption of CO₂ on non-stoichiometric anatase surfaces containing oxygen vacancies was also performed, to compare the results with those from defect-free clusters. An earlier modeling study of O₂ photoreduction on surface oxygen vacancies has shown that O_2^{-1} species could be formed on and desorbed from illuminated defective (100) anatase TiO₂ surfaces³⁴. Therefore, CO₂ adsorption on a bridging oxygen vacancy on the (010) surface (isostructural with the anatase (100) surface) was investigated. After removing one of the bridging 2-coordinate (2-c) oxygen atoms on the (010) surface, the ground state geometry (triplet) was optimized, with constraints similar to the defect-free Ti6-cluster. Two different configurations of CO_2 adsorbed on the vacancy were modeled, resulting in linear and bent CO_2 species. The geometry of the ground-state neutral singlet cluster was optimized at the TM-B3LYP/def2-SV(P) level of theory. The optimized Ti6cluster with CO_2 adsorbed on the oxygen vacancy ($Ti_6O_{20}H_{18}$ - CO_2) is denoted as (010) Ti6(Vo)-5cCO2-linear and (010) Ti6(Vo)-5cCO2-bent. Counterpoise uncorrected interaction energies between the Ti6-stoichiometric cluster and CO₂ in both singlet and triplet states are calculated as shown in Eq. 3.2:

$$\Delta E^{\text{inter}} = E(\text{Ti6-5cCO2}) - E(\text{Ti6-5c}) - E(\text{CO}_2)$$
 3.2

Interaction energies for non-stoichiometric clusters and CO_2 are calculated as shown in Eq. 3.3:

$$\Delta E^{\text{inter}} = E(\text{Ti6}(\text{Vo})\text{-5cCO2}) - E(\text{Ti6}(\text{Vo})\text{-5c}) - E(\text{CO}_2)$$
3.3

In the above equations, E refers to the electronic energy of the cluster. Reasonable values for the basis set superposition error (BSSE) in the energies for the triplet state clusters could not be obtained. The BSSE values for the singlet state clusters were

typically 8-13 mH. For the sake of uniformity, we present energies without the counterpoise correction.

The gOpenMol program^{35, 36} (v3.0) was used to display molecular orbitals and spin densities. The ChemCraft program (Plimus Corporation, San Diego, CA) was used to display cluster geometries.

3.5 Results

The optimized geometries of the (110) Ti-4cCO2 and (001) Ti-watCO2 clusters are shown in Figure 3-2. CO₂ adsorbs linearly at the Ti Lewis acid sites. The O-C-O bond angle of CO₂ is not significantly distorted from its gas-phase value of 180° , which indicates that the electronic interaction between the unoccupied orbitals of CO₂ and the occupied orbitals of the "bare" cluster in the ground state is weak.

Table 3-1 shows the excitation energies and symmetries of the first four excited states of these two clusters, calculated from single-point calculations at the SAC-CI/6-31+G(d) level of theory. These vertical excitation energies lie in the (UV-B)–(UV-C) region of the electromagnetic spectrum. Additionally, the excitation energies for the (4-c) Ti-4cCO2 cluster are significantly higher than the (5-c) Ti-watCO2 cluster. This is consistent with the trends in the ligand-to-metal charge transfer (LMCT) transition energies for tetrahedral (4-c) and octahedral (6-c) Ti atoms³⁷.

In the next step, excited states of a cluster ((010) Ti2-CO2) with significant electronic interaction between the bare cluster and CO_2 (in the ground-state) were

studied. This represented carbonate-like species adsorbed on the (010) surface plane of anatase.

Figure 3-2: Left, (001) Ti-watCO2 (Ti(OH)₄H₂O-CO₂) cluster, right, Ti-4cCO2 (Ti(OH)₄H₂O-CO₂) cluster, optimized at the G03-B3LYP/6-31+G(d) level of theory. The bond lengths are in Å, the angles are in degrees.

Table 3-1: Excitation energies (for the first 4 excited-states) of CO_2 linearly adsorbed on clusters from (110) and (001) anatase TiO₂ surfaces (Ti-4cCO2, Ti-watCO2), calculated at the SAC-CI/6-31+G(d) level of theory. Excitation energies for the (4-c) Ti-4cCO2 cluster are significantly higher than the (5-c) Ti-watCO2 cluster.

-	(110) Ti-4cCO2	(001) Ti-watCO2
	Excitation energy, eV	Excitation energy, eV
1	4.27	2.19
2	4.88	2.51
3	5.11	2.96
4	5.30	3.16

Comparisons of the SAC-CI/6-31+G(d) adiabatic excitation energies for the (010) Ti2-CO2 cluster (shown in Figure 3-3) with those obtained from TD-DFT calculations at the G03-B3LYP/6-31+G(d) level are shown in Table 3-2. Clearly, TD DFT excitation energies are within 0.5 eV of those obtained with SAC-CI. Therefore, although significant errors exist in TD-DFT values, TD-DFT could be used to estimate the trends in vertical excitation energies for larger clusters. However, the oscillator strengths predicted by the less expensive TD-DFT calculations do not agree with those from SAC-CI calculations. Moreover, the excited state symmetries predicted by TD-DFT do not agree with those predicted by SAC-CI. Therefore, even qualitative comparisons of TD-DFT absorption spectra with experimental spectra will be complicated by the fact that the oscillator strengths are inaccurate. This indicates the need for post-HF methods rather than TD-DFT to study excited states of chemisorbed carbonate-like species.

Figure 3-3: Ground-state (1A) (010) C_2 symmetric $Ti_2O_9H_{10}CO_2$ cluster optimized with G03-B3LYP/6-31+G(d) model chemistry, bond distances in Å, angles in degrees. CO_2 forms a carbonate-like species on the (010) anatase surface.

Table 3-2: Excited-state symmetries, excitation energies and oscillator strengths for the first four excited singlet states of the (010) $Ti_2O_9H_{10}CO_2$ cluster (carbonate-like species) calculated by SAC-CI and TD-DFT using 6-31+G(d) basis set.

Excited-state symmetry		Excitation Energy, eV		Oscillator strength, f*10 ³	
SAC-CI	TD-DFT	SAC-CI	TD-DFT	SAC-CI	TD-DFT
В	В	4.256	4.723	7.2	6.8
А	А	4.263	4.754	3.4	0.4
В	А	4.413	4.865	61.8	0.2
А	В	4.493	4.894	1.5	12.7

The excitation energies predicted by TD-DFT calculations are within 0.5 eV of those from SAC-CI calculations. However, TD-DFT calculations neither predict correct oscillator strengths nor correct excited-state symmetries, making TD-DFT qualitatively incorrect.

The percentage of charge transferred from the oxygen atoms of the cluster to the CO₂ moiety in the Ti-watCO₂ and Ti-4cCO₂ clusters is shown in Figure 3-4. Figure 3-5 shows the change in the charge (from unrelaxed Mulliken population analyses of the excited-states) of various moieties (CO₂, CO₂+O^{bridging} (referred to as CO₃), and Ti₂O₉H₁₀) of the Ti₂-CO₂ cluster. In Figure 3-5, the results are shown as the difference of the charge of the moiety between the SAC-ground-state and the excited-state. In addition to these criteria, charge transfer to CO₂ can be indicated by examining the excited states and the type of (canonical) molecular orbitals comprising various configurations of the linear CO₂ species Ti-watCO₂ and Ti-4cCO₂ that are involved in various excited state to the configurations (presented in Appendix B), it is clear that the majority of the contribution to the unoccupied orbitals comes from the Ti 3d atomic orbitals and not π^* C-O orbitals of

 CO_2 . Therefore, most of the charge transferred from the oxygen atoms is localized on the Ti atoms. These SAC-CI results indicate that the amount of charge transfer from the bare cluster to CO_2 is insignificant compared to the charge gained by Ti atoms, for both linearly adsorbed CO_2 as well as carbonate-like chemisorbed species.

Figure 3-4: Percentage of charge transferred to CO_2 , calculated from single point excitedstate relaxed density population analyses. Negative values indicate a net gain in the charge of the CO_2 moiety. (a): (001) Ti-watCO2,NPA, (b): (001) Ti-watCO2,Mulliken (c): (110) Ti-4cCO2,NPA, (d): (110) Ti-4cCO2,Mulliken. The NPA analyses for both (001) Ti-watCO2 and (110) Ti-4cCO2 clusters indicate insignificant charge transfer to CO_2 . The lines are shown for clarity and are not meant to indicate charge transfer trends among different excited-states.

The results in Figure 3-4 indicate a large discrepancy between Mulliken and natural population analyses for the Ti-watCO2 cluster. Mulliken population analyses are not independent of the basis set and the method used for the calculations. In contrast,

atomic charges obtained by NPA analysis are known to vary less with the choice of the basis set. NPA analysis is therefore a better indicator of the real charge of the species in various excited states.

Figure 3-5: Changes in summed atomic charges of the CO_2 (CO2), surface species (CO3) and the bare cluster (Ti2O9H10) over the SAC ground-state, calculated with unrelaxed excited-state SAC-CI densities (from single point calculations) using the 6-31+G(d) basis set. The amount of charge transferred from/to the CO_2 moiety in various excited states is minimal.

In the next part of this study, we modeled the adsorption of CO_2 on triplet (Ti6-) clusters from various surface planes. Various starting configurations were used for the interaction of CO_2 with the electron-center (Ti³⁺), and the lowest energy configurations are shown in Figure 3-6. Additional details, including the local geometry around the Ti atom interacting with the CO_2 species are shown in. Figure 3-7. The overall nature of CO_2 adsorption on triplet Ti6- clusters modeled using Turbomole is similar to that

observed with the smaller ground-state clusters modeled in G03. The interaction is mainly weak acid-base in character. On the (010) and (101) triplet Ti6-5c clusters, CO_2 adsorbs with the oxygen end-on Ti atom.

Figure 3-6: Location of the photogenerated electron and hole in various triplet Ti6clusters. (a): (010) Ti6-5cCO2 cluster, (b): (101) Ti6-5cCO2 cluster, (c) (001) Ti6-5cCO2 cluster, (d) Ti6-4c cluster without CO₂. The difference in spin densities (alphabeta) is plotted at an isocontour value of 0.03 e/Å³. In (a), (b) and (c), the photogenerated electrons are localized on the 3d orbitals of the Ti atoms and are not transferred to CO₂. In (d), the photogenerated electrons on the (110) surface are not available to surface Ti atoms and are localized on (6-coordinate) Ti atoms in the bulk. Therefore CO₂ adsorption and further electron transfer on this surface was not investigated. (Plotted with the gOpenMol visualization program^{35, 36})

Figure 3-7: Local geometry around the Ti atom interacting with CO_2 in various triplet Ti6-CO₂ clusters, from TM-B3LYP/def2-SV(P) calculations; (a): (010) Ti6-5cCO2, (b): (101)Ti6-5cCO2 cluster, (c) (001) Ti6-5cCO2 cluster. Only linear CO₂ species are shown in the figure. CO₂ is not significantly distorted from its linear geometry in all three cases. The bond lengths are in Å, the angles are in degrees. Only Ti, O (and CO₂) atoms on and adjacent to the (010), (101), (001) and (110) surfaces were relaxed from their positions in the bulk TiO₂ anatase crystal.

In the case of the triplet (001) Ti6-5c cluster, one of the (Ti-2c O) bonds is broken (shown in Figure 3-7), and CO₂ is more loosely bound. We also observed the formation of carbonate species on the (001) TiO₂ surface. However, electron transfer was not predicted for these carbonate species to or from the TiO₂ surface in the triplet state. The difference between the alpha and beta spin densities of the triplet (010), (101) and (001) Ti6-5cCO2 clusters, shown in Figure 3-6, indicates that the photogenerated electron is not transferred to CO_2 .

In the limit of the cluster sizes used in this study, we find that photogenerated electrons are available for surface reactions on (010), (001) and (101) surfaces (Figure 3-7 a-c). The photogenerated electrons are localized on the *terrace* 5-c Ti atoms of the (101) surface. On the (110) surface exposing 4-c Ti atoms, the photogenerated electron and hole were localized in the bulk. Therefore, CO_2 adsorption on this surface in the triplet state was not modeled.

Both SAC-CI and DFT calculations have shown that clusters from defect-free anatase TiO₂ surfaces do not transfer the photogenerated electron to CO₂. Because oxygen vacancies are among the most common defects on metal oxide surfaces, CO₂ adsorption on oxygen-deficient clusters was modeled. The ground-state of the (010) oxygen-deficient bare anatase cluster (Ti6(Vo)-5c) is a triplet. However, upon CO₂ adsorption, the ground-state of the (010) Ti6(Vo)-5cCO2 cluster was found to be a singlet. As shown in Figure 3-8, CO₂ adsorbs on the oxygen vacancy, forming a negatively charged CO₂^{δ+} species, which resembles a η^2_{CO} -(metal-CO₂) complex³⁸. Additionally, linear CO₂ adsorbed on the Ti³⁺ electron centers (formed as a result of the oxygen vacancy formation) (Figure 3-9) were also modeled. Triplet states of the oxygendeficient CO₂-TiO₂ clusters were also studied.

The charges on the CO_2 moieties from DFT level calculations on oxygendeficient and defect-free clusters are shown in Figure 3-10 Counterpoise uncorrected electronic interaction energies of CO_2 adsorption on the (010), (101) and (001) Ti6-5c defect-free and oxygen-deficient clusters are shown in Table 3-3. Table 3-4 shows the energies of electrons in the highest occupied orbitals of the (010) Ti6-5c triplet defectfree and oxygen-deficient clusters compared to the energy of the LUMO of CO₂.

Figure 3-8: TM-B3LYP/def2-SV(P) optimized geometry of the singlet (010) Ti6(Vo)-5cCO2-bent (Ti₆O₂₀H₁₈-CO₂) cluster. CO₂ adsorbs on the reduced (010) surface with bridging oxygen vacancies forming a negatively charged $CO_2^{\delta^{\bullet}}$ species, which resemble η^2 -(transition metal-CO₂) complexes. The bond lengths are in Å, the angles are in degrees. Only Ti, O (and CO₂) atoms on and adjacent to the (010), (101), (001) and (110) surfaces were relaxed from their positions in the bulk TiO₂ anatase crystal.

Figure 3-9: TM-B3LYP/def2-SV(P) optimized geometry of the singlet (010) Ti6(Vo)-5cCO2-linear (Ti₆O₂₀H₁₈-CO₂) cluster. CO₂ adsorbs linearly the reduced (010) surface with bridging oxygen vacancies. The linear complex is not stable compared to the bent-adsorption mode, shown in the previous figure. The bond lengths are in Å, the angles are in degrees. Only Ti, O (and CO₂) atoms on and adjacent to the (010), (101), (001) and (110) surfaces were relaxed from their positions in the bulk TiO₂ anatase crystal.

Table 3-3: Counterpoise uncorrected electronic interaction energies of CO_2 adsorption on various singlet and triplet (010), (101) and (001) defect-free clusters and those of singlet and triplet (010) oxygen-deficient cluster, calculated at the TM-B3LYP/def2-SV(P) level.

Cluster	Spin multiplicity	ΔE^{inter} , kJ/mol	Spin multiplicity	ΔE ^{inter} , kJ/mol
(001) Ti6-5cCO2	3	-38		
(101) Ti6-5cCO2	3	-33		
(010) Ti6-5cCO2	3	-41	1	-43
(010) Ti6(Vo)-5cCO2– linear	3		1	-58
(010) Ti6(Vo)-5cCO2- bent	3	11	1	-123

Table 3-4: Comparison of energies of LUMO of CO_2 with the highest SOMO of defectfree and oxygen-deficient Ti6- clusters and the highest SOMO of the surface complex ((010) Ti6(Vo)-5cCO2).

Molecular orbital	Energy, eV	
¹ CO _{2(g)} , LUMO	0.91	
³ (010) Ti6(Vo)-5c highest SOMO	-3.73	
³ (010) Ti6-5c highest SOMO	-4.29	
³ (010) Ti6(Vo)-5cCO2-bent highest SOMO	-4.38	

The electrons in the highest SOMO of the bare, oxygen-deficient cluster are higher in energy compared to those in the highest SOMO of the bare, defect-free cluster. Calculations were performed using the TM-B3LYP/def2-SV(P) model chemistry.

Figure 3-10: Natural charges of CO_2 species calculated from TM-B3LYP/def2-SV(P) level calculations on Ti6-5cCO2 clusters from various surface planes. a: triplet (010) Ti6-5cCO2, b: triplet (010) Ti6(Vo)-5cCO2-bent, c: singlet (010) Ti6(Vo)-5cCO2-bent, d: triplet (101) Ti6-5cCO2, e: triplet (001) Ti6-5cCO2. CO₂ gains electrons only from oxygen-deficient TiO₂ clusters.

3.6 Discussion

Why was no electron transfer to CO_2 from defect-free TiO₂ in the excited state predicted by these calculations? One reason is the energy level of the LUMO and HOMO of CO₂ with respect to those of TiO₂. As shown in Figure **3-11**, the LUMO of the clusters is far below the LUMO of CO₂. Increasing the size of the cluster (as shown in the (001) Ti₁₅O₄₁H₂₂ cluster) decreases the band (HOMO-LUMO) gap, but does not increase the energy of the LUMO. However, chemical interaction between the surface and the gasphase species (CO₂) can alter the energy level of the CO₂ LUMO. The interaction energies between CO_2 and the triplet defect-free (Ti6-5c) clusters shown in Table 3-3 do not indicate significant interaction. Therefore, due to this weak acid-base interaction (in the defect-free cluster models), the LUMO of CO_2 does not contribute strongly to the LUMO of the (CO_2 +Ti O_2) surface complex.

Figure 3-11: Positions of the bottom of the conduction band (LUMO) and top of the valence band (HOMO) for singlet $Ti(OH)_4H_2O$ (010), $Ti(OH)_4H_2O$ (001) clusters compared with those of a CO₂ molecule in the gas phase at the G03-B3LYP/6-31+G(d) level. A single point G03-B3LYP/GenECP calculation (LANL2DZ on Ti atoms, 6-31+G(d) on O, H) with the larger $Ti_{15}O_{41}H_{22}$ cluster was performed to calculate the HOMO and LUMO energies.

Another reason why no charge transfer is observed from excited-state cluster to CO_2 is the negative electron affinity of a single CO_2 molecule^{11, 12, 39}. $CO_{2(g)}$ is metastable with respect to electron detachment⁴⁰. Factors such as solvation could change the electron affinity of CO_2 . For example: recent high-level ab initio calculations have shown that $(CO_2)_4$ clusters, where the CO_2 essentially acts as a solvent stabilizing the

 $(CO_2)_4$ species, could have a positive vertical electron affinity³⁹. The implications of this cluster formation, in terms of selecting appropriate temperature and pressure conditions, as well as the choice of theoretical methods for modeling these reactions on the surface, are currently not well understood.

Mechanisms of CO_2 photocatalysis in the literature indicate that CO_2 gains electrons from the conduction band of TiO_2 . However, as shown in Figure 3-10, such transfer from defect-free surfaces is unlikely. Using larger clusters will further reduce the energy of the LUMO of the bare cluster. Therefore, any electrons in the conduction band produced by photoexcitation cannot be transferred to the LUMO of gas-phase CO_2 .

The photocatalyst surface plays a role in activating CO_2 by lowering the LUMO of CO_2 from its gas-phase value, possibly via decreasing the O-C-O bond angle. In one limiting case, this corresponds to the formation of carbonate-like species on the surface. However, the results from SAC-CI single point calculations on the carbonate-like species on the (010) anatase surface indicate that even the carbonate species do not gain appreciable electron density from the TiO₂ cluster in various excited states. Therefore, excited-state calculations on both linear and the bent-carbonate species indicate that they do not undergo charge transfer from the cluster.

Why does CO_2 gain electrons from oxygen-deficient clusters? The Tiⁿ⁺ ion has stable (formal) oxidation numbers of n= 2, 3 and 4. A missing oxygen atom would leave two extra electrons at the site of the vacancy. These electrons then reduce the adjacent two surface Ti⁴⁺ sites to Ti³⁺, creating surface electron-centers. As shown in Table **3-4**, the energies of the highest singly occupied molecular orbital (SOMO) of the (010) Ti6-5c cluster is ~0.5 eV larger than that of the (010) Ti6(Vo)-5c cluster (with the bridging oxygen vacancy). Therefore, electrons in the highest SOMO of the (010) Ti6(Vo)-5c cluster have more energy, compared to the defect-free cluster. Nevertheless, this energy difference is not the primary reason for the formation of the negatively charged species.

Electron transfer also requires that orbitals of similar symmetries overlap. Therefore, CO₂ should be located close to the Ti³⁺ atoms to form a surface complex where the CO₂ moiety gains electrons. Only initial configurations where CO₂ was located in the Ti-O-Ti plane, bridging the two Ti atoms, resulted in the formation of bent-CO₂ species. The presence of O atoms on a defect-free surface does not permit these interactions, due to the repulsion between the large oxide ions on the surface and the lone electron pairs on the oxygen atoms of CO₂. This is further shown in a comparison of the highest occupied molecular orbitals of the oxygen-deficient and defect-free clusters, shown in Figure 3-12. Overlap between the (C-O) π^* antibonding orbitals and the Ti(3d) orbitals is possible only when oxygen vacancies are present.

The bonding between CO₂ and the oxygen-deficient cluster leading to the bentadsorbed state resembles a η^2_{CO} (metal-CO₂) homogeneous complex³⁸. Therefore, overlap between the 3d-orbitals of the reduced Ti atom and the π^* antibonding orbitals of CO₂ may lead to such species⁴¹. The interaction energies (Table **3-3**) of bent-CO₂ species adsorbed on clusters containing oxygen vacancies are higher than those for the linearly adsorbed CO₂ on singlet defect-free clusters. This indicates that the singlet bent-CO₂ species are strongly bound to the surface. However, compared to the singlet bent-CO₂ species, the triplet bent-CO₂ species are weakly bound to the surface. Additionally, CO₂ adsorbed linearly on regular 5-c Ti⁴⁺ sites ((010) Ti6-5cCO2) interacts less strongly with the surface compared to the linear CO₂ species adsorbed on reduced 4-c Ti³⁺ sites ((010) Ti6(Vo)-5cCO2). This is consistent with the evidence for two-peak desorption of CO₂ obtained from thermal desorption spectroscopic (TDS) studies of CO₂ on reduced rutile (110) surfaces⁴². Moreover, the interaction energies in Table **3-3** indicate that the bent-CO₂ species (010 Ti6(Vo)-5cCO2-bent) is more stable than the CO₂ species linearly adsorbed at the oxygen vacancies (010 Ti6(Vo)-5cCO2-linear). Bent-CO₂ species have been observed on reduced polycrystalline powdered TiO₂ at low temperatures¹⁰.

Figure 3-12: The highest occupied molecular orbitals of various (010) Ti6- clusters with and without CO₂. (Plotted with the gOpenMol visualization program^{35, 36}) (a): triplet oxygen-deficient (Ti6(Vo)-5c) bare cluster,(b): singlet oxygen-deficient (Ti6(Vo)-5c) bare cluster, (c): triplet defect-free (Ti6-5c) bare cluster, (d): singlet bent-CO₂ species adsorbed on the oxygen-deficient cluster (Ti6(Vo)-5cCO2-bent) plotted at an isocontour value of 0.1 e^{1/2}/Å^{3/2}. The HOMO of cluster (d) consists of both the Ti(3d) orbital (similar to those in (a) and (b)) and the π^* (C-O) orbitals of CO₂.

Whether or not the original Ti^{3+} centers could be regenerated by interaction with light, or whether $CO_2^{\delta^*}$ formation is a stoichiometric reaction is an open question. Using infrared spectroscopic studies on reduced polycrystalline rutile powders, Raskó and Solymosi¹⁰ found that CO_2 adsorbed on the oxygen vacancies forming a bent- CO_2 species. The intensity of the bands corresponding to C-bent CO_2 species increased upon irradiation, indicating further charge transfer from reduced TiO_2 to CO_2 upon irradiation, but no CO formation via CO_2 dissociation was observed. On the other hand, experiments at higher temperatures by Raupp and Dumesic⁴³ as well as recent surface studies by Wilson et al.⁴⁴ showed that CO_2 underwent dissociation and further reactions on reduced TiO_2 surfaces, leading to stoichiometric consumption of the oxygen vacancy. Further work is therefore required to compare the geometries, IR frequencies and other characteristics of these species to the ones observed during previous experimental studies.

Experimental studies of well defined anatase surfaces have begun only in the past ten years, whereas rutile TiO₂ surfaces are relatively better understood. Because real crystalline surfaces always have defects, studies of anatase surface reconstructions and steps⁴⁵⁻⁵⁰ will help identify other surface features that could promote CO₂ photoreduction. Anatase surfaces have a lower concentration of oxygen vacancies compared to rutile⁵¹. However, doping, either with cations or anions, could result in the formation of oxygen vacancies/other defects. In contrast to O₂ photoreduction, which has been modeled on defect-free anatase surfaces²¹, CO₂ photoreduction likely requires surface/bulk defects.

3.7 Conclusions

Using a combination of both post-HF calculations on small model (TiO₂:CO₂) clusters, as well as DFT calculations on larger CO₂-TiO₂ clusters, we have shown that charge transfer from defect-free TiO₂ surfaces to CO₂ is energetically unfavorable. DFT calculations on triplet defect-free clusters indicate that the interaction between CO₂ and the excited stoichiometric TiO₂ surface do not lead to charge transfer to CO₂. CO₂ photoreduction mechanisms in the literature assume that CO₂ gains electrons from the conduction band of TiO₂. However, our results show that such electron transfer may only be mediated by surface defects. This work therefore underscores the significance of defects such as steps, kinks and vacancies on anatase TiO₂ surfaces in promoting electron transfer to CO₂ in the excited state. The role of defects in catalytically promoting CO₂ photoreactions needs to be investigated. These computations will serve as guidelines for in situ irradiated single crystal studies of CO₂ on anatase, by which structures of adsorbates at well-defined surfaces can be obtained.

3.8 References

1. Aresta, M.; Dibenedetto, A., Utilisation of CO2 as a chemical feedstock: opportunities and challenges. *Dalton Transactions* **2007**, (28), 2975-2992.

^{2.} Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature (London, United Kingdom)* **1979**, 277, (5698), 637-8.

^{3.} Fujita, E., Photochemical carbon dioxide reduction with metal complexes. *Coordination Chemistry Reviews* **1999**, 186, 373-384.

^{4.} Lin, W.; Frei, H., Photoactivation of Ti centers in mesoporous silicate sieve under visible and UV light. *Studies in Surface Science and Catalysis* **2004**, 153, (Carbon Dioxide Utilization for Global Sustainability), 283-288.

5. Wovchko, E. A.; Yates, J. T., Jr., Photochemical Activation of CO2 on RhI(CO)2/Al2O3-CO2 Dissociation and Oxygen Atom Exchange. *Journal of the American Chemical Society* **1998**, 120, (30), 7544-7550.

6. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. *Catalysis Today* **1998**, 44, (1-4), 327-332.

7. Zhang, S. G.; Fujii, Y.; Yamashita, K.; Koyano, K.; Tatsumi, T.; Anpo, M., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. *Chemistry Letters* **1997**, (7), 659-660.

8. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. *Journal Of Physical Chemistry B* **1997**, 101, (14), 2632-2636.

9. Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P., Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. *Industrial & Engineering Chemistry Research* **2006**, 45, (8), 2558-2568.

10. Rasko, J.; Solymosi, F., Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. *Journal of Physical Chemistry* **1994**, 98, (29), 7147-7152.

11. Schroder, D.; Schalley, C. A.; Harvey, J. N.; Schwarz, H., On the formation of the carbon dioxide anion radical CO2-.bul. in the gas phase. *International Journal of Mass Spectrometry* **1999**, 185/186/187, 25-35.

12. Sommerfeld, T., A fresh look at the (2)A(1) CO2- potential energy surface. *Journal of Physics B-Atomic Molecular And Optical Physics* **2003**, 36, (7), L127-L133.

13. Sommerfeld, T.; Meyer, H. D.; Cederbaum, L. S., Potential energy surface of the CO2- anion. *Physical Chemistry Chemical Physics* **2004**, 6, (1), 42-45.

14. Xu, Y.; Schoonen, M. A. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. *American Mineralogist* **2000**, 85, (3-4), 543-556.

15. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision D.01, Gaussian Inc.: Wallingford, CT, 2004.

16. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C., Electronic structure calculations on workstation computers: The program system Turbomole. *Chemical Physics Letters* **1989**, 162, (3), 165.

17. Zhanpeisov, N. U.; Fukumura, H., Oxygen vacancy formation on rutile TiO2(110) and its interaction with molecular oxygen. A theoretical density functional theory study. *Journal of Physical Chemistry C* **2007**, 111, (45), 16941-16945.

18. de Lara-Castells, M. P.; Mitrushenkov, A. O.; Roncero, O.; Krause, J. L., Adsorption and nonadiabatic processes in the photodesorption of molecular oxygen from the reduced TiO2(110) surface. *Israel Journal of Chemistry* **2005**, 45, (1-2), 59-76.

19. Kubicki, J. D.; Kwon, K. D.; Paul, K. W.; Sparks, D. L., Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite. *European Journal Of Soil Science* **2007**, 58, (4), 932-944.

20. Paul, K. W.; Kubicki, J. D.; Sparks, D. L., Sulphate adsorption at the Fe(hydr)oxide-H2O interface: comparison of cluster and periodic slab DFT predictions. *European Journal of Soil Science* **2007**, 58, 978-988.

21. Belelli, P. G.; Ferullo, R. M.; Branda, M. M.; Castellani, N. J., Theoretical modeling of photocatalytic active species on illuminated TiO2. *Applied Surface Science* **2007**, 254, (1), 32-35.

22. Shapovalov, V.; Stefanovich, E. V.; Truong, T. N., Nature of the excited states of the rutile TiO2(1 1 0) surface with adsorbed water. *Surface Science* **2002**, 498, (1-2), L103.

23. Hadjiivanov, K. I.; Klissurski, D. G., Surface chemistry of titania (anatase) and titania-supported catalysts. *Chemical Society Reviews* **1996**, 25, (1), 61-&.

24. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. *Journal of Physical Chemistry B* **2005**, 109, (2), 977-980.

25. Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. *Journal of Physical Chemistry B* **2003**, 107, (19), 4545-4549.

26. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Quantum Chemical Modeling of Ground States of CO2 Chemisorbed on Anatase (001), (101), and (010) TiO2 Surfaces. *Energy & Fuels* **2008**, 22, (4), 2611-2618.

27. Becke, A. D., A New Mixing Of Hartree-Fock And Local Density-Functional Theories. *Journal of Chemical Physics* **1993**, 98, (2), 1372-1377.

28. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. *Physical Review B* **1988**, 37, (2), 785-789.

29. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural-Population Analysis. *Journal of Chemical Physics* **1985**, 83, (2), 735-746.

30. Mulliken, R. S., Electronic Population Analysis on LCAO[Single Bond]MO Molecular Wave Functions. I. *The Journal of Chemical Physics* **1955**, 23, (10), 1833.

31. Neese, F.; Olbrich, G., Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid density functionals. *Chemical Physics Letters* **2002**, 362, (1-2), 170-178.

32. Schafer, A.; Horn, H.; Ahlrichs, R., Fully optimized contracted Gaussian basis sets for atoms Li to Kr. *The Journal of Chemical Physics* **1992**, 97, (4), 2571.

33. Sierka, M.; Hogekamp, A.; Ahlrichs, R., Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. *The Journal of Chemical Physics* **2003**, 118, (20), 9136.

34. Bonapasta, A. A.; Filippone, F., Photocatalytic reduction of oxygen molecules at the (100) TiO2 anatase surface. *Surface Science* **2005**, 577, (1), 59-68.

35. Laaksonen, L., A Graphics Program For The Analysis And Display Of Molecular-Dynamics Trajectories. *Journal of Molecular Graphics* **1992**, 10, (1), 33-&.

36. Bergman, D. L.; Laaksonen, L.; Laaksonen, A., Visualization of solvation structures in liquid mixtures. *Journal of Molecular Graphics & Modelling* **1997**, 15, (5), 301-306.

37. Capel-Sanchez, M. C.; Peña-O'Shea, V. A. d.; Barrio, L.; Campos-Martin, J. M.; Fierro, J. L. G., TD-DFT analysis of the electronic spectra of Ti-containing catalysts. *Topics in Catalysis* **2006**, 41, (1), 27.

38. Gibson, D. H., Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? *Coordination Chemistry Reviews* **1999**, 185-186, 335-355.

39. Sommerfeld, T.; Posset, T., Electron attachment to CO2 clusters. *Journal of Chemical Physics* **2003**, 119, (15), 7714-7724.

40. Freund, H. J.; Roberts, M. W., Surface chemistry of carbon dioxide. *Surface Science Reports* **1996**, 25, (8), 227-273.

41. Busca, G.; Lorenzelli, V., Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. *Materials Chemistry* **1982**, 7, (1), 89-126.

42. Thompson, T. L.; Diwald, O.; Yates, J. T., Jr., CO2 as a Probe for Monitoring the Surface Defects on TiO2(110)-Temperature-Programmed Desorption. *Journal of Physical Chemistry B* **2003**, 107, (42), 11700-11704.

43. Raupp, G. B.; Dumesic, J. A., Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states. *Journal of Physical Chemistry* **1985**, 89, (24), 5240-6.

44. Wilson, J. N.; Senanayake, S. D.; Idriss, H., Carbon coupling on titanium oxide with surface defects. *Surface Science* **2004**, 562, (1-3), L231-L237.

45. Gong, X. Q.; Selloni, A.; Batzill, M.; Diebold, U., Steps on anatase TiO2(101). *Nature Materials* **2006**, *5*, (8), 665-670.

46. Gong, X. Q.; Selloni, A., Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface. *Journal of Physical Chemistry B* **2005**, 109, (42), 19560-19562.

47. Diebold, U.; Ruzycki, N.; Herman, G. S.; Selloni, A., One step towards bridging the materials gap: surface studies of TiO2 anatase. *Catalysis Today* **2003**, 85, 93-100.

48. Ruzycki, N.; Herman, G. S.; Boatner, L. A.; Diebold, U., Scanning tunneling microscopy study of the anatase (100) surface. *Surface Science* **2003**, 529, L239-L244.

49. Lazzeri, M.; Selloni, A., Stress-driven reconstruction of an oxide surface: The anatase TiO2(001)-(1x4) surface. *Physical Review Letters* **2001**, 87, (26).

50. Hengerer, R.; Bolliger, B.; Erbudak, M.; Gratzel, M., Structure and stability of the anatase TiO2 (101) and (001) surfaces. *Surface Science* **2000**, 460, (1-3), 162-169.

51. Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J., Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. *Surface Science Reports* **2007**, 62, (6), 219.

Chapter 4

A density functional theory of CO₂ adsorption on oxygen vacancies on rutile (110) and anatase (010), (001) surfaces: Implications for spectroscopic studies and photoreduction of CO₂ on irradiated TiO₂

4.1 Abstract

Defects, such as oxygen vacancies, are responsible for many chemical reactions on metal oxide surfaces. The role of oxygen vacancies in promoting the light-induced conversion of CO_2 (CO_2 photoreduction) on TiO_2 surfaces is discussed in this chapter. In the first part of this study, we modeled various ground-state configurations of CO_2 adsorbed on reduced TiO_2 , a model oxide surface, using clusters from several TiO_2 surface planes. Initially, ground-state CO_2 adsorption on clusters from oxygen-deficient rutile (110) TiO_2 surfaces was studied. The results were compared against available experimental data. Subsequently, CO_2 adsorption on clusters from oxygen-deficient anatase surface planes was studied. Both linear and bent- CO_2 species were modeled on all surfaces. Two different side-on bonded CO_2 (bridging $Ti-CO_2^{\delta t}$ -Ti species) were formed on the rutile (110) and the anatase (010) surfaces. We did not find evidence for Cbonded CO_2 species on the anatase (010), (001) and rutile (110) surface planes. These results call for a re-interpretation of experimental Fourier transform infra red (FTIR) data of CO_2 adsorption on reduced TiO_2 surfaces.

In the next part of this chapter, plausible photocatalytic reactions of the bent CO_2 species that lead to reduced C_1 compounds are discussed. Consistent with CO_2 adsorption

on other n-type metal oxides such as ZrO_2 , the bent- CO_2 species do not gain further charge from the TiO₂ surface under illumination. Subsequently, pathways involving the formation of C₁ compounds via reaction of the bent- CO_2 species with water were investigated. Although the formation of species such as CO and HCHO is thermodynamically possible, we find that the energy needed to regenerate the oxygen vacancy on TiO₂ surfaces is greater than that available through band-gap illumination. Therefore, CO₂ reactions with water on irradiated TiO₂ surfaces are likely to be stoichiometric.

4.2 Introduction

"..an important issue in TM oxide-based heterogeneous catalysis is the role of surface defects in determining the activity and selectivity of the catalyst. The existence of reduced surface centers — and hence the presence of neutral oxygen vacancies — is sometimes necessary for any activity."

- Ganduglia-Pirovano et al.¹

Oxygen vacancies are among the most common defects on metal oxide surfaces. A good overview on oxide catalysts, and the role of defects in their catalytic activity, is provided by Haber². In the past, different probe molecules, (such as O_2 , CO_2 , or small organic molecules) have been used to characterize defect sites. Most studies have been reported on the well-defined surfaces from the rutile phase of TiO₂. At elevated temperatures, TiO₂ forms a variety of sub-oxides such as TiO_{1.985}^{3, 4}. The surface defect structure of TiO₂ and related oxides, and the importance of so-called dangling bonds to the surface properties, is summarized by Masel⁵. On the other hand, anatase is the more

common catalytically active polymorph, and is extensively used in paints and pigments³ and supports for industrial catalysts. Anatase is also a major component of the Degussa P25 formulation of TiO₂, used in many photocatalytic studies. The focus of this chapter is the activation of CO₂ at oxygen vacancies on rutile (110) and anatase (010), (001) and (101) surfaces. Our previous computational studies showed that CO₂ photoreduction may be promoted at defects such as oxygen vacancies on TiO₂⁶. Moreover, experimental studies by Raskó and Solymosi⁷ and Chen et al.⁸ also pointed to a role for oxygen vacancies. The role of oxygen vacancies in activating CO₂ may not be limited to TiO₂ alone. For example, using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach to study the conversion of CO₂ to methanol, French et al.⁹ proposed oxygen vacancies on ZnO surfaces to be the active sites for its hydrogenation to methanol.

While it is known that anatase is more difficult to reduce than rutile, the exact electronic state of reduced anatase surfaces is a subject of debate and research¹. The use of gradient-corrected functionals has been shown to result in metallic conducting ground-states, whereas hybrid functionals such as B3LYP result in the excess electrons being localized on the nearest or next- nearest Ti atoms.

Using periodic DFT calculations, Wu et al.¹⁰ demonstrated that oxygen-deficient rutile (110) surfaces mediate the stoichiometric oxidation of CO to CO₂. They noted that both oxygen adsorption as well as CO oxidation required the presence of surface oxygen vacancies (SOVs). However, the reaction was not catalytic and resulted in the consumption of the SOV, leading to a stoichiometric surface. On the other hand, similar calculations for the adsorption of O₂ on anatase (100) surfaces containing SOVs showed

that O_2^{\bullet} could be desorbed from the surface upon photoexcitation¹¹, thus making the process photocatalytic.

DFT calculations have also been used to study CO_2 interactions with other metal oxide surfaces as well. Florez et al.¹² used embedded-cluster DFT calculations to study the dissociative adsorption of CO_2 on MgO surfaces. In contrast to MgO, TiO₂ is a less ionic metal oxide (with Ti and O atomic "*natural*" charges of approximately +2 and -1). (A good review of various "types" of oxides is provided by Cotton et al.¹³). Due to this, studies by Bredow et al.¹⁴ and de Lara-Castells and Krause¹⁵ have shown that even hydrogen-saturated two-Ti atom clusters could model the local adsorption of O₂ on the oxygen vacancy.

 CO_2 has been used as a probe to study the oxygen vacancies on (rutile) TiO₂ surfaces. Henderson¹⁶ observed only linearly adsorbed CO₂ species with vibrational high resolution electron energy loss spectrometry on vacuum-annealed rutile (110) surfaces. A *precursor-mediated* reaction between CO₂ and H₂O to form bicarbonate on the oxygen-deficient surface was proposed. Temperature-desorption spectroscopy studies showed that CO₂ interacted with the oxygen vacancies and the normal Ti⁴⁺ sites differently. Surface oxygen vacancies bound CO₂ slightly more strongly than regular Ti⁴⁺ sites. Similar results were obtained by Funk and Burghaus¹⁷.

On the other hand, low-temperature studies by Raskó and Solymosi⁷ offered evidence for *bent* CO₂ species interacting with electron centers (Ti³⁺) to form negatively charged CO₂[•] species. These authors, however, did not observe evidence for CO formation on reduced TiO₂ surfaces at low temperatures (195 K). Both *C-end bonded* as well as *side-on bent* CO₂ species were observed after CO₂ adsorption on TiO₂. The exact

form by which CO_2 adsorbs on reduced TiO_2 surfaces is important, because, if further reactions were to occur at the SOV site, CO_2 must not be bound too strongly. On the other hand, weak acid-base interaction between the Ti^{3+} center and CO_2 molecule will not result in effective charge transfer to CO_2 . This is common to many photocatalytic processes¹⁸.

Using surface-sensitive techniques at temperatures higher than those used by Raskó and Solymosi⁷, Raupp and Dumesic¹⁹ found that CO₂ dissociatively adsorbed on a polycrystalline reduced TiO₂. This is consistent with the findings of Wu et al.¹⁰, that CO₂ dissociation to CO on a defective TiO₂ (110) surface is exothermic by ~0.8 eV. Therefore CO oxidation to CO₂ on the reduced rutile (110) surface is stoichiometric. Bent-CO₂ species (CO₂^{δ -}) have been observed as intermediates in CO oxidation to CO₂. It is, however, not clear whether the interaction of light with bent-CO₂ species adsorbed on reduced TiO₂ surfaces could make the process catalytic.

Raskó and Solymosi⁷ studied the adsorption of CO_2 on TiO_2 surfaces prepared with various pretreatment procedures. The exact composition of their TiO_2 sample is somewhat under question, because they reportedly used Degussa P25 TiO_2 in the rutile phase. However, Degussa P25 is commonly ~80% anatase and 20% rutile. The pretreatment temperatures reported in reference 7 did not exceed 673 K. Therefore, if the original sample was a mixed-phase titania, the anatase phase would have still been present during experiments. The exact phase (as well as exact surface plane) is important, because it controls the surface activity. Moreover, it will also help understand which phase of P25 is the more active towards the activation of CO_2 . Raskó and Solymosi⁷ assigned (1674, 1310 cm⁻¹) to bent CO₂ species side-on bonded to Ti³⁺ (side-on bonded CO₂) and (1640-1630, 1219 cm⁻¹) to bent CO₂ species bonded with the C-end to Ti³⁺ (referred to as C-end bonded CO₂). Upon evacuation, only the C-end bonded species were stable, whereas the peaks at 1674-1676 and 1244-1241 cm⁻¹ disappeared. While it is possible that the side-on bonded species would have a higher vibrational frequency compared to the less strongly bound C-end bonded species, it is difficult to imagine how the C-end bonded species would be more stable than the side-on bonded species. We note that in the case of homogeneous metal-CO₂ complexes, CO₂ species with C-bonded to a metal center are considered to be less stable than η^2 -CO-(metal-CO₂) complexes²⁰ exhibiting a metal-(CO) coordination (similar to the *side-on bent* species proposed in to in reference 7). Therefore, if C-bonded CO₂⁵⁺ forms on TiO₂ surfaces, it might desorb more readily compared to the side-on bent species, contrary to the assignments of Raskó and Solymosi⁷.

We previously found evidence for the formation of side-on bent CO_2 species on anatase (010) $SOVs^{21}$. The relative reactivities of both side-on bent as well as C-bonded bent species on TiO₂ surfaces are not well known.

The questions addressed in this study are:

a) Is there a difference CO_2 adsorption (IR frequencies) as bent CO_2 between anatase and rutile model clusters?

b) Can DFT methods model the formation of C-end bonded bent CO₂ on SOVs of rutile (110), anatase (001), anatase (101) and anatase (010) clusters?

c) What is the fate of the bent CO₂ species thus formed on these surfaces?

In an earlier study, we have shown that defect-free anatase TiO₂ surfaces are highly unlikely to mediate CO₂ photoreduction²¹. In the present study, we therefore performed ground-state CO₂ adsorption studies on oxygen-deficient clusters from rutile (110), anatase (010), (001) and (101) surfaces. We compare the results—especially, the predicted vibrational frequencies of various CO₂ species and their relative CO₂-bare cluster interaction energies—with those from single-crystal studies (e.g., those of Henderson¹⁶) as well as polycrystalline studies⁷ using the rutile polymorph of TiO₂. Subsequently, similar calculations were performed on the anatase (010), (001) and (101) surfaces. Finally, the implications of CO₂ adsorption on SOVs for CO₂ photoreduction are discussed.

4.3 Computational Methods

All computations were performed in Turbomole $V5.9^{22}$. The B3LYP functional and the def2-SV(P) basis set were used. The calculations on small clusters with the def2-SV(P) basis set were performed without using the Resolution-of-Identity (RI) approximation. Basis set effects were tested by a B3LYP/TZVPP calculation using the multipole-accelerated-resolution-of-identity-*J* (MARI-*J*) approximation and the TZVPP auxiliary basis set and a similar behavior was observed. Atomic charges for all clusters were calculated using natural population analysis²³ (NPA). All geometry optimizations were performed using default optimization criteria and the m3 grid.

4.3.1 Adsorption of CO₂ on oxygen vacancies on the rutile (110) surface

de Lara-Castells and Krause¹⁵ used a non-stoichiometric $Ti_2O_9H_{11}^{-1}$ cluster to model the reduced rutile (110) surface, while Bredow used a non-stoichiometric neutral $Ti_2O_9H_{12}$ cluster to simulate the oxygen vacancy. However, the cluster used by Bredow had a two-coordinate (2-c) bridging O atom at the bottom, whereas that used by de Lara-Castells and Krause had correct coordination for the bridging O atoms. Combining these two features, a neutral, non-stoichiometric, $Ti_2O_9H_{12}$ cluster (denoted as $Ti2Vo_110$) was used in this study. Cerius² (MSI Inc.) was used to generate the (110) surface from the rutile bulk crystallographic data. Dangling bonds were saturated by adding hydrogen atoms at similar positions to Ti atoms in the bulk.

All O-H bond distances were initially kept at 0.97 Å. Only atoms on and adjacent to the (110) surface were optimized. (Only four atoms, bridging oxygens and the Ti atoms, in addition to CO₂, were relaxed.) Initially, neutral bare cluster geometries were studied. The singlet state of the oxygen-deficient cluster was the ground state. Subsequently, nine different configurations for CO₂ adsorption were modeled, and five unique configurations obtained. The Ti₂O₉H₁₂:CO₂ clusters are denoted as Ti₂Vo_110_CO2(a-e).

Counterpoise uncorrected electronic interaction energies were calculated for these clusters using the following formula Eq. 4.1 :

$$\Delta E_{inter} = (E_{Ti2_110} + E_{CO2} - E_{Ti2_110_CO2}) * 27.2116 * 96.485$$
kJ/mol

To calculate vibrational frequencies, all atoms of selected clusters were relaxed and harmonic vibrational frequencies were calculated. The results did not have any imaginary frequencies. The frequencies thus obtained were scaled by 0.9614²⁴.

4.3.2 Adsorption of CO₂ on oxygen vacancies on the anatase (010) and (001) surfaces

A neutral, stoichiometric (010) $Ti_2O_8H_{10}$ cluster was used to model the oxygen vacancies on the anatase (010) surface. CO₂ adsorption on the oxygen vacancy was studied by varying the initial configurations of CO₂. CO₂ adsorption on larger clusters, containing six Ti atoms, $Ti_6O_{20}H_{18}$ (denoted Ti6Vo_010 and Ti6Vo_001), were also modeled in this study. The IR frequencies and electronic interaction energies were calculated using procedures similar to those used for the rutile Ti2Vo_110 clusters, described above.

4.3.3 Excited state calculations of various bent-CO₂ species on anatase surface planes

Frontier orbital analysis of various bent-CO₂ species was performed by plotting the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) using gOpenmol^{25, 26} at an isocontour value of 0.1 $e^{1/2}/Å^{3/2}$. Subsequently, geometry optimization was performed on selected clusters.

4.4 Results and Discussion

4.4.1 Adsorption of CO₂ on oxygen vacancies on the rutile (110) surface

Due to the break in symmetry, different configurations for the location of the twelfth atom (H atom) in the bare cluster are possible. The H atom was placed on the O atom, resulting in the cluster with the least single-point energy. The five starting configurations used are shown in Figure 4-1(a-e). They are mainly determined by the position of the CO_2 with respect to the Ti-O-Ti plane of the cluster. Partially relaxed geometries of these configurations (where only four atoms of the cluster and CO_2 were relaxed) are shown in Figure 4-2 (a-e). Only the titanium and the bridging two-coordinate (2-c) O atoms of the cluster were relaxed.

Figure 4-1: Initial configurations for CO_2 adsorption on reduced rutile Ti2Vo_110 - clusters. The C atom was located 2.2 Å from Ti atom. Only configurations shown in (c-d) resulted in bent-CO₂ species. Configuration e resulted in a surface bicarbonate species.

The mode of binding affects whether charge transfer occurs to CO₂. In Figure 4-2 (a-b), CO₂ primarily adsorbs as a linear species, in which the OCO bond angle is slightly more distorted in (b) compared to (a). Two bent-CO₂ species were modeled, shown in Figure 4-2c and Figure 4-2d. The notation for metal-CO₂ complexes used by Gibson²⁰ is used to differentiate between bent-CO₂ species Ti2Vo_110_CO2c-d. Accordingly, the Ti2Vo_110_CO2c species is assigned as a μ_2 - η^4 species (because it has four bonds involving CO₂ and the two Ti atoms) and the Ti2Vo_110_CO2d is assigned as a μ_2 - η^3 species (three bonds involving CO₂ and two Ti atoms). The Ti-Ti bond distance also increased slightly from 2.78 Å in the case of the linearly bonded CO₂ species to 2.88-2.92 Å for the bent-CO₂ species. Additionally, although the OCO bond angle in Figure 4-2d is lower than that shown in Figure 4-2c, the charge of the CO₂^{\delta+-} moiety is almost the same in both cases, as shown in Table 4-1.

Interaction of CO₂ with the oxygen (3-c) atoms leads to the formation of the bicarbonate-like species shown in Figure 4-2e. From the interaction energies presented in Table 4-2, it is clear that among the bent-CO₂ species, the μ_2 - η^3 species is more stable than the μ_2 - η^4 bent-CO₂ species. Both of these bent-CO₂ species are more stable than the linearly adsorbed CO₂. The bicarbonate-like species, in turn, is more stable than the bent-CO₂ species

Figure 4-2: Partially relaxed geometries, using initial configurations shown in Figure 4-1, (denoted as $Ti2Vo_{110}CO2(a-e)$), from B3LYP/def2-SV(P) calculations. Configurations shown in (c-d) resulted in bent-CO₂ species. The bond distances are in Å, the angles are in degrees.

Table 4-1: Type of bonding, C-O bond lengths, OCO bond angles and $CO_2^{\delta^{*-}}$ natural charges for bent-CO₂ species on anatase and rutile TiO₂ clusters. The results indicate that the structure of the surface plays a primary role in determining the amount of charge transferred to CO₂.

Cluster	Type of bonding	C-O, Å	<o-c-o, degrees<="" th=""><th>Natural charge of the $CO_2^{\delta^{\bullet^{-}}}$ moiety</th></o-c-o,>	Natural charge of the $CO_2^{\delta^{\bullet^{-}}}$ moiety
Ti6Vo_010_CO2_a	μ_1 - η^2	1.202 1.303	130.3	-0.64
Ti2Vo_010_CO2_1	μ_1 - η^2	1.206 1.282	133.1	-0.61
Ti2Vo_010_CO2_2	μ_2 - η^3	1.197 1.316	131.8	-0.62
Ti6Vo_001_CO2	μ_2 - η^3	1.249 1.285	126.2	-0.70
Ti2Vo_110_CO2c	μ_2 - η^4	1.221 1.229	138.1	-0.45
Ti2Vo_110_CO2d	μ_2 - η^3	1.185 1.339	130.8	-0.45

Table 4-2: Counterpoise uncorrected electronic interaction energies of various configurations of CO_2 adsorbed on rutile (110), obtained by B3LYP/def2-SV(P) calculations. The interaction energies of the bent-CO₂ species are higher than those of the linear-CO₂ species, while the bicarbonate-like species is the most stable of all.

Cluster	Description	ΔE^{inter} , kJ/mol	
Ti2Vo_110_CO2a	Linear	-34	
Ti2Vo_110_CO2b	Linear	-46	
Ti2Vo_110_CO2c	Bent, μ_2 - η^4	-73	
Ti2Vo_110_CO2d	Bent, μ_2 - η^3	-96	
Ti2Vo_110_CO2e	Bicarbonate	-109	

This non-exhaustive conformation search did not result in configurations that could lead to C-bonded CO₂ species, which represent η^1 -C coordination between CO₂ and the metal center. However, Ramis et al.²⁷ and Raskó and Solymosi⁷ both assigned bands in the IR spectrum to side-on bent and C-bonded CO₂ species upon CO₂ adsorption on TiO₂. We note here that the most stable structures for CO₂ adsorption on the Co(110) surface from DFT studies²⁸ also correspond to structures somewhat similar to μ_2 - η^3 and μ_2 - η^4 configurations shown in Figure 4-2. The "short-bridge" configuration on the Co(110) surface shown by de la Peña O'Shea et al.²⁸ is similar to the Ti2Vo_110_CO2c (μ_2 - η^4) species observed in this study.

4.4.2 Adsorption of CO₂ on oxygen vacancies on the anatase (010) and (001) surfaces

Bent-CO₂ species formed on anatase surfaces are shown in Figure 4-3. Similar to the rutile (110) surface, two kinds of bent-CO₂ species, $(\mu_1-\eta^2)$ and $(\mu_2-\eta^3)$, were observed on the anatase (010) surface. The $(\mu_1-\eta^2)$ species (Ti6Vo_010_CO2_1 and Ti2Vo_010_CO2_2) converted to bridged $(\mu_2-\eta^4)$ bent-CO₂ species similar to Ti2Vo_110_CO2_c (from Figure 4-2) upon relaxing all cluster atoms. Various configurations did not result in the formation of the C-bonded CO₂ species. The geometries of bent CO₂ species in Figure 4-3a (Ti6Vo_010_CO2_1 cluster) are somewhat similar to those in Figure 4-3b (Ti2Vo_010_CO2_2 cluster). The OCO bond angles (130° for the Ti6Vo_010_CO2_1 cluster and 133° for Ti2Vo_010_CO2_2 cluster) are different, but the O-C bond lengths (1.303 Å and 1.202 Å for the Ti6Vo_010_CO2_1 cluster) are comparable. This indicates that small two-Ti-atom clusters could be used in place of the larger, more computationally expensive Ti6- clusters.

 CO_2 forms a (μ_2 - η^3) complex on the anatase (001) surface, similar to the "longbridge" configuration of de la Peña O'Shea et al.²⁸, but the bond angles and O-C bond lengths observed for the Ti6Vo_001_CO2 cluster in Figure **4-3**d are different from those calculated on the Co(110) surface. The O-C bond lengths are ~1.25 and 1.29 Å for the Ti6Vo_001_CO2 cluster, compared to 1.24 Å for "long-bridged" CO₂ species on the Co(110) surface. Similarly, the OCO bond angle for the Ti6Vo_001_CO2 cluster is significantly smaller compared to the 135° bond angle of "long-bridged" CO₂ on the Co(110) surface.

Figure 4-3: Partially relaxed geometries of bent-CO₂ species from anatase surfaces from B3LYP/def2-SV(P) calculations. (a) (010) surface, 6 Ti atom cluster (Ti6Vo_010_CO2_a), (b) (010) surface, 2 Ti atom cluster: (Ti2Vo_010_CO2_1), (c) (010) surface, 2 Ti atom cluster (Ti2Vo_010_CO2_2), (d): (001) surface, 6 Ti atom cluster (Ti6Vo_001_CO2). Species (a) and (b) converted to bridged (μ_2 - η^4) bent-CO₂ species similar to Ti2Vo_110_CO2_c (from Figure 4-2) upon relaxing all cluster atoms. Similar to the rutile (110) surface, two kinds of bent-CO₂ species are observed on the anatase (010) surface. The bond distances are in Å, the angles are in degrees.

4.4.3 Vibrational frequencies of relaxed bent-CO₂ species

To compare the IR frequencies of bent-CO₂ species with experimental results, we fully relaxed the bent-CO₂ clusters from anatase and rutile surfaces, and calculated the scaled harmonic vibrational frequencies. Previous studies by Ramis et al.²⁷, Raskó and Solymosi⁷ and Papai et al.²⁹ were used to provide data for comparisons. These frequencies, along with similar results from anatase (010) and (001) surface planes, are shown in Figure 4-4. The experimental data used for comparisons are shown in Table 4-3. The assignments of the side-on bonded and C-end bonded bent $CO_2^{\delta^{\bullet}}$ species by Ramis et al.²⁷, and Raskó and Solymosi⁷ are inconsistent with earlier observations of CO₂ chemisorption on metal oxides by Busca and Lorenzelli³⁰. Busca and Lorenzelli attributed species exhibiting high values of Δv_3 splittings (such as 1750, 1150 cm⁻¹) and low thermal stabilities to "side-on" bent-CO₂ species exhibiting a η^2_{CO} coordination, whereas Ramis et al.²⁷ assigned these frequencies to C-bonded bent-CO₂ species having a η^{1}_{C} coordination to the Ti³⁺ electron centers. Our previous work³¹ on CO₂ adsorption as carbonate on various anatase surface planes also revealed evidence for carbonate-like species with high Δv_3 splittings. Therefore, high Δv_3 splittings measured experimentally might not always be indicative of negatively charged $CO_2^{\delta^{-}}$ species. Papai et al.²⁹ calculated vibrational frequencies at 1800 cm⁻¹ and 1000 cm⁻¹ through DFT studies of η^2_{CO} (side-on) CO_2^{δ} species. Compared to η^2_{CO} species, the μ_2 - η^3 species would be bound more strongly to the surface, resulting in higher frequencies.

Our modeling did not reveal C-bound CO_2 species having a η^1_C coordination to the surface Ti³⁺ to be a stable species at 0 K. Therefore, the assignment of bent-CO₂ species

to C-bound CO₂ species is in question. Nevertheless, from Figure 4-4, and Figure 4-5 it is clear that the vibrational frequencies for $\text{CO}_2^{\delta^{\bullet-}}$ species adsorbed on reduced rutile (110) surface are more consistent with the experimental values than corresponding values for $\text{CO}_2^{\delta^{\bullet-}}$ species on anatase surfaces.

Table 4-3: Experimental IR frequencies attributed to bent-CO₂ species on TiO_2 (from literature).

	Side-on bonded CO ₂		C-end bonded CO ₂	
	v_1, cm^{-1}	v_2, cm^{-1}	v_1, cm^{-1}	v_2, cm^{-1}
Raskó & Solymosi ⁷	1674	1310	1630-1640	1219
Ramis et al. ²⁷	1668	1315	1713, 1750	1150

From Figure 4-4 and Figure 4-3, the larger (010) anatase Ti6- cluster gives results similar to the (010) anatase Ti2-cluster. Therefore, CO_2 adsorption on reduced TiO₂ surfaces is governed mostly by local interactions with the surface.

Figure 4-4: Comparison of vibrational frequencies of fully relaxed bent-CO₂ clusters from anatase (001), (010) and rutile (110) surfaces from B3LYP/def2-SV(P) calculations with experimental IR frequencies^{7, 27} of $CO_2^{\delta^{-1}}$ species on reduced TiO₂. (110) Ti2 μ 2- η 3: Ti2Vo_110_CO2d, (110)Ti2 μ 2- η 4: Ti2Vo_110_CO2c, (010) Ti2 u2-n4: Ti2Vo 010 CO2 1, (010) Ti2 µ2-ŋ3: Ti2Vo 010 CO2 2, Τί6 μ2-η4: (010)Ti6Vo_010_CO2_a, (001) Ti6 μ 2- η 3: Ti6Vo_001_CO2. CO₂ adsorption on TiO₂ surfaces is structure-sensitive. The experimental results are more consistent with the vibrational frequencies of bent-CO₂ species on the rutile (110) surface, compared to the anatase (001) and (010) surface.

Figure 4-5: C-O IR frequencies from the 2-Ti atom clusters from the rutile (110) surface (Ti2Vo_110_CO2c, Ti2Vo_110_CO2d) are consistent with those obtained from in situ FTIR spectroscopic studies of CO₂ adsorption on TiO₂

4.4.4 Fate of various bent-CO₂ species on rutile and anatase surface planes.

Ground state DFT calculations indicate that bent, negatively charged CO₂ species are formed upon CO₂ adsorption at surface two-coordinate oxygen vacancies on anatase and rutile TiO₂ surfaces. Subsequently, we studied further photoreactions of these species. The bent-CO₂ species could undergo thermal or photoreactions at the surface, forming CO, carbonates or desorbed CO₂. Excited states of the chemisorbed CO₂^{*δ-} species are likely to be multi-configurational. However, to simplify the analysis, we used frontier orbital analyses and TD-DFT excitation energies to analyze the potential for further charge transfer to CO_2 in the excited state.

Frontier orbitals of the Ti6Vo_010_CO2 μ_2 - η^3 cluster are shown in Figure 4-6. They indicate that CO₂ does not constitute the lowest unoccupied molecular orbital (LUMO) or (LUMO+1) orbitals of the Ti6Vo_010_CO2 complex. Therefore, electron transfer to CO₂ in the excited state is not possible. Moreover, because CO₂ contributes to the HOMO of the cluster, and given the fact that CO₂ does not contribute to the LUMO of the cluster strongly, light irradiation will likely result in the photodesorption of neutral CO₂ species from the reduced (010) surface.

Emeline et al.³² showed that the adsorption of CO_2 on Zr^{3+} centers resulted in the formation of $CO_2^{\delta^{\bullet}}$ species. Upon irradiation, these species photodesorbed from the surface, resulting in the regeneration of Zr^{3+} centers. The frontier orbital analysis of the Ti6Vo_010_CO2 cluster is consistent with this result. CO₂ forms a negatively charged species upon adsorption at Ti³⁺ centers, formed due to the oxygen vacancies. Upon irradiation with light, these species are photooxidized and the resulting CO₂ desorbs from the surface. Similar photoreactions occur on n-type semiconductor surfaces as well (increasing the concentration of oxygen vacancies would make TiO₂ n-type). The orbital analysis presented in this study therefore does not support the findings of Raskó and Solymosi⁷, where further electron transfer to the negatively charged CO₂ species occurred upon irradiation.

CO formation via decomposition of the bent- CO_2 species, thus replenishing the oxygen vacancy, is energetically favorable. For example, the change in the electronic

interaction energy for the reaction (Ti2Vo_010_CO2_1) \rightarrow Ti2_010 + CO (calculated at the B3LYP/def2-SV(P) level of theory) is -0.316 eV (-30 kJ/mol). Since CO₂ adsorption on the Ti2Vo_010_CO2_1 cluster is also energetically feasible, it follows that the formation of CO from gas phase CO₂ on reduced anatase (010) surfaces is feasible. Wilson et al.³³ found that CO₂ underwent C-C coupling reactions on reduced TiO₂ surfaces prepared by sputtering. However, this and similar reactions on other surfaces lead to the consumption of the oxygen vacancy.

Possible *photocatalytic* cycles either involve a means to regenerate this oxygen vacancy or could involve a transformation of the bent-CO₂ species to a more electron-accepting species that undergoes further reactions under band-gap illumination. We have examined the energetics of such reactions involving CO₂ and H₂O adsorbed on the Ti6Vo_010 cluster, and the results are summarized in Figure 4-7. The results indicate that whereas C₁ species-forming reactions which consume oxygen vacancies are thermodynamically feasible, reactions which involve regeneration of the oxygen vacancies, thus completing the photocatalytic cycle are thermodynamically uphill, likely consuming more than one UV photon. Moreover, experimental evidence in the literature suggests that interaction of low-intensity UV/solar radiation with TiO₂ surfaces is not likely to create oxygen vacancies, as opposed to the original arguments for photoinduced hydrophilicity³⁴. Therefore, CO₂ photoreduction on reduced-TiO₂ surfaces is likely to involve multiple photons or is a non-catalytic process, resulting in the consumption of the oxygen vacancy.

Figure **4-6**: Frontier molecular orbitals of the ground state singlet, neutral Ti6Vo_010_CO2 μ_1 - η^2 cluster, from B3LYP/def2-SV(P) calculations, shown at an isocontour value of 0.03 e^{1/2}/Å^{3/2}. CO₂ does not form acceptor states, as shown by the LUMO and LUMO+1 orbitals. Therefore, band gap illumination of the surface would likely result in the desorption of bent CO₂ as neutral species. (Plotted with the gOpenMol visualization program^{25, 26})

Figure 4-7: Relative energetics of reactions involving the formation of reduced C_1 species from gas phase CO₂ and water molecules on model cluster from the (010) anatase surface (Ti6_Vo_010). (A), calculated from B3LYP/def2-SV(P) calculations: Gas phase CO₂ and H₂O (located 7 Å from the surface) of a triplet Ti6_Vo_010 cluster, (B): Singlet negatively charged CO₂ species along with coadsorbed water molecule on a singlet Ti6_Vo_010 cluster, (C): Bicarbonate species coadsorbed with O^{surf}H species, (D): Formate and hydroxyl groups on the surface, (E): Desorption of formaldehyde and the refilling of the oxygen vacancy, (F): Desorbed gas phase CO, H₂O₂ and triplet state Ti6_Vo_010 cluster, (G): HCOOH and O desorbed from a triplet Ti6_Vo_010 cluster, (H): HCHO and O₂ desorbed from a triplet Ti6_Vo_010 cluster. Both singlet and triplet states were modeled, the state with the lowest energy is shown in the figure. The dotted arrows represent potential intermediates involved in the refilling of the oxygen vacancy. The energy required to desorb reduced C₁ species indicates that the reduction of CO₂ possibly consumes more than one photon.
4.5 Conclusions

CO₂ adsorption and further reaction has been modeled using DFT calculations on the anatase (010), (001) and rutile (110) surfaces. CO_2 forms negatively charged, bent $CO_2^{\delta^{-}}$ species on surface oxygen vacancies on these surfaces. The bent-CO₂ species were more strongly held than the linear species (at 0 K). The "two-step desorption" of CO_2 observed during TDS studies on rutile (110) surfaces may be applicable to anatase (010), (001) surfaces as well. CO2 adsorption is primarily local in nature. Two kinds of bent CO_2 species were observed upon full relaxation of the cluster, having three (μ_2 - η^3) or four bonds $(\mu_2 - \eta^4)$ with the adjacent Ti atoms. The $(\mu_2 - \eta^3)$ species on rutile (110) surface are more stable than the $(\mu_2 - \eta^4)$ species. On all surfaces studied, the OCO bond angles of the $(\mu_2-\eta^3)$ species are lower than those of the $(\mu_2-\eta^4)$ species. CO₂ does not gain additional charge from the surface upon band-gap illumination, and likely desorbs as neutral CO₂ species. On the other hand, in presence of coadsorbed water, the formation of C₁ species is thermodynamically feasible, resulting in the consumption of the oxygen vacancy. Recreation of the oxygen vacancy is a key step in the photocatalytic reduction of CO₂ on reduced TiO₂ surfaces. The data from the anatase (010) TiO₂ cluster indicate that the energy required to reform the oxygen vacancy on TiO2 surfaces exceeds that of a band gap energy-equivalent single UV photon. Therefore, photoreduction on reduced TiO₂ surfaces either is stoichiometric or consumes more than a single UV photon.

4.6 References

1. Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J., Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. *Surface Science Reports* **2007**, 62, (6), 219.

2. Haber, J., In *Perspectives in Catalysis*, Thomas, J. M.; Zamaraev, K. I., Eds. Blackwell Scientific Publications: London, 1992; pp 371-386.

3. Greenwood, N. N.; Earnshaw, A., *Chemistry of the Elements*. Pergamon Press: Oxford, 1984; p 954-975.

4. Wiberg, N., *Inorganic Chemistry*. Academic Press: San Diego, 2001; p 1325-1344.

5. Masel, R. I., *Principles of Adsorption and Reaction on Solid Surfaces*. Wiley: New York, 1996; p 108-234, and references cited therein.

6. Indrakanti, V. P.; Schobert, H.; Kubicki, J. D., Quantum mechanical modeling of CO2 interactions with irradiated stoichiometric and oxygen-deficient anatase TiO2 surfaces: Implications for the photocatalytic reduction of CO2. *submitted to Energy & Fuels*.

7. Rasko, J.; Solymosi, F., Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. *Journal of Physical Chemistry* **1994**, 98, (29), 7147-7152.

8. Chen, L.; Graham, M. E.; Li, G.; Gray, K. A., Photoreduction of CO2 over reactive DC magnetron sputtered TiO2 thin films. *Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, August 19-23, 2007* **2007**, CATL-032.

9. Samuel A. French; Alexey A. Sokol; Stefan T. Bromley; C. Richard A. Catlow; Stephen C. Rogers; Frank King; Sherwood, P., From CO2 to Methanol by Hybrid QM/MM Embedding. *Angewandte Chemie* **2001**, 113, (23), 4569-4572.

10. Wu, X.; Selloni, A.; Nayak, S. K., First principles study of CO oxidation on TiO2(110). The role of surface oxygen vacancies. *Journal of Chemical Physics* **2004**, 120, (9), 4512-4516.

11. Bonapasta, A. A.; Filippone, F., Photocatalytic reduction of oxygen molecules at the (100) TiO2 anatase surface. *Surface Science* **2005**, 577, (1), 59-68.

12. Florez, E.; Fuentealba, P.; Mondragon, F., Chemical reactivity of oxygen vacancies on the MgO surface: Reactions with CO2, NO2 and metals. *Catalysis Today* **2008**, 133-135, 216-222.

13. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochman, M., *Advanced Inorganic Chemistry*. 6th ed.; Wiley: New York, 1999; p 444-495.

14. Bredow, T., Effect of embedding and cluster size on the ab initio study of potassium adsorption at rutile(110). *International Journal of Quantum Chemistry* **1999**, 75, (2), 127-132.

15. de Lara-Castells, M. P.; Krause, J. L., Theoretical study of the UV-induced desorption of molecular oxygen from the reduced TiO2 (110) surface. *Journal of Chemical Physics* **2003**, 118, (11), 5098-5105.

16. Henderson, M. A., Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O. *Surface Science* **1998**, 400, (1-3), 203.

17. Funk, S.; Burghaus, U., Adsorption of CO2 on oxidized, defected, hydrogen and oxygen covered rutile (1 * 1)-TiO2(110). *Physical Chemistry Chemical Physics* **2006**, 8, (41), 4805-4813.

18. Serpone, N.; Salinaro, A.; Emeline, A.; Ryabchuk, V., Turnovers and photocatalysis: A mathematical description. *Journal of Photochemistry and Photobiology A: Chemistry* **2000**, 130, (2-3), 83.

19. Raupp, G. B.; Dumesic, J. A., Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states. *Journal of Physical Chemistry* **1985**, 89, (24), 5240-6.

20. Gibson, D. H., Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? *Coordination Chemistry Reviews* **1999**, 185-186, 335-355.

21. Indrakanti, V. P.; Schobert, H.; Kubicki, J. D., Quantum mechanical modeling of CO2 interactions with irradiated stoichiometric and oxygen-deficient anatase TiO2 surfaces: Implications for the photocatalytic reduction of CO2. *to be submitted to Energy & Fuels* **expected publication in 2009**.

22. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C., Electronic structure calculations on workstation computers: The program system Turbomole. *Chemical Physics Letters* **1989**, 162, (3), 165.

23. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.

24. Scott, A. P.; Radom, L., Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. *The Journal of Physical Chemistry* **1996**, 100, (41), 16502-16513.

25. Laaksonen, L., A Graphics Program For The Analysis And Display Of Molecular-Dynamics Trajectories. *Journal of Molecular Graphics* **1992**, 10, (1), 33-&.

26. Bergman, D. L.; Laaksonen, L.; Laaksonen, A., Visualization of solvation structures in liquid mixtures. *Journal of Molecular Graphics & Modelling* **1997**, 15, (5), 301-306.

27. Ramis, G.; Busca, G.; Lorenzelli, V., Low-temperature carbon dioxide adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. *Materials Chemistry and Physics* **1991**, 29, (1-4), 425-35.

28. de la Peña O'Shea, V. A.; González, S.; Illas, F.; Fierro, J. L. G., Evidence for spontaneous CO2 activation on cobalt surfaces. *Chemical Physics Letters* **2008**, 454, (4-6), 262.

29. Papai, I.; Mascetti, J.; Fournier, R., Theoretical Study of the Interaction of the Ti Atom with CO2: Cleavage of the C-O Bond. J. Phys. Chem. A **1997**, 101, (24), 4465-4471.

30. Busca, G.; Lorenzelli, V., Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. *Materials Chemistry* **1982**, 7, (1), 89-126.

31. Indrakanti, V. P.; Schobert, H. H.; Kubicki, J. D., Quantum Chemical Modeling of Ground States of CO2 Chemisorbed on Anatase (001), (101), and (010) TiO2 Surfaces. *Energy & Fuels* **2008**, 22, (4), 2611-2618.

32. Emeline, A. V.; Kataeva, G. V.; Panasuk, A. V.; Ryabchuk, V. K.; Sheremetyeva, N. V.; Serpone, N., Effect of surface photoreactions on the photocoloration of a wide band gap metal oxide: Probing whether surface reactions are photocatalytic. *Journal of Physical Chemistry B* **2005**, 109, (11), 5175-5185.

33. Wilson, J. N.; Senanayake, S. D.; Idriss, H., Carbon coupling on titanium oxide with surface defects. *Surface Science* **2004**, 562, (1-3), L231-L237.

34. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. *Nature* **1997**, 388, (6641), 431.

Chapter 5

Experimental studies of CO₂ photoreduction : Catalyst syntheses and EPR studies

5.1 Abstract

This chapter describes experimental studies of CO_2 photoreduction comprising catalyst syntheses, photoreduction experiments and in situ electron paramagnetic resonance (EPR) studies of TiO₂ catalysts. Because the primary controlling factor in any photocatalytic process is the electron-hole recombination, studies using lanthanide (Ln)doped TiO₂ would indicate the role of the dopants in affecting activity towards CO_2 photoreduction. In situ pulsed-EPR experiments on calcined TiO₂ samples provide evidence for surface electron and hole-centers on TiO₂. However, contrary to expectations, no additional paramagnetic centers created due to lanthanide doping of TiO₂ could be detected in the EPR experiments. Additionally, irradiating TiO₂ in the presence of CO₂ did not create paramagnetic signals corresponding to the CO_2^{*6} radical anion.

5.2 Introduction

The previous chapters of this thesis addressed computational studies to understand the initial steps of the photoinduced conversion of CO_2 to fuels. In addition to understanding the first steps of CO_2 photoreduction, current research on TiO_2 photocatalysis has also been focused on improving the efficiency of the photogenerated electron hole pair separation. Because a majority of the photogenerated-charge carriers recombine in a very short time period, any photocatalytic process that uses either of these species to do useful chemical work would greatly benefit from their effective trapping and separation. Direct recombination of free carriers occurs on a time scale (ps) much faster than interfacial electron transfer processes¹. The free carriers left over from this reaction are trapped by the surface and bulk of the semiconductor. These trapped carriers can diffuse thermally from the traps and recombine with the opposite charges.

Recent photoluminescence studies ² have shown that oxygen vacancies created by lanthanide doping contribute to the photocatalytic activity of doped titania. Lanthanide doping was also shown to result in a red-shift of the TiO₂ band gap and therefore, has the potential to absorb a greater portion of the visible light. Additionally, lanthanide species also have been proposed to act as Lewis acids and aid in the enhanced adsorption of organic species on the TiO₂ surface. The role of lanthanide doping in creating such active sites/states mediating CO₂ photoreduction is unknown.

Electron paramagnetic resonance (EPR) is defined as the form of spectroscopy concerned with transitions between magnetic energy levels of electrons having a net spin and orbital angular momentum³. Essentially, an unpaired electron placed in a magnetic field can align itself parallel or anti-parallel to the field. This results in two energy states which the electron can access, and when the field is varied, the electron can undergo transitions between the two energy levels. The energy associated with this transition is given as $\Delta E = hv = g\mu_B B_o$, where h represents the Planck constant, v the frequency of the microwave cavity, g the Landé *g*-factor, μ_B the Bohr magneton, and B_o represents the magnetic field strength. In practice, the *g*-factor characterizes the local environment around the unpaired electron. A rigorous discussion of the quantum physics involved electron spin (paramagnetic) resonance is provided by Jen⁴.

Through EPR spectroscopy⁵ and semi empirical calculations⁶, it has been shown that a majority of the photogenerated electrons on undoped anatase surfaces are trapped deep in the bulk solid, whereas the holes are available for oxidative surface reactions. In most photocatalytic syntheses of interest, both the charge carriers should be available at the surface. Therefore, the surface should trap electrons as well as holes effectively, but at different sites. Doping TiO₂ creates defect states, which, along with the new surface sites, can affect the photocatalytic activity⁷. Photoelectrochemical studies⁸ have shown that the incident photon to current conversion efficiency of rare earth doped TiO₂ is higher than that for the undoped TiO₂, due to efficient electron hole pair separation. It has been proposed ^{9, 10} that metal ion dopants having half filled electronic shells enhance charge carrier lifetimes in doped TiO₂. Among the lanthanides, La³⁺, Sm³⁺ and Gd³⁺ have unfilled, partially filled and half-filled f-orbitals respectively. It is not known whether this variation in charge carrier trapping affects the activity towards CO₂ photoreduction.

In preliminary experiments, UV irradiation of La-doped TiO_2 resulted in an EPR signal corresponding to CO_2^{-} and that for the electron capture by a La^{3+} atom. The use of EPR spectroscopy in understanding the first steps of CO_2 photoreduction can not only identify intermediate species but also provide quantitative information about the dopant-induced charge carrier trapping in lanthanide-doped titania.

5.3 Experimental Methods

5.3.1 Catalyst Synthesis

Sol-gel lanthanide-doped TiO₂ catalysts were synthesized according to Xu et al.⁷ The step-wise procedure is shown in Figure 5-1. All reagents used were analytical grade. Briefly, tetrabutyl orthotitanate (Ti(OBu)₄) was hydrolyzed with ethanol (EtOH) in the presence of an acid catalyst (HNO₃). Water was added to the solution to promote the condensation reactions leading to the sol formation. A measured quantity of the lanthanide nitrate salt was added with the water, and the sol was aged for 48 hours, followed by subsequent drying and calcinations steps. 0-1.5 % w/w La³⁺-doped TiO₂, 0.5 % w/w Gd³⁺- and Sm³⁺-doped TiO₂ were synthesized in this manner. Both supported and powder catalysts were tested. Glass plate-supported catalysts were prepared by the evaporation of a slurry containing 60-70 mg of the catalyst in 10 ml ethanol, followed by 3 h calcination at 773 K.

Figure 5-1: Procedure for the preparation of rare earth-doped TiO₂

5.3.2 X-ray diffraction (XRD) Characterization and Photoreactions

XRD spectra of La-doped TiO_2 were obtained using a 1050 XRD (Philips Analytical, Netherlands) attached to a x-ray generator (Hilton Brooks, UK) producing copper K α radiation at a wavelength of 0.15418 nm.

Preliminary photoreactions were performed at the University of Nottingham on a continuous flow photoreactor with five 8 W mercury lamps shown in Figure 5-2. The inlet gases were controlled with flow controllers to estimate the CO₂:H₂O ratios. Experiments at Penn State were performed in a stainless steel vessel having a Teflon sleeve and quartz windows shown in Figure 5-3. An Oriel 200 W mercury-xenon (Hg-Xe) lamp was used as the light source. The outlet products were analyzed in a gas chromatograph with a flame ionization detector (GC-FID).

5.3.3 EPR Experiments

X-band continuous wave (CW) and pulsed-EPR experiments were acquired with an ESP580 Bruker X-band (~9.5 GHz) spectrometer, at the Regional Center for Pulsed EPR, Binghamton University, State University of New York. Field sweeps 2000–3500 G were acquired at 1024 points with 100 kHz field modulation. Spectra were acquired at 20 K employing an Oxford CF935 liquid helium cryostat and ITC temperature controller (to 1% of the desired temperature). Sol-gel precalcined (773 K, 1h) TiO₂ samples (60-80 mg, both undoped and lanthanide doped) were degassed at 17 mTorr for ca. 20 minutes and flame-sealed in quartz vials. These vials were irradiated both in situ (during the EPR experiments at 20 K) and ex situ (1 h irradiation at at room temperature) by an Oriel 200 W Hg-Xe ultraviolet (UV) lamp using a light guide. Samples with CO₂ sealed over the catalyst were also studied. The following samples were studied: (a) Undoped TiO₂ (T1), (b) 0.5 % w/w La-doped TiO₂ (L1), (c) 0.5 % w/w Sm-doped TiO₂ (S1), (d) calcined undoped TiO₂ (T2).

Figure 5-2: Experimental setup used for photoreactions at the University of Nottingham

Figure 5-3: Experimental setup for photoreactions at Penn State.

5.4 Results

5.4.1 XRD characterization and Photoreactions

X-ray diffraction patterns of sol-gel La-doped and undoped TiO₂ shown in Figure 5-4 indicate that anatase constitutes the dominant phase, consistent with that observed by other workers¹¹. Photoreduction experiments were performed in a continuous gas-solid photoreactor (CO₂ flow rate: 600 ml/min) at room temperature (operating at an inlet temperature of 373 K), at near atmospheric pressure (111 kPa) and with 600 ml/min flow of CO₂. Methane was identified as a photoproduct. Blank tests with nitrogen, light and without catalyst showed that the reaction was indeed photoinitiated. As shown in Figure 5-5, the ordinate (GC peak areas per mg of catalyst weight) indicates the concentration of methane produced in the outlet. The abscissa is labeled with sample conditions at various times. Increasing the water to CO₂ ratio leads to a monotonic decrease of the amount of CH₄ formed, which indicates that water likely competes with CO₂ for the active sites.

However, further tests at Penn State revealed that the use of ethanol for coating TiO_2 powder on the glass plates led to the CH₄ being detected in the flame ionization detector. Experiments in 2 ml vials sealed with CO₂ and water did not produce methane. Likely pathways for the formation of methane include the photooxidation of residual acetate groups formed by the oxidation of ethanol, as shown Scheme 5.1.

Figure 5-4: XRD spectra of La-doped TiO₂ compared with anatase and P25 TiO₂

Reactions involving CO_2 reduction are highly endergonic. On the other hand, acetic acid oxidation to produce CH_4 and CO_2 is exergonic. Photodecomposition of acetic acid to CH_4 and CO_2 is well studied in the literature¹². Further tests are therefore required to estimate the catalytic activity of these materials.

The lanthanide-doped catalyst became slightly yellow at the end of each run; this coloration is lost after exposure to laboratory conditions for ~ 1-2 h. This photocoloration was subsequently investigated in using EPR spectroscopy.

Figure 5-5: Results using 2.5% w/w La-TiO₂-coated glass plates in the continuous flow reactor. Although methane is evolved as a photoproduct, further tests show that this is likely due to contamination by the ethanol used in catalyst synthesis and coating.

		ΔG_r^0 , kJ/mol	5.1
$CH_3COOH + CO_2 + H_2O \longrightarrow$	3 CO + 3 H ₂ + O ₂	609.88	
CO ₂ →	CO + 1/2 O ₂	257.19	
СН₃СООН ──►	CH ₄ + CO + 1/2 O ₂	202.01	
$CH_3COOH + CO_2 \longrightarrow$	CH ₄ + 3 CO	559.16	
$C_2H_5OH + CO_2 \longrightarrow$	3/2 CO + 3/2 CH ₄ + 3/4 O ₂	447.74	
$CH_3COOH + CO_2 + H_2O \longrightarrow$	3 CO + 3 H ₂ + O ₂	609.88	
CH₃COOH →	$CH_4 + CO_2$	-55.18	

5.4.2 EPR Experiments

As-synthesized, uncalcined, flame-sealed undoped TiO₂ samples (T1) exhibited photocoloration lasting 1-2 days at room temperature subsequent to room temperature irradiation. Pulsed-EPR experiments on these uncalcined samples indicated an EPR signal at $g \approx 1.93$. However, upon calcination in air at 773 K for 1h and subsequent flame-sealing, photocoloration was not visible upon room temperature irradiation. On the other hand, as shown in Figure 5-6, X-band pulsed-EPR spectra of such calcined TiO₂ catalysts (T2) measured at 20 K presented in show signals at $g \approx 1.93$, although at a largely decreased level compared to the uncalcined samples. Further in situ irradiation of the sample at 20 K resulted in the growth of an additional signal at $g \approx 2.01$, increasing with the time of irradiation. Upon switching the lamp off, the signal at $g \approx 2.01$ decreased and quickly reached a steady state value, as shown in Figure 5-6.

In the next phase of this study, in situ pulsed-EPR experiments were performed on calcined TiO₂ in the presence of 3 Torr CO₂. The results shown in Figure 5-7, indicate that the EPR signals obtained are similar to those without CO₂. The lack of additional EPR signals indicates that CO₂ does not undergo electron transfer from calcined TiO₂ surfaces at 20 K or that the intermediates generated are diamagnetic. Pulsed-EPR experiments with uncalcined 0.5% w/w La-doped TiO₂ (L1) and 0.5% w/w Sm-TiO₂ (T1) also exhibited a signal at $g \approx 1.93$, but no additional signals after 20 minutes of room temperature irradiation.

Figure 5-6: X-band pulsed-EPR spectra of calcined sol-gel TiO₂ at 20 K.

What inferences can be drawn from the EPR data? Hurum et al.⁵ assigned the EPR signal corresponding to $g \approx 1.93$ to anatase surface trapping sites. This is consistent with the anatase bulk structure observed across La-doped and undoped TiO₂ samples shown in Figure 5-4. Additionally, the signal corresponding to $g \approx 2.01$ was assigned to surface hole-trapping sites on titania^{5, 13}. Together, these enable us to put together a picture of electron and hole-trapping in TiO₂.

Firstly, most of the electrons and holes formed upon irradiation were trapped at various surface trapping sites. Degassed TiO_2 samples, as well as samples exposed to CO_2 exhibit similar signals in pulsed-EPR spectroscopy. Only surface electron and hole-trapping centers were observed in the EPR experiments. The signals corresponding to

lattice or bulk trapping centers⁵ were not observed. Additionally, under the experimental conditions, paramagnetic C-species (ex: CO_2^{\bullet}) formed by electron transfer to CO_2 from the TiO₂ surface were not detected. This leads us to conclude that either electron transfer to CO_2 did not occur, or that the intermediate species formed are diamagnetic.

Figure 5-7: X-band pulsed-EPR spectra of calcined sol-gel TiO₂ and 3 Torr CO₂ at 20 K. The EPR signals at $g \approx 1.93$ and $g \approx 2.01$ are similar to those shown in Figure 5-6.

Secondly, because both lanthanide-doped (L1, S1) and undoped-TiO₂ (T1, T2) samples exhibit similar signals, it is likely that electron-trapping centers created due to lanthanide doping were not probed by EPR spectroscopy under the experimental conditions chosen.

5.5 Conclusions and Future Work

La, Gd- and Sm-doped TiO₂ were prepared using a sol-gel synthesis. The sol-gel TiO₂ consisted primarily of anatase. Evidence for photoreduction of CO₂ during preliminary photoreduction studies was not found. Contrary to expectations, lanthanidedoping of TiO₂ did not create additional paramagnetic centers which could be probed by EPR spectroscopy. On the other hand, surface electron and hole-trapping sites on undoped and doped TiO₂ could be observed using pulsed-EPR spectroscopy. The presence of CO₂ did not result in the generation of additional paramagnetic centers on the undoped TiO₂ catalyst. Therefore, electron transfer from calcined TiO₂ to CO₂ likely does not occur under experimental conditions chosen (20 K, 3 Torr CO₂).

Further CO_2 photoreduction studies as well as EPR experiments on TiO_2 calcined at various temperatures will not only enable a better understanding of the photoactivity of lanthanide-doped TiO_2 but also provide insights into the nature of oxygen vacancies in activating CO_2 .

5.6 References

1. Colombo, D. P., Jr.; Bowman, R. M., Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A Femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles. *Journal of Physical Chemistry* **1996**, 100, (47), 18445-18449.

^{2.} Jing, L. Q.; Sun, X. J.; Xin, B. F.; Wang, B. Q.; Cai, W. M.; Fu, H. G., The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. *Journal of Solid State Chemistry* **2004**, 177, (10), 3375-3382.

^{3.} McNaught, A. D.; Wilkinson, A.; Nic, M.; Jirat, J.; Koskata, B. IUPAC Compendium of Chemical Terminology. <u>http://dx.doi.org/10.1351/goldbook.E02005</u> (3/12/2009).

4. Jen, C. K., Electron spin resonance studies of trapped radicals. In *Formation and Trapping of Free Radicals*, Bass, A. M.; Broida, H. P., Eds. Academic Press: New York, London, 1960; pp 213-225.

5. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C., Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. *Journal of Physical Chemistry B* **2005**, 109, (2), 977-980.

6. Bredow, T.; Jug, K., SINDO1 Study of Photocatalytic Formation and Reactions of OH Radicals at Anatase Particles. *Journal of Physical Chemistry* **1995**, 99, (1), 285-91.

7. Diebold, U., The surface science of titanium dioxide. *Surface Science Reports* **2003**, 48, (5-8), 53-229.

8. Wang, Y.; Cheng, H.; Zhang, L.; Hao, Y.; Ma, J.; Xu, B.; Li, W., The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metalion-doped TiO2 nanoparticles. *Journal of Molecular Catalysis A: Chemical* **2000**, 151, (1-2), 205.

9. Choi, W. Y.; Termin, A.; Hoffmann, M. R., The Role Of Metal-Ion Dopants In Quantum-Sized Tio2 - Correlation Between Photoreactivity And Charge-Carrier Recombination Dynamics. *Journal of Physical Chemistry* **1994**, 98, (51), 13669-13679.

10. Xu, A.; Gao, Y.; Liu, H., The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. *Journal of Catalysis* **2002**, 207, (2), 151-157.

11. Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M., Lanthanide Oxide Doped Titanium Dioxide Photocatalysts: Effective Photocatalysts for the Enhanced Degradation of Salicylic Acid and t-Cinnamic Acid. *Journal of Catalysis* **2001**, 204, (2), 305-313.

12. Muggli, D.; Keyser, S.; Falconer, J., Photocatalytic decomposition of acetic acid on TiO2. *Catalysis Letters* **1998**, **55**, (3), 129.

13. Micic, O. I.; Zhang, Y.; Cromack, K. R.; Trifunac, A. D.; Thurnauer, M. C., Trapped holes on titania colloids studied by electron paramagnetic resonance. *The Journal of Physical Chemistry* **1993**, 97, (28), 7277-7283.

Chapter 6

Summary and Future Work

6.1 Summary

 CO_2 utilization has a significant role in mitigating CO_2 emissions, especially in comparison to other means of CO_2 abatement. The conversion of CO_2 to fuels using solar energy is one of the "grand challenges" for a variety of scientific disciplines. Significantly increased specific rates (~tens of millimoles CO_2 converted/g-TiO₂/h) under visible light irradiation are required to make this process economically feasible. To achieve this goal, we need to understand how CO_2 reacts on irradiated TiO₂ surfaces. Knowledge of both collective and local factors is required to understand surface photocatalytic mechanisms and develop efficient and selective photocatalysts.

Using DFT calculations, we have modeled the ground states of CO_2 on $Ti_2O_9H_{10}$ clusters from the anatase (010), (101) and (001) surface planes. The results indicate that the dominant control over surface reactivities is local in nature to a first approximation. Additionally, the fact that pairs of vibrational frequencies of CO_2 species modeled using small (two Ti-atom) clusters agree with experimental FT-IR (C-O) stretch frequencies indicates that the cluster approximation is a useful tool to study localized phenomena on TiO_2 surfaces. Existing mechanisms proposed for CO_2 photoreduction do not indicate the state of CO_2 adsorbed on TiO_2 . This is important, because if the interaction between the surface atoms and CO_2 is very strong, CO_2 becomes irreversibly chemisorbed on the

surface, whereas weak interactions at large inter-atomic distances will not result in efficient charge transfer from the photo-excited surface.

The work presented in this thesis points that CO_2 likely does not gain electrons from defect-free, stoichiometric anatase TiO_2 . CO_2 photoreduction mechanisms in the literature assume that CO_2 gains electrons from the conduction band of TiO₂. Therefore, the primary interfacial charge transfer event in the photoreduction of CO_2 is not the transfer of electrons from the conduction band of TiO₂. However, our results show that such electron transfer may only be mediated by surface defects. This work therefore underscores the significance of defects such as steps, kinks and vacancies on anatase TiO₂ surfaces in promoting electron transfer to CO₂ in the excited state. CO₂ adsorption on oxygen-deficient rutile and anatase surfaces leads to the formation of negatively charged, bent-CO₂ species which likely desorb as neutral CO₂ under irradiation. In the presence of coadsorbed water, the formation of reduced C₁ species concomitant with the consumption of the oxygen vacancy is feasible on the anatase (010) surface. Re-creation of the oxygen vacancy, however consumes greater energy than that available through the energy of a single near-UV photon. These results therefore point that the photoinduced reactions of CO₂ on reduced anatase TiO₂ surfaces likely involve multiple photons, or are stoichiometric.

Surface electron and hole-trapping sites on undoped and doped TiO_2 were characterized using pulsed-EPR spectroscopy. Contrary to expectations, lanthanidedoping (0.5% w/w) of TiO_2 did not create additional paramagnetic centers which could be probed by EPR spectroscopy to test the hypothesis that lanthanide doping of TiO_2 creates electron traps which enhance photocatalytic activity. The presence of CO_2 did not result in the generation of additional paramagnetic centers on the undoped TiO_2 catalyst. Therefore, electron transfer from calcined TiO_2 to CO_2 likely does not occur under experimental conditions chosen (20 K, 3 Torr CO_2). Evidence for photoreduction of CO_2 during preliminary photoreduction studies was not found.

6.2 Implications for Future Work

Possible improvements in semiconductor-assisted photocatalytic reduction of CO_2 could be grouped as:

- 1. Physico-chemical modification of TiO_2 : TiO_2 is widely employed as a photocatalyst because it is non-toxic, comparatively cheap and abundant in the Earth's crust. The results presented in this thesis indicate that stoichiometric TiO_2 surfaces likely do not promote electron transfer to CO_2 . Oxygen vacancies, created either by modifications¹ such as thermal treatment, cation/anion doping or metal impregnation serve as the sites for CO_2 activation, but this reactivity is likely to be stoichiometric. Any chemical modification of TiO_2 that decreases the energy for the formation of oxygen vacancies could enable the reduction of CO_2 on oxygen vacancies to be catalytic.
- 2. Choice of semiconductors other than TiO_2 : Because the conduction band of TiO_2 is lower in energy compared to the lowest unoccupied molecular orbital (LUMO) of CO_2 , other semiconductors such as zinc oxide (ZnO),zinc sulfide (ZnS)², silicon carbide (SiC)³ having conduction band electrons of higher energy could promote electron transfer to CO_2 .

3. Physico-chemical modification of CO₂: Instead of modifying TiO₂ by creating oxygen vacancies, as outlined before, an alternate approach would be to modify CO_2 , lowering its LUMO compared to the TiO₂ conduction band, or by modifying CO₂ to make it more feasible to gain electrons. Whereas gaseous CO_2 has a negative adiabatic electron affinity, high-level quantum calculations indicate that $(CO_2)_n^{\bullet-}$ clusters have positive electron affinities for $n \ge 4^4$. Interestingly, Shkrob and Sauer⁵ noted that the electron photodetachment spectrum of anions in supercritical CO₂ resembled photoelectron spectra of n=6-9 gas-phase anion clusters $(CO_2)_n^{-1}$. However, this enhanced thermodynamic feasibility of electron transfer to CO₂ is attributed to long-range dispersive effects⁴, and not to the overlap of orbitals belonging to various CO₂ molecules. Indeed, Fock et al.⁶ note that the overlap of orbitals belonging to neighboring molecules in a molecular crystal such as solid CO₂ is small. Future research should aim at utilizing the knowledge from spectroscopic and computational studies of CO₂ clusters in the gaseous and supercritical state, to design high-rate catalytic systems for CO₂ photoreduction.

The challenges involved in understanding the initial steps of CO_2 photoreduction on TiO₂ are many-fold. From a surface science and catalysis perspective, the fact that electrons from the conduction band of stoichiometric TiO₂ are not likely transferred to CO_2 indicates that future modeling efforts should be focused on examining the reactivity of various defect structures such as kinks, steps and crystallographic shear planes. These studies would greatly benefit by using realistic surface models of such features obtained from single crystal anatase surface studies using techniques such as scanning tunneling microscopy (STM)⁷. Additionally, experimental techniques such as in situ laser flash photolysis studies using powdered TiO₂ or anatase single crystals (refer to the work of Frei and coworkers⁸⁻¹⁰ using isolated-Ti species for examples) are required to provide spectroscopic data to build, and validate the computational models. As indicated in Chapter 4 and Chapter 1, spectroscopic data of CO₂ adsorption on TiO₂ surfaces do not differentiate between anatase and rutile surfaces or various single crystal surfaces. The fact that similar IR frequencies can be obtained for the carbonate groups of the (010) anatase Ti₂O₉H₁₀CO₂ cluster (Figure 2-6) and the bent-CO₂ species (110) rutile Ti2Vo_110_CO2 clusters (Figure 4-5) indicates that further experimental studies on well-defined surfaces are needed to develop and validate better models.

Secondly, although the primary control on photoinduced reactivity towards CO₂ seems to be local in nature, periodic calculations of CO₂ surface states on TiO₂ surfaces is required to fully account for the long-range electrostatic interactions between negatively charged CO₂ species and the surface. Thirdly, because large basis sets and high levels of electron correlation are required to model the electron affinity of the carbon dioxide radical anion, the development of computationally inexpensive electronic structure methods capable of treating excited states (such as CAS-DFT¹¹) will enable developing better computational models. Therefore, developments in computational chemistry (some of which are outlined in the computational chemistry technology roadmap¹²) are required to enhance our ability to model such surface photoreactions.

Thirdly, the presence of water on the surface significantly affects the reactivity towards CO_2 , both on stoichiometric and oxygen-deficient surfaces. For example: A theoretical study by Markovits et al.¹³ found that while CO_2 interacted weakly with the pristine rutile surface, the presence of hydroxyl groups on the hydrated surface promotes

the formation of adsorbed bicarbonate species. However, in sequentially dosed experiments on an oxygen-deficient rutile (110) surface, preadsorbed CO_2 is displaced by postdosed water, and preadsorbed water blocked subsequent postdosed CO_2 adsorption¹⁴. Bicarbonate species were formed only in the case of simultaneous dosing of CO_2 and H_2O onto the surface. Therefore, the presence of excess water could inhibit activity towards CO_2 photoreduction. On the other hand, in the presence of noble metal catalysts, hydrogenation of the bicarbonate species could result in potentially more facile means of activating CO_2 . Future work therefore needs to address the role of water in influencing activity towards CO_2 .

From the previous discussion and Chapter 1, the main factors affecting photocatalytic CO_2 reduction are the electron-hole recombination in semiconductor photocatalysts, and the need for UV radiation, resulting in ineffective utilization of sunlight. However, under limiting intensity conditions, Mitra and Melis¹⁵ note that microalgae could convert 82% of the absorbed solar energy into chemical energy, which is a significant improvement in solar energy utilization compared to semiconductor photocatalysis. Other show-stoppers for photocatalysis include electron transfer to CO_2 , and water inhibition of activity. Any improvements in modifying TiO₂ via doping are likely only to be incremental in nature. As outlined in Chapter 1, significant improvements are necessary for a Ti-based CO_2 photoreduction system to be economically feasible. On the other hand, indirect CO_2 utilization technologies which have potential for large scale emission reductions, such as algal biofuels production¹⁶, enzymatic processes for activating CO_2^{17} , and electrochemical reduction of CO_2 with renewable or carbon-neutral¹⁸ electricity, could be feasible in a shorter time span. Of

these, microalgal biodiesel production using open ponds or photoreactors^{19, 20} is being commercialized currently¹⁶. The production of carbon-neutral fuels from hydrogenation of atmospheric CO₂ and related schemes were discussed by Zeman and Keith¹⁸. The current state of development of various technologies converting CO₂ to fuels is shown in Figure **6-1**. We note that this is an approximate representation of developments in largescale CO₂ conversion to fuels, and that significant advances in any of these technologies have the potential to alter our energy consumption and production patterns.

Time to commercialization`

In conclusion, CO_2 photoreduction to produce fuels is a tantalizing research problem. Significant improvements in the specific rates, drastically lowered electron-hole recombination rates and visible light absorbing photosensitizers are required to make solar conversion of CO_2 to fuels commercially viable. Additionally developments in related fields such as solar PV technologies, semiconductor photocatalysis and heterogeneous catalysis would also contribute to develop more effective and selective

materials that could use solar energy and produce fuels and value-added chemicals from

CO₂.

6.3 References

1. Carrettin, S.; Hao, Y.; Aguilar-Guerrero, V.; Gates, B. C.; Trasobares, S.; Calvino, J. J.; Corma, A., Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation. *Chemistry-A European Journal* **2007**, 13, (27), 7771-7779.

2. Xu, Y.; Schoonen, M. A. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. *American Mineralogist* **2000**, 85, (3-4), 543-556.

3. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature (London, United Kingdom)* **1979**, 277, (5698), 637-8.

4. Sommerfeld, T.; Posset, T., Electron attachment to CO2 clusters. *Journal of Chemical Physics* **2003**, 119, (15), 7714-7724.

5. Shkrob, I. A.; Sauer, M. C., Jr., Metastable Electrons, High-Mobility Solvent Anions, and Charge Transfer Reactions in Supercritical Carbon Dioxide. *Journal of Physical Chemistry B* **2001**, 105, (19), 4520-4530.

6. Fock, J. H.; Lau, H. J.; Koch, E. E., Electronic band structure of solid CO2 as determined from the hv-dependence of photoelectron emission. *Chemical Physics* **1984**, 83, (3), 377.

7. Gong, X.-Q.; Selloni, A.; Batzill, M.; Diebold, U., Steps on anatase TiO2(101). *Nature Materials* **2006**, *5*, (8), 665.

8. Lin, W. Y.; Han, H. X.; Frei, H., CO2 splitting by H2O to CO and O-2 under UV light in TiMCM-41 silicate sieve. *Journal of Physical Chemistry B* **2004**, 108, (47), 18269-18273.

9. Ulagappan, N.; Frei, H., Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. *Journal of Physical Chemistry A* **2000**, 104, (33), 7834-7839.

10. Lin, W. Y.; Frei, H., Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. *Journal of The American Chemical Society* **2005**, 127, (6), 1610-1611.

11. Takeda, R.; Yamanaka, S.; Yamaguchi, K., CAS-DFT based on odd-electron density and radical density. *Chemical Physics Letters* **2002**, 366, (3-4), 321.

12. Cochran Jr., H. D.; Cummings, P. T.; Dixon, D. A.; Golab, J. T.; Heffelfinger, G. S.; Peterson, B. K.; Redondo, A.; Thompson, T. B.; Westmoreland, P. R. *Chemical Industry of the Future. Technology Roadmap for Computational Chemistry*; 1998.

13. Markovits, A.; Fahmi, A.; Minot, C., A theoretical study of CO2 adsorption on TiO2. *Theochem-Journal of Molecular Structure* **1996**, 371, 219-235.

14. Henderson, M. A., Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O. *Surface Science* **1998**, 400, (1-3), 203.

15. Mitra, M.; Melis, A., Optical properties of microalgae for enhanced biofuels production. *Opt. Express* **2008**, 16, (26), 21807.

16. GreenFuel Algae CO2 Recycling Project with Aurantia Enters Second Phase at Spanish Cement Plant. *Global Warming Focus* November 2008, 2008.

17. Peckham, J., Carbon Sciences Unveils Low-Cost CO2-to-Fuel Scheme. *Diesel Fuel* 03/02/2009, 2009.

18. Zeman, F. S.; Keith, D. W., Carbon neutral hydrocarbons. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **2008**.

19. Chisti, Y., Biodiesel from microalgae. *Biotechnology Advances* **2007**, 25, (3), 294-306.

20. Demirbas, A., Production of Biodiesel from Algae Oils. *Energy Sources Part A-Recovery Utilization And Environmental Effects* **2009**, 31, (2), 163-168.

Appendix A

Supplementary Information for Chapter 2

A.1 Cartesian coordinates for (010), (101) and (001) Ti₂O₉H₁₀CO₂ clusters

(010) Ti₂O₉H₁₀CO₂ B3LYP/6-31+G(d), C₂ symmetry 1.

0.000000	0.000000	1.459117
0.000000	0.000000	0.103338
0.000000	2.086187	-0.083187
0.000000	-2.086187	-0.083187
-1.593457	2.691148	0.521129
1.593457	-2.691148	0.521129
1.714404	2.569436	0.399835
-1.714404	-2.569436	0.399835
0.317336	4.100836	-1.078930
-0.317336	-4.100836	-1.078930
-0.217371	1.728734	-1.887242
0.217371	-1.728734	-1.887242
0.056929	1.150513	1.969115
-0.056929	-1.150513	1.969115
-1.760594	2.775708	1.474407
1.760594	-2.775708	1.474407
1.989717	2.355053	1.306674
-1.989717	-2.355053	1.306674
-1.274068	-4.246561	-0.972406
1.274068	4.246561	-0.972406
-0.153004	-3.913025	-2.020463
0.153004	3.913025	-2.020463
0.745393	-0.952823	-2.140065
-0.745393	0.952823	-2.140065
1) $Ti_2O_9H_{10}$	CO ₂ cluster	; B3LYP/6-31+G(d) C ₁ symmetry
	0.000000 0.000000 0.000000 0.000000 -1.593457 1.593457 1.714404 -1.714404 0.317336 -0.217371 0.217371 0.217371 0.056929 -0.056929 -1.760594 1.760594 1.760594 1.989717 -1.989717 -1.274068 1.274068 -0.153004 0.745393 -0.745393 -0.745393 -0.745393	$\begin{array}{cccccc} 0.000000 & 0.000000 \\ 0.000000 & 2.086187 \\ 0.000000 & -2.086187 \\ -1.593457 & 2.691148 \\ 1.593457 & -2.691148 \\ 1.593457 & -2.691148 \\ 1.714404 & -2.569436 \\ -1.714404 & -2.569436 \\ 0.317336 & 4.100836 \\ -0.317336 & -4.100836 \\ -0.217371 & 1.728734 \\ 0.217371 & -1.728734 \\ 0.217371 & -1.728734 \\ 0.056929 & -1.150513 \\ -0.056929 & -1.150513 \\ -1.760594 & 2.775708 \\ 1.760594 & -2.775708 \\ 1.989717 & 2.355053 \\ -1.274068 & -4.246561 \\ 1.274068 & 4.246561 \\ 1.274068 & 4.246561 \\ -0.153004 & -3.913025 \\ 0.745393 & -0.952823 \\ -0.745393 & 0.952823 \\ 1) \operatorname{Ti}_2\operatorname{OpH}_{10}\operatorname{CO}_2 \operatorname{cluster}_{2} \end{array}$

Ti	-0.003
Ti	0.8356
0	1.451

2.

Ti	-0.003660	1.595738	-0.054320
Ti	0.835682	-1.686749	-0.074468
0	1.451952	0.256014	0.050015
0	-0.711555	-0.221300	-0.526086
0	0.274295	-2.195744	1.624602
0	0.899307	-2.426200	-1.740238
0	-1.238983	-2.923479	-0.259049
0	1.930031	2.895813	0.101981
0	-0.122808	2.440391	1.574364

0	-0.037178	2.643864	-1.554477
0	2.592870	-2.093361	0.287666
Н	-0.965541	2.380379	2.054087
Η	-0.847448	2.703964	-2.086606
Η	1.716649	3.408550	0.903029
Η	1.821998	3.499480	-0.654761
Η	2.381209	0.475271	0.220997
Н	3.065306	-2.550933	-0.426502
Η	0.178012	-3.013842	-2.018526
Н	0.992949	-2.247205	2.276872
Н	-1.285734	-3.214600	0.669100
Η	-1.987241	-2.285636	-0.368506
С	-2.005248	0.106951	-0.255447
Ο	-2.011478	1.385518	0.038994
0	-2.923785	-0.692476	-0.292747

3. (001) Ti₂O₉H₁₀CO₂ cluster C₂ symmetry

Ti	-0.266557000	-2.211130000	0.113662000
0	0.000000000	0.000000000	0.215391000
Ti	0.266557000	2.211130000	0.113662000
0	0.000000000	2.265462000	1.927734000
0	-0.267456000	3.860682000	-0.500923000
0	2.069324000	2.295510000	0.008126000
0	-2.038957000	2.043448000	0.028662000
0	-2.069324000	-2.295510000	0.008126000
0	0.267456000	-3.860682000	-0.500923000
0	0.000000000	-2.265462000	1.927734000
0	2.038957000	-2.043448000	0.028662000
Н	0.415427000	1.604391000	2.503584000
Η	2.563944000	2.085929000	-0.800324000
Η	0.386699000	4.513988000	-0.793513000
Η	-2.303173000	2.059097000	0.964240000
Η	-2.255251000	2.923051000	-0.331179000
Н	-2.563944000	-2.085929000	-0.800324000
Η	-0.386699000	-4.513988000	-0.793513000
Η	-0.415427000	-1.604391000	2.503584000
Η	2.303173000	-2.059097000	0.964240000
Η	2.255251000	-2.923051000	-0.331179000
С	0.000000000	0.000000000	-1.103975000
0	-0.145531000	-1.136290000	-1.662727000
0	0.145531000	1.136290000	-1.662727000

A.2 Unscaled C-O stretch frequencies of the CO₃ group for the (010), (001) and (101) clusters

Table A-1: Unscaled C-O stretch frequencies (cm^{-1}) of the CO₃ group for the (001), (010) and (101) clusters

(001) cluster	711	734	762	830	1082	1428	1641
(010) cluster	693	788	825	1048	1371	1721	
(101) cluster	687	705	777	811	1041	1248	1788

A.3 CO₂ adsorption on the 4-c (110) Ti₂O₇H₆CO₂ cluster

The C-O harmonic frequencies of the 4-c (110) $Ti_2O_7H_6CO_2$ cluster (Figure A-1) are 681, 784, 816, 983, 1240, and 1797 cm⁻¹.

Figure A-1: Carbonate formation on the 4-c (110) $Ti_2O_7H_6$ cluster modeled using the B3LYP/6-31+G(d) model chemistry. The distances are in Å, the angles are in degrees.

A.4 Linear CO₂ species

Figure A-2: Geometry of the (010) $Ti_2O_9H_{10}CO_2$: linearly adsorbed CO_2 on a constrained cluster (CO_2 , Hs optimized, Ti, O fixed at their lattice positions) at B3LYP/6-31+G(d) with normal optimization criteria

Appendix B

Supplementary Information for Chapter 3

B.1 SAC-CI excitation energies, excited state configurations and canonical molecular orbitals for the (110) Ti-4cCO2 cluster

Occupied molecular orbitals: 36, 38, 39, 40

Virtual orbitals: 45, 46, 47, 48, 49, 51 ### 1-st ### --- 1st state in this spin multiplicity ---This state is being used for optimizations. in au = -1338.230357Total energy Correlation energy in au = -0.302114Excitation energy in au = 0.156906 in eV = 4.269628 ***SINGLE EXCITATION** 40 46 0.59843 40 47 -0.52360 40 45 -0.42739 40 49 -0.16945 39 46 -0.07618 40 48 -0.15763 ### 2-nd ### --- 2nd state in this spin multiplicity ---This state is being used for optimizations. in au = -1338.207997 Total energy Correlation energy in au = -0.279754Excitation energy in au = 0.179266 in eV = 4.878067 ***SINGLE EXCITATION** 39 46 0.56619 39 47 -0.50828 39 48 39 45 -0.45613 -0.22526 39 49 -0.19682 39 42 0.07716 ### 3-rd ### --- 3rd state in this spin multiplicity ---This state is being used for optimizations. Total energy in au = -1338.199643 Correlation energy in au = -0.271401Excitation energy in au = 0.187620 in eV = 5.105389 ***SINGLE EXCITATION** 40 48 0.65227 40 49 0.29576 38 48 -0.29460 40 46 0.24454 38 45 -0.23186 40 47 -0.21016 0.19203 38 49 -0.17190 38 46 38 47 -0.17186 40 45 0.11474 --- 4th state in this spin multiplicity ---### 4-th ###

This	state	e is being use	d for o	ptimi	izations	•	
Tota	l ene	rgy in au	= -13	338.1	92321		
Corr	elatio	on energy in	au =	-0.2	264079		
Exci	tatio	n energy in a	u =	0.1	94941	in eV =	5.304625
*SIN	GLE	EXCITATIO	DN				
38	48	0.70018	40	48	0.3402	4	
38	49	0.32488	38	45	0.2363	7	
38	51	-0.21695	40	49	0.1655	50	
36	48	-0.12179	40	45	0.1033	89	

Figure **B-1**: Canonical molecular orbitals of the (110) Ti-4cCO2 cluster, plotted at an isocontour value of 0.1. The majority of the contribution to the unoccupied orbitals (45-51) comes from the Ti 3d atomic orbitals and not π^* C-O orbitals of CO₂.

B.2 SAC-CI excitation energies, excited state configurations and canonical molecular orbitals for the (001) Ti-watCO2 cluster

Occupied molecular orbitals: 39, 40, 42, 43, 44, 45. Virtual molecular oribtals: 49, 50, 51, 52, 55, ### 1-st ### --- 1st state in this spin multiplicity ---This state is being used for optimizations. in au = -1414.346902Total energy Correlation energy in au = -0.463357Excitation energy in au = 0.080368 in eV = 2.186920 ***SINGLE EXCITATION** 45 50 0.92648 43 50 -0.1552942 50 -0.13862 45 57 0.06381 ### 2-nd ### --- 2nd state in this spin multiplicity ---This state is being used for optimizations. Total energy in au = -1414.335168Correlation energy in au = -0.451624Excitation energy in au = 0.092102 in eV = 2.506210 *SINGLE EXCITATION 45 51 0.83527 45 52 0.34076 45 49 -0.21936 43 51 -0.1318642 51 -0.09760 45 55 0.08353 ### 3-rd ### --- 3rd state in this spin multiplicity ---This state is being used for optimizations. Total energy in au = -1414.318595Correlation energy in au = -0.435051 Excitation energy in au = 0.108674 in eV = 2.957172 ***SINGLE EXCITATION** 43 50 0.74649 42 50 -0.4726241 50 44 50 -0.29195 -0.1618340 50 -0.15325 43 66 0.04690 ### 4-th ### --- 4th state in this spin multiplicity ---This state is being used for optimizations. in au = -1414.311118 Total energy Correlation energy in au = -0.427574Excitation energy in au = 0.116151 in eV = 3.160639 ***SINGLE EXCITATION** 44 51 -0.66303 43 51 -0.50803 44 52 -0.27438 43 52 -0.19792 44 49 0.17541 39 51 -0.15456 43 49 0.13418 45 51 -0.09109

Figure B-2: Canonical molecular orbitals of the (001) Ti-watCO2 cluster, plotted at an isocontour value of 0.1. The majority of the contribution to the unoccupied orbitals (50-55) comes from the Ti 3d atomic orbitals and not π^* C-O orbitals of CO₂.

B.3 Cartesian coordinates

1. (110) Ti-4cCO2

Ti	0.835775000	-0.021610000	-0.021729000
0	-0.286638000	-1.280005000	-0.773309000
0	1.100408000	1.743167000	-0.417728000
0	0.828102000	-0.336900000	1.759899000

0	2.482168000	-0.634302000	-0.501411000
0	-1.661897000	0.959653000	0.100869000
С	-2.601018000	0.264187000	-0.010452000
0	-3.550335000	-0.402405000	-0.111941000
Н	0.086840000	-2.167956000	-0.619092000
Н	2.874208000	0.027539000	-1.092100000
Н	0.996853000	-1.291589000	1.803709000
Н	1.966689000	1.928636000	-0.002805000

2. (010) Ti6-5cCO2 triplet

0	-4.697765700	16.317841000	6.732270700
0	-5.092846000	13.700209200	5.995672000
Ti	-4.453270100	14.724124000	7.602590400
0	-4.619371800	15.410589900	9.410940100
0	-2.680203100	14.381436700	7.489868100
0	-5.249579600	11.145901200	5.006898300
Ti	-5.000274400	11.782041300	6.709311700
0	-5.151052300	13.134370500	8.479415000
Ti	-4.783427400	13.493594900	10.418245600
0	-5.201286500	14.688214900	11.838293000
0	-2.992117000	11.555497300	6.836587300
0	-2.925871300	13.350995800	10.699541800
0	-4.830287700	11.872585000	11.010022300
0	-4.857499400	10.056179800	7.840660100
Ti	-2.853441800	9.782926300	7.662341100
Ti	-2.894551900	11.388229800	11.306689100
0	-5.006716100	8.063184800	10.601697500
Ti	-3.279755300	8.417096100	10.413082400
С	-7.684983600	12.105097400	8.336026000
0	-8.105899000	12.451935000	9.355669500
0	-7.311665200	11.743363800	7.286913700
Η	-4.876000100	13.591659200	5.045415100
Η	-4.876000100	15.884339300	10.235802200
Η	-3.926901100	16.907293300	6.682394100
Η	-4.876000100	11.021983200	4.116497100
Η	-4.875999100	14.840372300	12.760925200
Η	-2.038902000	15.100472300	7.480498100
Η	-2.038902000	11.805851200	6.871803100
Η	-2.038902000	13.331558200	10.325842200
Η	-4.886248100	7.207571100	11.055394200
0	-2.988000100	8.690498200	6.183920100
0	-2.988000100	10.216205200	9.637960200
0	-2.987999100	11.741913200	13.092000200
0	-1.100000000	11.707943200	11.043019200
0	-1.100000000	10.182234200	7.588980100
0	-2.988001100	8.012940100	8.547194200
0	-2.987999100	9.538648200	12.001235200
0	-1.099998000	8.046910100	10.596171200

0	-2.987998100	6.606499100	11.232428200
Н	-2.988002100	7.446248100	7.759945100
Η	-2.987998100	9.738930200	12.950333200
Η	-0.150902000	11.524736200	11.123944200
Η	-1.099998000	7.159617100	10.988103200
Η	-0.150900000	8.230115200	10.515247200
Η	-2.038899000	6.423294100	11.313352200
Η	-0.150902000	9.999028200	7.669905100
Η	-2.987999100	12.308606200	13.879249300
Η	-2.988000100	8.490216200	5.234822100

3. (101) Ti6-5cCO2

0	-1.007432900	12.769358100	3.698065000
Ti	-1.883910100	11.137118300	3.704557600
0	-1.009807300	7.596801300	1.777471000
0	-0.912541200	7.906072200	5.512512200
Ti	-2.646855400	8.841770400	1.716140600
Ti	-2.707182100	8.840215500	5.647619700
Ti	-1.769163800	6.029985200	1.721396600
Ti	-1.694659200	5.938979400	5.664475900
0	-0.874459800	2.598091800	3.690358700
Ti	-2.347704100	3.619508900	3.700057400
0	-3.321450100	1.875266000	3.688000100
0	-2.444382000	4.078618100	5.576000100
0	-2.444383000	4.078618100	1.800000000
0	-4.493213100	4.036543100	3.688000100
0	-1.862009000	5.541645100	-0.088000000
0	-1.862009000	5.541645100	7.464000100
0	-3.321450100	6.980223100	1.800000000
0	-3.321450100	6.980223100	5.576001100
0	-2.444382000	9.183577200	7.464001100
0	-2.444383000	9.183577200	3.688001100
0	-2.444383000	9.183576200	-0.088001000
0	-4.493212100	9.141501200	5.576002100
0	-1.862010000	10.646602200	1.799999000
0	-1.862009000	10.646602200	5.576001100
0	-3.321450100	12.085182200	3.688000100
0	-4.493213100	9.141501200	1.799998000
0	-1.862009000	5.541645100	3.688000100
Н	-1.343684000	1.738816000	3.687999100
Н	-2.518454000	3.892537100	0.850902000
Н	-2.518453000	3.892537100	6.525098100
Н	-4.277326100	2.040196000	3.688000100
Н	-1.787940000	5.727726100	-1.037098000
Н	-1.787936000	5.727726100	8.413098200
Н	-4.851954100	3.135320100	3.688001100
Н	-5.300945100	4.573637100	3.688000100
Н	-4.277326100	7.145153100	1.80000000

Η	-4.277326100	7.145152100	5.576002100
Η	-2.518454000	8.997494200	8.413099200
Η	-2.518455000	8.997495200	-1.037099000
Η	-1.787939000	10.832684200	0.850901000
Η	-1.787938000	10.832684200	6.525099100
Η	-5.300945100	9.678593200	1.799998000
Η	-1.792675000	13.387049200	3.688001100
Η	-4.277326100	12.250111200	3.688000100
Η	-5.300944100	9.678592200	5.576002100
0	0.594596400	5.309882600	5.387064800
С	1.367285300	5.753779000	4.629333100
0	2.148771400	6.174714900	3.889206600

4. (001) Ti6-5cCO2

Ti	-0.539885700	9.565682000	5.720989400
0	-1.020197800	7.564778200	5.723012400
Ti	-0.408236200	5.478358800	5.497540100
0	0.270301600	5.711374800	7.952486400
Ti	-0.543007100	5.610407200	9.689897000
0	-1.013449900	7.525222800	9.376243800
Ti	-0.503415500	9.514348300	9.449219700
0	-0.048409900	9.466934000	7.494189700
0	-1.098604700	11.370783300	5.676916600
0	-0.543231200	11.328157300	9.461950300
0	-0.191305000	9.348340700	11.292069400
0	0.058448100	5.855137500	11.407809200
0	-0.628768600	3.775670900	9.640892100
0	-0.451466900	3.676885600	6.036461400
0	0.039019600	5.596407300	3.716812900
0	-0.107999600	9.434591000	3.795861900
0	-2.504036900	9.442733800	5.656748600
Ti	-2.840090900	7.515672500	5.793806200
0	-2.412378900	5.606638200	5.530815100
0	-2.468254500	5.624268400	9.576495100
Ti	-2.994393100	7.559165800	9.582812600
0	-2.426233800	9.481836100	9.398322000
0	1.979474300	8.690656600	5.311725700
С	2.136442800	8.491104100	4.167102700
0	2.427397900	8.259916400	3.068351200
Η	-0.358871000	9.440001200	2.826902100
Η	-0.755133000	12.277098200	5.664000100
Η	-0.755131000	12.277098200	9.440000200
Η	-0.358870000	9.440000200	12.277098200
Η	-0.358871000	5.664000100	12.277098200
Η	-0.755130000	2.826902100	9.439999200
Η	-0.755130000	2.826902100	5.663999100
Η	-0.358872000	5.664001100	2.826902100
0	-3.326913100	7.552000100	11.327999200

0	-4.901588100	7.552000100	9.439998200
0	-3.326912100	7.552000100	7.551999100
0	-3.326912100	7.552001100	3.776000100
0	-4.901588100	7.552001100	5.664000100
Η	-2.730371000	10.389098200	9.440000200
Η	-2.730372000	10.389098200	5.664000100
Η	-2.730370000	4.714902100	5.664000100
Η	-2.730371000	4.714902100	9.439998200
Η	-4.296912100	7.552000100	7.551998100
Η	-4.296912100	7.552001100	3.776000100
Η	-3.126630100	7.552001100	2.826902100
Η	-5.101871100	7.552000100	10.389097200
Η	-5.101870100	7.552001100	4.714902100
Н	-3.126631100	7.552000100	12.277097200

5. (010) Ti6(Vo)-5cCO2 –bent singlet

0	-5.115802300	16.182633800	7.108148100
0	-6.417073100	14.795049700	5.098693500
Ti	-5.154839700	14.420938600	6.617782300
0	-4.759258000	13.581046600	8.302711900
0	-3.521281700	14.159439600	5.908130700
0	-7.959378100	13.945552500	3.366954000
Ti	-7.022729000	12.922095900	4.623122000
0	-6.021261800	12.684150400	6.367461300
Ti	-4.861529400	11.532299500	7.683842800
0	-4.060486500	11.458016200	9.382803700
Ti	-5.844581900	10.641416000	2.862786100
Ti	-3.742891700	9.374735500	5.980233100
0	-5.309676900	9.949542700	7.214116400
0	-5.491499700	12.440726400	3.521734700
0	-3.317037800	11.246637700	6.651538700
0	-7.043908500	7.419897600	5.009554600
Ti	-5.609310200	7.789304300	4.052881500
С	-8.013019300	10.964811100	4.307192000
0	-8.479340200	11.823362000	5.169256300
0	-8.471878500	9.921786600	3.923113900
Н	-4.288820100	16.584529300	6.786948100
Н	-7.056168100	15.272562300	4.507817100
Η	-4.018225100	13.441314200	8.936579200
Н	-3.129237100	14.682231300	5.204944100
Н	-8.457679200	14.012658300	2.529301000
Н	-3.398079100	10.962771200	9.905266200
Н	-4.687498100	12.672340200	3.023844100
Н	-2.665842000	11.453703200	5.971046100
Η	-7.137631100	6.506661100	4.677700100
0	-6.993842100	10.861699200	1.439719000
0	-4.981733100	9.657382200	4.399317100

0	-2.943005100	8.427261200	7.328697100
0	-6.349805100	8.769934200	2.559492000
0	-4.265286100	7.546419100	5.452575100
0	-4.267067100	10.903130200	2.011558000
0	-2.245963000	9.757564200	4.981690100
0	-5.784783100	5.911670100	3.382999100
0	-3.926151100	7.345828100	2.653047000
Η	-7.453541100	11.353864200	0.741615000
Η	-2.395247000	8.310490200	8.120674100
Η	-3.540197100	10.658276200	1.417752000
Η	-1.506259000	9.551404200	4.389038100
Η	-6.901595100	8.883176200	1.769806000
Η	-3.796756100	7.050582100	6.142159100
Η	-5.064077100	5.695593100	2.770793100
Η	-4.135070100	6.429463100	2.413197000
Η	-3.119171100	7.508166100	2.139890000

6. (010) Ti6(Vo)-5cCO2 –linear singlet

1 7 6 5 0 1 0 0 0 0	1 < 207207000	(7070 (5700
-4.765910900	16.38/397800	6.727365700
-6.059595800	14.985361300	4.718745300
-4.837491400	14.619518300	6.244978500
-4.329904800	13.867648500	8.013877900
-3.276104600	14.261095800	5.401644300
-8.016813200	13.806068300	3.174647900
-6.759706600	13.065317700	4.348682000
-5.767850300	12.921887500	6.201014200
-4.501485000	11.838327700	7.504697300
-3.785416300	11.727745800	9.237180100
-5.227173200	12.827404600	3.208820600
-2.926361300	11.557670700	6.518955500
-4.968009900	10.261340500	6.982143600
-5.503407800	11.015069300	2.686907300
-3.407803100	9.690994900	5.792268200
-6.757746000	7.777358700	4.724161400
-5.247855400	8.133924500	3.825426000
-8.797005000	10.357799300	4.663233300
-8.000428600	11.204916200	4.797904100
-9.597997100	9.537110200	4.523714100
-3.951238100	16.903987300	6.602599100
-6.718586100	15.592020300	4.323468100
-3.680643100	13.760772300	8.752230200
-8.120097100	14.332115300	2.344952000
-3.060496100	11.282229200	9.720917200
-2.791655100	15.001689300	5.020595100
-4.349916100	12.991798200	2.839495100
-2.328260000	11.773161200	5.786697100
-6.648735100	11.183995200	1.249944000
	-4.765910900 -6.059595800 -4.837491400 -4.329904800 -3.276104600 -8.016813200 -6.759706600 -5.767850300 -4.501485000 -3.785416300 -5.227173200 -5.227173200 -5.227173200 -5.227173200 -5.503407800 -5.503407800 -5.503407800 -5.247855400 -5.247855400 -8.797005000 -8.000428600 -9.597997100 -3.951238100 -6.718586100 -3.680643100 -8.120097100 -3.060496100 -2.791655100 -4.349916100 -2.328260000 -6.648735100	-4.76591090016.387397800-6.05959580014.985361300-4.83749140014.619518300-4.32990480013.867648500-3.27610460014.261095800-8.01681320013.806068300-6.75970660013.065317700-5.76785030012.921887500-4.50148500011.838327700-3.78541630011.727745800-5.22717320012.827404600-2.92636130011.557670700-4.96800990010.261340500-5.50340780011.015069300-3.4078031009.690994900-6.7577460007.777358700-5.2478554008.133924500-8.00042860011.204916200-9.5979971009.537110200-3.95123810016.903987300-6.71858610015.592020300-3.6604310013.760772300-8.12009710014.332115300-3.06049610011.282229200-2.79165510015.001689300-4.34991610012.991798200-2.32826000011.773161200-6.64873510011.183995200

0	-4.627079100	9.965356200	4.197147100
0	-2.605422000	8.746719200	7.144348100
0	-5.949360100	9.084515200	2.321025000
0	-3.927703100	7.865877100	5.268226100
0	-1.908381000	10.077022200	4.797341100
0	-3.545870100	7.688067100	2.513844000
0	-5.407589100	6.230979100	3.188417100
0	-3.930038100	11.295660200	1.850138000
Η	-6.497118100	9.201287200	1.529049000
Η	-3.459173100	7.370040100	5.957810100
Η	-1.168677000	9.870862200	4.204689100
Η	-3.190334100	11.089501200	1.257487000
Η	-4.667883100	6.024820100	2.595765000
Н	-3.737726100	6.770129100	2.265891000
Η	-2.726937000	7.860974100	2.023587000
Η	-6.800048100	6.826118100	4.493351100
Н	-7.117265100	11.679831200	0.560361000
Н	-2.057664000	8.629948200	7.936326100

7. (010) Ti6(Vo)-5cCO2-bent- triplet

0	-4.694511900	15.884226000	7.317435800
0	-6.540885500	14.862013800	5.255854100
Ti	-5.133522500	14.289631400	6.509258100
0	-4.685015800	13.424336500	8.234072500
0	-3.736652000	13.956443700	5.389759700
0	-7.951076200	14.110075400	3.359662500
Ti	-6.984737800	13.011114600	4.621030000
0	-5.998202300	12.583256800	6.452596300
Ti	-4.843467500	11.463689600	7.698434100
0	-4.215978400	11.182481500	9.419371500
Ti	-5.793210900	10.602202100	2.841726200
Ti	-3.736230000	9.381711000	6.010742100
0	-5.287569500	9.888851100	7.072167000
0	-5.535777900	12.452253300	3.466146700
0	-3.220379100	11.238930100	6.743743000
0	-7.049387800	7.424331200	5.003001000
Ti	-5.587623900	7.782386400	4.078042500
С	-8.361821200	10.820467400	4.412701800
0	-8.518000600	11.714079100	5.247727900
0	-8.811021800	9.834035800	3.935551500
Η	-4.288820100	16.584529300	6.786948100
Η	-7.056168100	15.272562300	4.507817100
Η	-4.018225100	13.441314200	8.936579200
Η	-3.129237100	14.682231300	5.204944100
Η	-8.457679200	14.012658300	2.529301000
Η	-3.398079100	10.962771200	9.905266200
Η	-4.687498100	12.672340200	3.023844100

Н	-2.665842000	11.453703200	5.971046100
Η	-7.137631100	6.506661100	4.677700100
0	-6.993842100	10.861699200	1.439719000
0	-4.981733100	9.657382200	4.399317100
0	-2.943005100	8.427261200	7.328697100
0	-6.349805100	8.769934200	2.559492000
0	-4.265286100	7.546419100	5.452575100
0	-4.267067100	10.903130200	2.011558000
0	-2.245963000	9.757564200	4.981690100
0	-5.784783100	5.911670100	3.382999100
0	-3.926151100	7.345828100	2.653047000
Η	-7.453541100	11.353864200	0.741615000
Η	-2.395247000	8.310490200	8.120674100
Η	-3.540197100	10.658276200	1.417752000
Η	-1.506259000	9.551404200	4.389038100
Η	-6.901595100	8.883176200	1.769806000
Η	-3.796756100	7.050582100	6.142159100
Η	-5.064077100	5.695593100	2.770793100
Η	-4.135070100	6.429463100	2.413197000
Η	-3.119171100	7.508166100	2.139890000

Appendix C

Supplementary Information for Chapter 4

C.1 Cartesian coordinates for bent-CO₂ clusters modeled using the b3lyp/def2-SV(P) model chemistry

1. Ti2Vo_010_CO2_1 (μ_1 - η^2)

0	-0.6926411	1.1285100	-0.6563663
Ti	-0.5644799	-0.6376799	-1.3973064
Ti	0.2282476	1.0894135	1.0246119
0	-1.3309659	0.9746638	2.1470455
0	-0.1794550	3.1473178	1.4229377
0	1.8472332	1.9452679	0.4252714
0	-1.5162300	0.1450510	-2.7131150
0	1.1453240	-0.5703250	-2.3027570
0	-2.0621920	-1.5398620	-0.5620640
0	-0.3012540	-2.5290570	-1.9637540
Η	2.6335230	1.9973090	-0.1892040
Η	-2.1864120	0.5403860	2.4265350
Η	0.8326040	3.3614540	1.3476520
Η	-0.7798170	2.8740670	2.2226990
Η	-1.2069110	1.5805740	-1.3435820
Η	-1.9880070	0.1859440	-3.5596670
Η	-2.8883950	-1.5960810	-0.0569600
Η	1.9315420	-0.1391570	-2.6727000
Η	0.5249470	-2.4728350	-2.4688570
Η	-1.0874720	-2.9602210	-1.5938110
0	1.1440059	-0.4101378	1.8630220
С	0.7516548	-1.0163366	0.8041954
0	0.8806221	-2.1473210	0.4069550

2. Ti2Vo_010_CO2_2 (μ_2 - η^3)

0	-0.6993131	1.1162157	-0.6624944
Ti	-0.5759755	-0.6339846	-1.4148437
Ti	0.2230720	1.1315118	1.0416652
0	-1.3213820	0.9885640	2.1981758
0	-0.1750499	3.1568749	1.4371481
0	1.8691142	1.9732222	0.4560643
0	-0.3012540	-2.5290570	-1.9637540
0	-1.5162300	0.1450510	-2.7131150

0	1.1453240	-0.5703250	-2.3027570
0	-2.0621920	-1.5398620	-0.5620640
Η	2.6335230	1.9973090	-0.1892040
Η	-2.1864120	0.5403860	2.4265350
Η	0.8326040	3.3614540	1.3476520
Η	-0.7798170	2.8740670	2.2226990
Η	-1.2069110	1.5805740	-1.3435820
Η	-1.9880070	0.1859440	-3.5596670
Η	-2.8883950	-1.5960810	-0.0569600
Η	1.9315420	-0.1391570	-2.6727000
Η	0.5249470	-2.4728350	-2.4688570
Η	-1.0874720	-2.9602210	-1.5938110
С	1.0956617	-0.6380707	1.5754756
0	1.7426977	-1.3688676	2.2685428
0	0.4879080	-0.8305012	0.4244947

3.		Ti6Vo_001	$CO2 (\mu_2 - \eta^3)$	³)
	Ti	1.7896198	12.9837585	5.5411335
	Ti	2.5765906	11.8999276	9.6687832
	0	1.3669343	10.3769978	9.2437003
	Ti	-0.5114230	9.5109885	9.4096752
	0	-1.0139198	10.4775076	7.7722978
	Ti	-1.3319797	10.4020336	5.9197850
	0	0.6213675	11.3036384	5.6446252
	0	0.9224882	13.8400852	4.1368233
	0	3.5709399	13.5949255	5.6663641
	0	4.0796801	12.9535051	9.5289109
	0	2.4353471	11.7504119	11.4615148
	0	-0.2270481	9.3155064	11.2735745
	0	-1.9146282	8.3522553	9.3038217
	0	-2.6523376	9.1712877	6.0974892
	0	-1.8141812	11.1012182	4.2082188
	0	2.9099766	11.3934841	4.8951049
	0	3.6735447	10.5158074	8.8333482
	Ti	2.5234658	8.8638883	8.7701368
	0	0.6455760	8.1165793	8.7341406
	0	-0.1265891	9.0235981	5.2623881
	Ti	1.7093092	9.8985369	5.2071726
	Η	1.0410560	13.6316340	3.1852140
	Η	4.0721120	14.4276720	5.7218010
	Η	4.8542130	13.5072850	9.2994240
	Η	2.9984150	11.3281820	12.1389310
	Η	0.0588470	8.9583660	12.1718830
	Η	-2.5026450	7.5763440	9.3818890
	Η	-3.2847430	8.4967300	5.8042660
	Η	-1.8985150	11.2618190	3.2181660
	0	1.5264180	10.0208290	3.1519130
	0	2.8504650	8.3963300	4.4372310
	0	2.3085160	9.1004450	6.7295320

0	3.6325640	7.4759420	8.0148480
0	3.0906180	8.1800560	10.3071540
Η	3.7726600	11.7822790	5.1067080
Η	4.5547600	10.8618930	8.6843270
Η	3.1685320	8.0968040	11.2704290
Η	0.1374710	7.3007680	8.7338410
Η	3.9478120	7.0965140	8.8500450
Η	-0.6446270	8.2211550	5.1562200
Η	2.8832420	8.3832310	6.4193790
Η	2.7725530	8.4795800	3.4739560
Η	2.1011440	9.3036150	2.8417610
Η	1.2111690	10.4002560	2.3167140
0	0.8148025	14.3048012	6.9183491
С	1.3554295	13.3545769	7.5230103
0	1.3799704	13.1799495	8.7957758

4. Ti2Vo_110_CO2c (μ_2 - η^4)

	112 0 110	_CO20 (µ2 i	
Ti	-2.8141466	6.8187491	7.5296116
Ti	-1.1642843	5.2906300	9.3983069
0	0.0317273	3.8690371	9.6391874
Ο	-2.6892565	7.7355024	5.8468604
0	-4.2550450	5.8087370	7.6968970
0	-1.2480590	8.3862620	7.6968970
Ο	-2.5576450	6.8712840	9.6226350
Ο	-1.0955410	5.1655680	11.5483730
Ο	0.2140450	6.6805470	9.6226350
0	-2.7929420	4.1030210	9.6226350
0	-4.0197480	8.5770000	7.6968970
Η	-4.3704390	4.9733590	8.1761940
Η	-0.4048590	8.3725700	8.1761940
Η	-1.1326650	9.2216410	7.2176000
Η	-4.4305910	9.0562970	8.4333630
Η	-4.1162710	8.6896060	6.7383020
Η	-3.5767420	8.0601810	5.7711580
Η	0.0752710	3.7996780	10.5812290
Η	-2.9083350	3.2676420	10.1019320
Η	1.0398610	6.6671410	10.0920480
Η	-2.9684880	7.3505810	10.3591010
Η	-1.5063840	5.6448650	12.2848390
Η	-0.4642580	4.4291020	11.5483740
0	-1.9969802	5.4557597	6.1644389
С	-1.3336133	5.2654440	7.1809889
0	-0.3598996	4.6119329	7.5218971

5. Ti2Vo_110_CO2d (μ_2 - η^3)

0	-0.0193800	3.9356380	9.6338686
Ti	-1.2394807	5.3456552	9.4591497
Ti	-2.7869355	6.7896939	7.5081205
0	-2.7693406	7.5424689	5.7530208

0	-2.5576450	6.8712840	9.6226350
0	-4.2550450	5.8087370	7.6968970
0	-1.2480590	8.3862620	7.6968970
0	-4.0197480	8.5770000	7.6968970
0	-1.0955410	5.1655680	11.5483730
0	0.2140450	6.6805470	9.6226350
0	-2.7929420	4.1030210	9.6226350
Η	-0.4048590	8.3725700	8.1761940
Η	-1.5063840	5.6448650	12.2848390
Η	-4.4305910	9.0562970	8.4333630
Η	-2.9684880	7.3505810	10.3591010
Η	-4.3704390	4.9733590	8.1761940
Η	-1.1326650	9.2216410	7.2176000
Η	-2.9083350	3.2676420	10.1019320
Η	-3.5767420	8.0601810	5.7711580
Η	-4.1162710	8.6896060	6.7383020
Η	0.0752710	3.7996780	10.5812290
Η	-0.4642580	4.4291020	11.5483740
Η	1.0398610	6.6671410	10.0920480
С	-1.8823845	5.2547541	6.4161336
0	-1.7413940	4.5371212	5.4838253
0	-1.1981207	5.342623	4 7.5635110

VITA

Venkata Pradeep Indrakanti

EDUCATION

 2003–2009 THE PENNSYLVANIA STATE UNIVERSITY (Penn State), University Park, PA Doctor of Philosophy in Energy and Geo-Environmental Engineering, expected May 2009, GPA : 4.0/4.0
1008–2002 NATIONAL INSTITUTE OF TECHNOLOCY (NIT) Tiruchirapalli India

1998–2002 NATIONAL INSTITUTE OF TECHNOLOGY (NIT), Tiruchirapalli, India Bachelor of Technology in Chemical Engineering GPA : 9.20/10

EXPERIENCE

2003-2009 Department of Energy and Mineral Engineering, Penn State, University Park, PA Research & Teaching Assistant

- Developed a model for the initial steps of CO₂ conversion on TiO₂ surfaces using quantum chemical calculations in Gaussian 03 and Turbomole.
- Developed 7 financial scenarios, calculated internal rates of return and payback periods and discovered that a doubling of algal yields and/or a doubling of oil prices would be required to make algal biofuel production economically justifiable.
- Assisted in teaching an undergraduate course for 170 students on energy conservation and environmental protection.

2002-2003 ACC Ltd., Wadi Cement Works, India

Assistant Process Manager

- Measured the performances of the kiln, cooler and preheater sections of a 2.6 MTPA cement plant over a four month period, calculated mass and energy balances and identified bottlenecks for increasing production.
- Evaluated the technical feasibility of various energy-saving measures such as the use of waste heat from the cooler to dry pond fly ash. Recommended a plant retrofit based on this evaluation, resulting in 10% potential energy savings.

SELECTED AWARDS AND ACHIEVEMENTS

- 2008 GRC Poster Presenter Grantee, Gordon Research Conference on Green Chemistry
- 2008 ACS Thematic Program Travel Grant, American Chemical Society
- 2007 EMS Centennial Graduate Research Award, College of Earth and Mineral Sciences
- 2003 Graduate Fellowship Award, Penn State
- 2002 Best Outgoing Student of Chemical Engineering, NIT Tiruchirapalli

SELECTED PUBLICATIONS

- <u>V.P. Indrakanti</u>, J.D. Kubicki, H.H. Schobert, "Quantum chemical modeling of ground states of CO₂ chemisorbed on anatase (001), (010) and (101) TiO₂ surfaces", Energy & Fuels (2008), 22(4), 2611-2618.
- <u>V.P. Indrakanti</u>, J.D. Kubicki, H.H. Schobert, "Photoinduced activation of CO₂ on Ti-based heterogeneous catalysts: Current State, Chemical Physics-based Insights and Outlook", accepted for publication in Energy & Environmental Science, 2009.
- <u>V.P. Indrakanti</u>, J.D. Kubicki, H.H. Schobert, "Quantum mechanical modeling of CO₂ interactions with irradiated anatase TiO₂ surfaces: Implications for the photocatalytic reduction of CO₂", to be submitted to Energy & Fuels.