

27 November 2011

A Journey in Electrocatalysis for Green Energy

Aulice Scibioh Maria Joseph

NCSU, USA

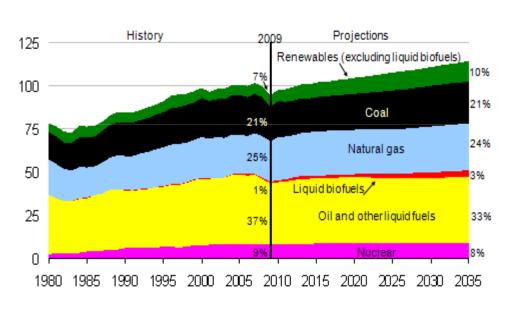
A Few Challenging Avenues in Energy, Electrocatalysis, Materials...

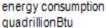
Sky is 'not' the limit!

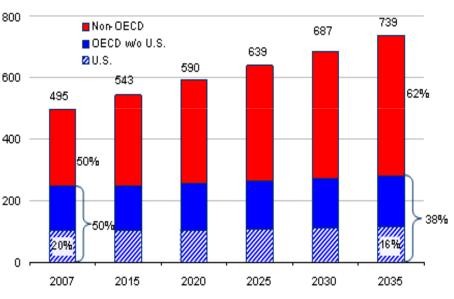
Graphene Materials for Energy Applications

Fundamental Electrochemistry for Materials Selection

Electrocatalysts and Supports for Regenerative Fuel Cells/PEM Water Electrolyzers

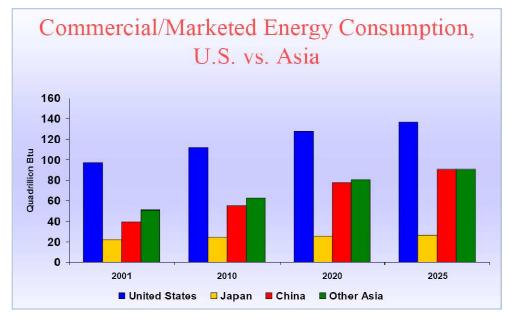

Electrocatalysts, Supports and Components for DMFC

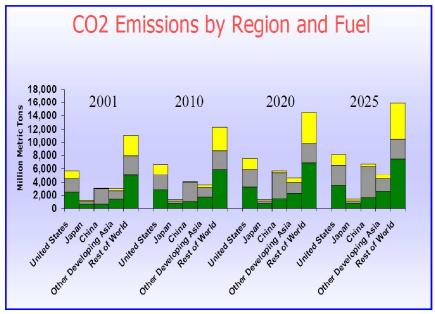

Electrocatalysts for Carbon dioxide Reduction


Solar Energy Conversion using Bimetallic Complex

Energy Outlook

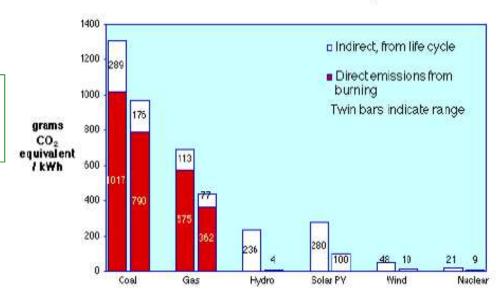
- Energy is an important societal issue.
 It impacts our way of life, economy, national security, environment & health
- Energy production can not keep up with our energy needs
- Energy is the greatest challenge facing the mankind in 21st century

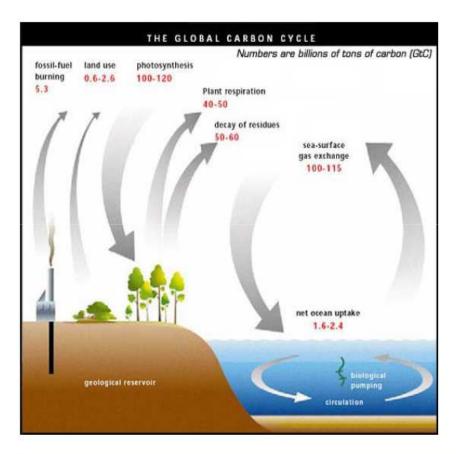

Source: EIA, Annual Energy Outlook 2011

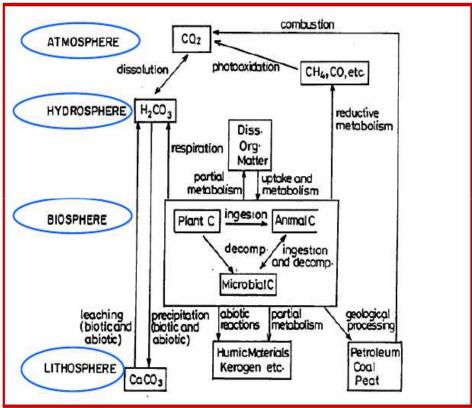

Source: EIA, International Energy Outlook 2010

Renewables grow rapidly, still fossil fuels provide 78% for energy use in 2035.

Non-OECD countries account for nearly 50% increase in global energy use by in 2035.


Energy Vs Emission


Greenhouse Gas Emissions from Electricity Production


World population, energy & electricity demands are ever increasing and are directly related to emission levels

Carbon Cycle

Movement of carbon in its many forms, between the biosphere, atmosphere, oceans & geo-sphere

Natural flux of carbon would be imbalanced by anthropogenic additions from fossilized matters

Part 1. Solar Energy Conversion using Bimetallic Complex

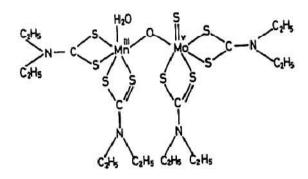


Fig.1:Structure of [MnMoO2(Et2dtc)4(H20)]

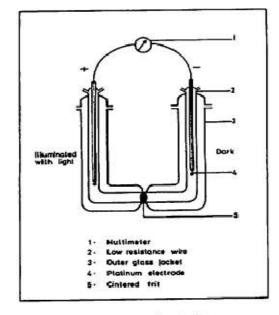


Fig.2: Honda Cell

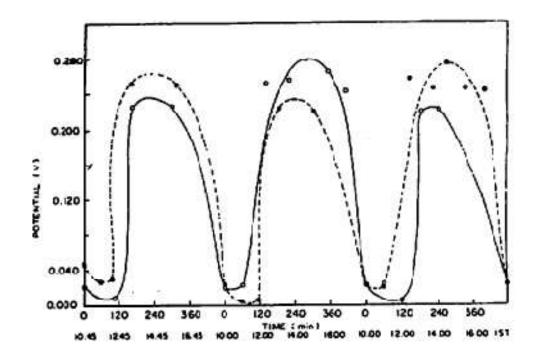


Fig.3:Photogalvanic behaviour of [MnMoO₂(Et₂dtc)₄(H₂O)] in DMF - H₂O (4:1 v/v) in sunlight (with-, without---- benzophenone

Potential: 0.243 V/SCE; Current: 7.0 μA

Solar Energy Conversion using Bimetallic Complex

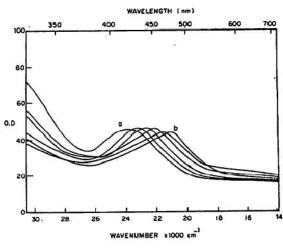


Fig.4:Visible spectrum of $[MnMoO_2(Et_2dtc)_4(H_2O)]$ in DMF (a) Before Irradiation b. After Irradiation [The shift in λ_{max} during irradiation to sunlight for each one hour is recorded

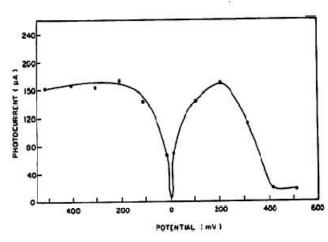


Fig.5:Applied potential vs photocurrent of $[MnMoO_2(Et_2dtc)_4(H_2O)]$ in DMF in the presence of sunlight

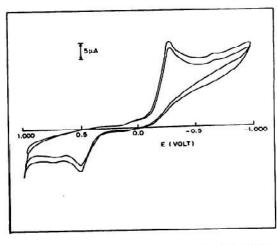


Fig.6:Cyclic voltammogram of [MnMoO₂ (Et₂dtc)₄ (H₂O)] (1.0 mmol dm⁻³) in 0.1 mol dm⁻³TEAB in DMF at pt working electrode. scan rate = 100 mV s⁻¹

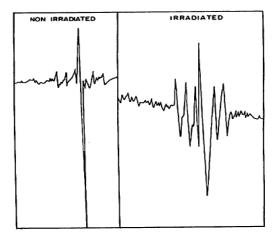
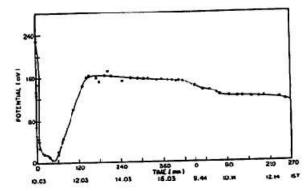
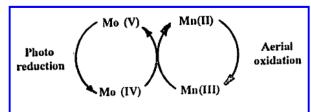
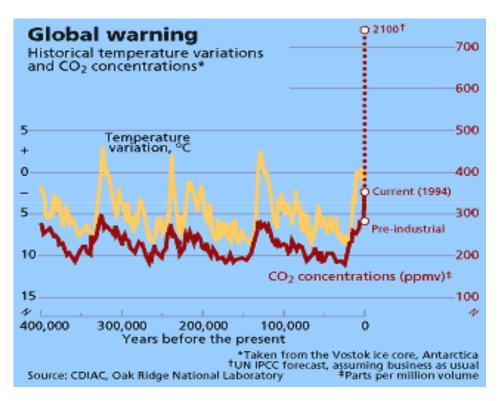
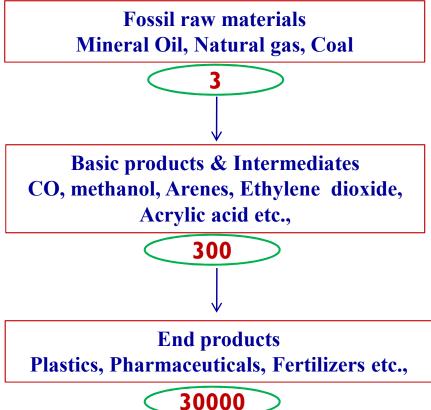


Fig.7:Electron paramagnetic resonance spectrum of [MnMoO₂ (Et₂dtc)₄ (H₂O)] in DMF


Fig.8:Photogalvanic behaviour of [Mo₂O₃ (El₂dic)₄] in DMF in sunlight


Part 2. Development of Suitable Electrocatalysts for Reduction of CO₂ RELEVANCE & IMPORTANCE

CO₂ - Problem Matter or Inexpensive Raw Material?

Global Warming - Green House Gas

Raw Material in Chemical Processes

Small amount of anthropogenic additions exhibit a large effect on climate change

Comparison of the properties of various C₁ building blocks

Factors	CO	COCl ₂	CO ₂
MAK Value	30 ppm	0.1 ppm	5000 ppm
Toxicology	Affinity for Hemoglobin 210 times that of O ₂	War gas	Danger of asphyxiation at 10 vol % in air
Environmental Hazard	Yes	High	Negative
Flammability	12 – 74 vol %	No	No
Boiling point	81 K	291 K	195 K (subl)
Storage	Only at < 3.5 Mpa	Very difficult	No problem
Transport	Gas bottles or tanks kg quantities	Possible	Gas bottles or tanks

Attempts at CO₂ reduction

 CO_2

Radiochemical

y-radiation

 \rightarrow

Chemical reduction
$$2Mg + CO_2 \rightarrow 2MgO + C$$

$$Sn + 2CO_2 \rightarrow SnO_2 + 2CO$$

$$2Na + 2CO_2 \rightarrow Na_2C_2O_4$$

□ Thermo chemical

$$\begin{array}{ccc}
& & & & & & & & & & \\
CO_2 & & \rightarrow & & & & & & & \\
& & \rightarrow & & & & & & & \\
& & & & & & & & \\
T>900^{\circ}C & & & & & & \\
\end{array}$$

Photo chemical

$$CO_2$$
 \rightarrow $CO, HCHO, HCOOH$

НСООН, НСНО

Electrochemical

$$CO_2 + xe^- + xH^+ \rightarrow CO, HCOOH, (COOH)_2$$

eV

bacteria

Biochemical

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

Biophotochemical

$$CO_2$$
 + oxoglutaric acid \rightarrow isocitric acid

Photo electrochemical

$$CO_2 + 2e^- + 2H^+ \longrightarrow CO + H_2O$$

eV, semicond

Bioelectrochemical

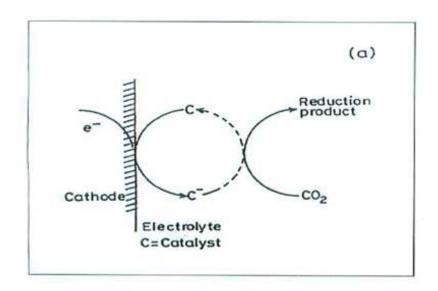
enzyme

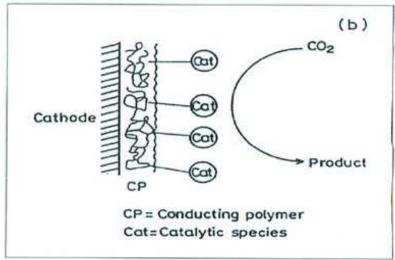
→ isocitric acid eV, methylviologen

Biophotoelectrochemical

$$CO_2$$

→ НСООН


eV, methylviologen


Electrocatalytic Reduction of CO₂ – Why & How?

➤ Reducing atmospheric CO₂ concentration

(A global environmental concern - Green house effect)

- ► Electrochemical approach is already effective proven one (*energy-economic pathway*) to minimize CO₂ concentration & conversion to valuable energy sources such as fuels or chemicals
- ➤ This subject has got **direct industrial relevance**. It deals with product formation such as HCHO, HCOOH, CH₃OH, CH₄ and other organic compounds that have assumed commercial importance & relevance

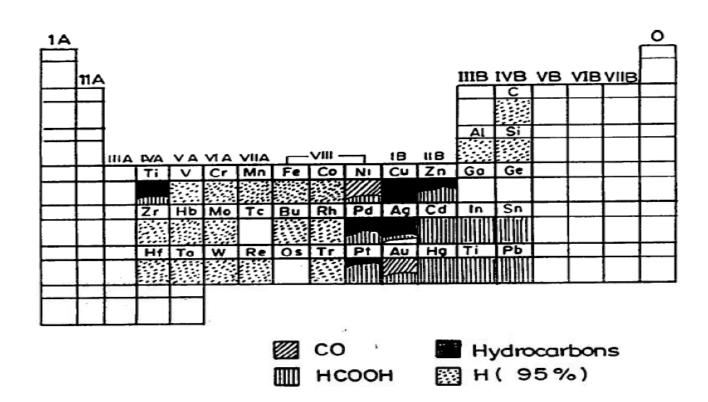
(a) Molecular electrocatalysts in solution; (b) Cathodic materials modified by surface deposition of molecular electrocatalysts

Electrochemical Reduction of CO₂

CO₂/CO₂ redox potential is -2.21V/(SCE)

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 $E^{\circ\prime} = -0.52 \text{ V}$
 $CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$ $E^{\circ\prime} = -0.61 \text{ V}$
 $CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$ $E^{\circ\prime} = -0.48 \text{ V}$
 $CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$ $E^{\circ\prime} = -0.38 \text{ V}$
 $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$ $E^{\circ\prime} = -0.24 \text{ V}$

Influence of the Solvent and Electrode on the Reaction Mechanism						
Reaction Cathode Solut						
$CO_2 + e^- \rightarrow CO_2^-$	All	All				
CO_2 \rightarrow $H^++e^- \rightarrow HCOO^-$ CO_2 \rightarrow $CO+$ O^-	In, Pb, Hg	H_2O				
$CO+O^-+H^++e^- \rightarrow CO+OH^-$	Zn, Au, Ag	H_2O				
CO_2 $\rightarrow (COO)_2$ $\rightarrow (COO)_2$	Pb, T1, Hg	Non-aqueou				
CO_2 -+ CO_2 +e- $\rightarrow CO+CO_3$ 2-	In, Zn, Sn, Au	Non-aqueous				


M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

Reduction of CO₂ under Protic, Aprotic & Partially aprotic conditions

Aq. solutions leads to formic acid production (C_1 products) Aprotic solvents favor dimerization of CO_2 leading to C_n products

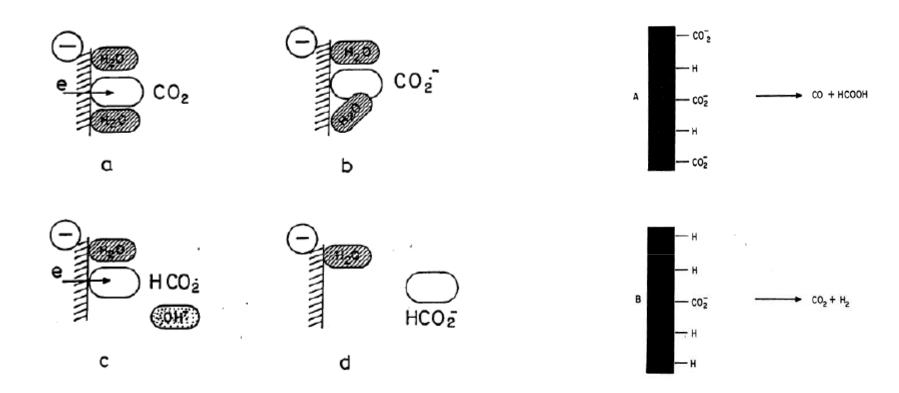
> M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

Periodic table for CO₂ reduction products

At -2.2 V /SCE in low temperature, 0.05 M KHCO₃ solution

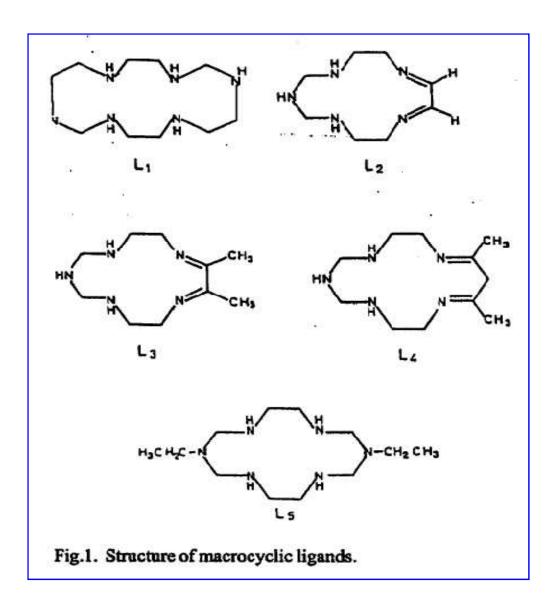
Y Hori et al., J Chem Soc Chem Commun (1987) 728

Summary of Metal Cathodes Employed for Electroreduction of CO₂


Metals	Produ	ects	
	Aqueous medium	Non-aqueous medium	
	sp group metals		
Cu, Zn, Sn	НСООН	2	
In, C, Si, Sn, Pb, Bi, Cu, Zn, Cd, Hg	HCOOH, CO, hydrocarbon	*	
In, Sn, Pb, Cu, Au, Zn, Cd	<u> </u>	Hydrocarbon, CO, CO ₃ ²⁻	
In, Sn, Au, Hg		CO	
In, T1, Sn, Pd, Pd, Zn, Hg		Oxalic acid	
	d group metals		
Ni, Pt	-	CO, CO ₃ ² -	
Ni, Pd, Rh, Ir	HCOOH, CO		
Fe, Ru, Ni, Pd, Pt	Hydrocarbon	-	
Ti, Nb, Cr, Mo, Fe, Pd	-	Oxalic acid	
Mo, W, Ru, Os, Pd, Pt	MeOH	-	
Zr, Cr, Mn, Fe, Co, Rh, Ir	CO	-	

M. A. Scibioh & B. Viswanathan Proc. Indn. Natl. Acad. Sci., 70 A (3), 2004.

CO₂ electroreduction on sp group metal electrodes


Influence of Pressure on Mechanism – An Example

Comparative mechanism of high-pressure CO₂ electroreduction (A) & Electroreduction of CO₂ at atmospheric pressure (B) on Ni cathode

M. Jitaru J. Appl. Elec.Chem 27 (1997) 875

Electrocatalytic Reduction of CO₂ by Ni (II) Macrocycles at HMDE

- 1. Synthesis
- 2. Characterization
- Elemental Analysis
- UV Visible
- IR
- ¹H NMR
- **3. Electrochemical Study** (At HMDE)
- CV, CPE *Influence of:*
- Macrocyclic Ring Size
- Substituent
- Solvent
- Supporting Electrolyte
- pH
- 4. Product Analysis
- GC & Chemical Analysis
- 5. Mechanism

In-situ, Spectro-electrochemical

- UV-Vis, EPR

An Example

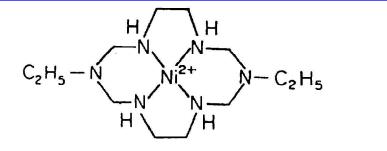


Fig. 1: Structure of $[Ni(L)](ClO_4)_2$ where L = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane

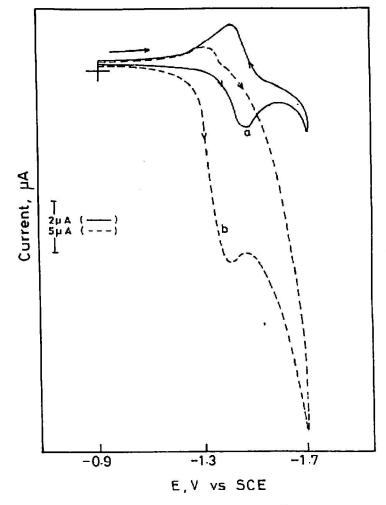
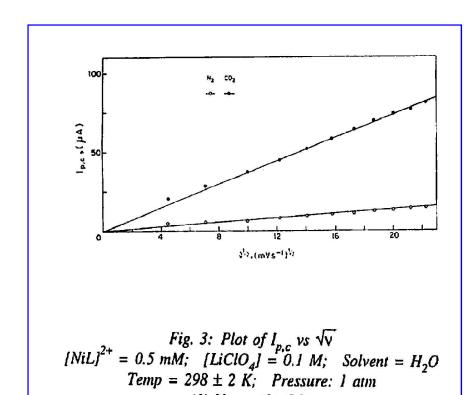



Fig. 2: Cyclic voltammogram of $[NiL]^{2+}$ (0.1 mM) in 0.1 M LiClO₄ in water at HMDE (0.0310 cm²). Scan rate: 200 mVs⁻⁺ under N₂ (curve a); under CO₂ (curve b)

Electrochemical Study

(1) N_2 (2) CO_2

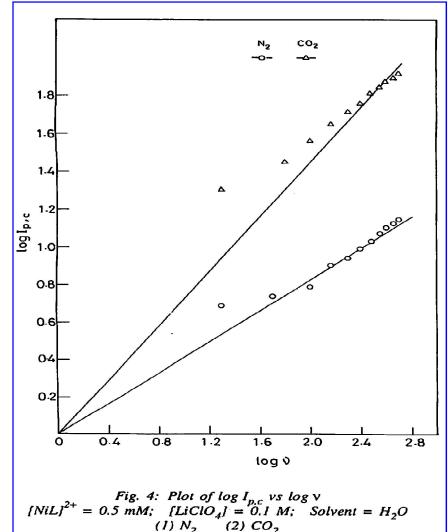


Fig. 4: Plot of $\log I_{p,c}$ vs $\log V$ ${NiL}^{2+} = 0.5 \text{ mM}; \quad \{LiClO_4\} = 0.1 \text{ M}; \quad Solvent = H_2O$ (1) N_2 (2) CO_2

Electrochemical Study

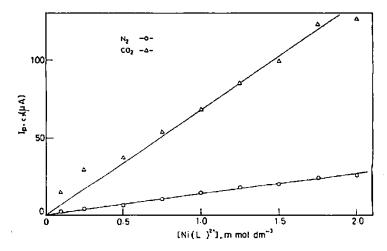


Fig. 5: Plot of $l_{p,c}$ vs complex Scan rate = 100 mVs; $[LiClO_4] = 0.1 M$ (1) N_2 (2) CO_2

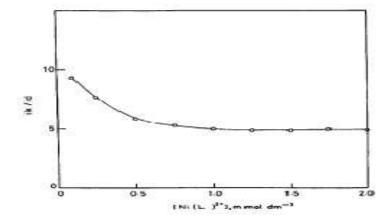


Fig. 7: Plot of i_k/i_d vs {copmplex} [LiClO₄] = 0.1 M; Solvent = H_2O ; Scan rate = 100 mVs⁻¹ i_k = kineric current; i_d = diffusion current

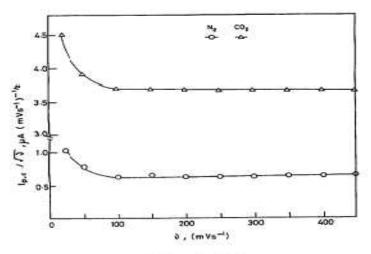


Fig. 6: Plot of $I_{p,c}/\sqrt{\nu}$ $[NiL]^{2+} = 0.1 \text{ mM}; \ [LiClO_4] = 0.1 \text{ M}; \ Solvent = H_2O$ (1) N_2 (2) CO_2

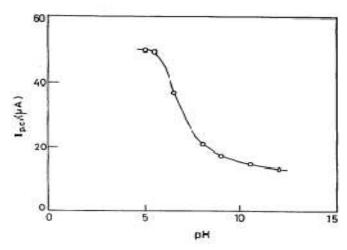


Fig. 8: Plot of $I_{p,c}$ vs pH $[Ni(L)]^{2+} = 0.5$ mM under CO_2 atmosphere Scan tate = 100 mVs^{-1}

Insitu – Spectroelectrochemical Study

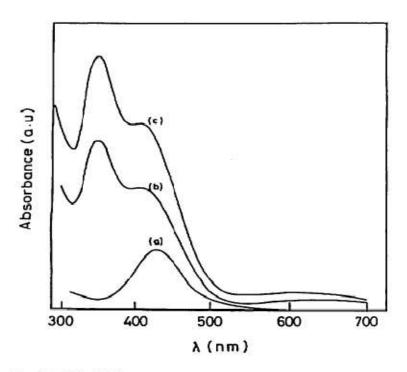


Fig. 5: UV-visible spectroscopy study in aqueous solution
(a) Electronic spectrum of [NiL]²⁺ before electrolysis
(b) Electronic spectrum of [NiL]²⁺ electrolysed under 1 atm CO₂
(c) Electronic spectrum of [NiL]²⁺ electrolysed under 1 atm CO
[NiL]²⁺ = 6 x 10⁻³ M in 0.1 mol dm⁻³ LiClO₃
aqueous solution at 298 ± 2K
Electrolysis: Hg pool at -1.60 V vs SCE

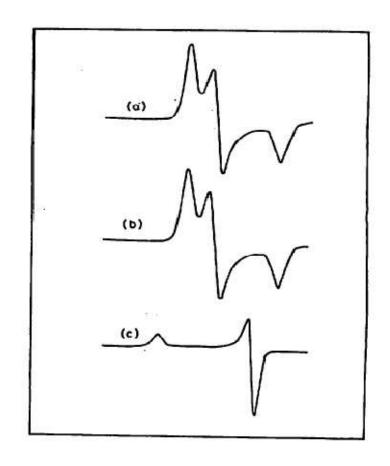
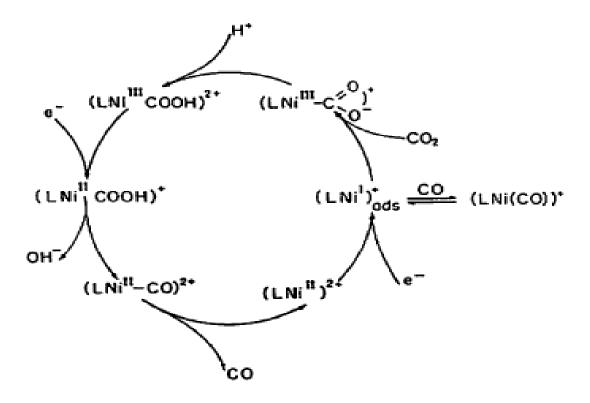



Fig. 6: EPR spectrum of frozen (77 K) electrolysed solutions of [NiL]²⁺ in DMF at -1.60 V vs SCE at mercury cathode (0.1 M TEAB)

a) under CO₂ b) under CO c) under N₂

Carbon dioxide Reduction Mechanism

Scheme I: Postulated mechanistic cycle for the electrocatalytic reduction of CO₂ into CO by [NiL]²⁺ in water

Electrochemical Study

Table .1 Cathodic peak potentials and peak current values of complexes. The reaction conditions are [LiÇlO₄] = 0.1 mol dm³, temp. =298 \pm 2K, scan rate = 200 mVs¹, solvent=H₂O, area of HMDE=0.031 cm²

Complex	-E _p , vs SCE (V)		Peak current, (mA)	
	N ₂ CO ₂		N ₂	CO2
[Ni(L ₁)] (ClO ₄) ₂ H ₂ O	1.36	1.43	1.2	7.0
[Ni(L ₂)] (ClO ₄) ₂	1.22	1 13	1.6	5.4
[Ni(L ₃)] (ClO ₄) ₂	1.255	1.20	2.7	5.0
[Ni(L ₄)] (ClO ₄) ₂ .	1.21	1.16	2.5	14.6
[Ni(L ₅)] (ClO ₄) ₂	1.47	1.41	4.5	36.0

Table.2. The data of product using controlled potential electrolysis-gas chromatorgraphy (CPE-GC). The reaction conditions are [LiClO₄]=0.1 mol dm³, [complex]=1.0 mmol dm³ temp.=298±2K, solvent=H₂O.

Complex	-E, Timcof (V) electro- lysis, h (L)		Total volume of CO produced (ml)	Turnover Frequency, (h-1)	
[Ni(L1)](ClO4)				, ,	
2H2O	1.6	3	20	6.5	
[Ni(L2)](ClO4)2	1.6	3	11	3.6	
[Ni(L3)](ClO4)2	1.6	3	13	4.3	
[Ni(L4)](ClO4)2	1.6	3	23	7.6	
[Ni(L5)](ClO4)2	1.6	3	28	9.2	

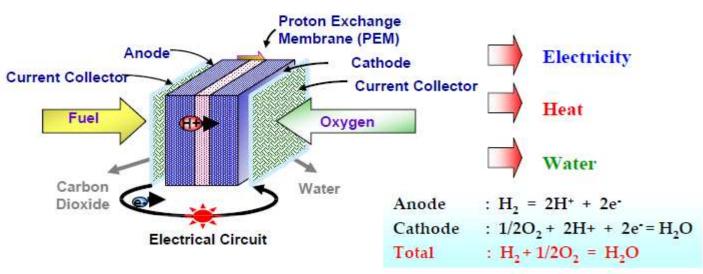
The order of catalytic activity of the chosen systems towards CO₂ reduction in water may be represented as:

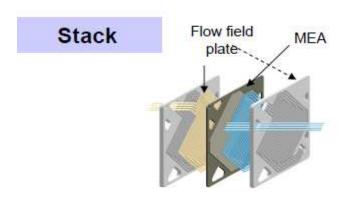
$$[Ni(L_5)]^{2+} > [[Ni(L_4)]^{2+} > [Ni(L_1)]^{2+} > [Ni(L_3)]^{2+} \sim [Ni(L_1)]^{2+}$$

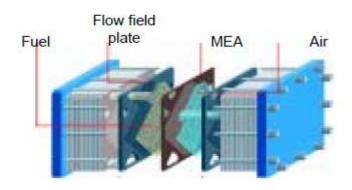
Electrochemical Study

Table 3—Studies of scan rate variation in solvents of various compositions. [NiL]²⁺ = 1.0 mmol.dm⁻³; [LiClO₄] = 1.0 mmol.dm⁻³; Temp.= 298±2 K

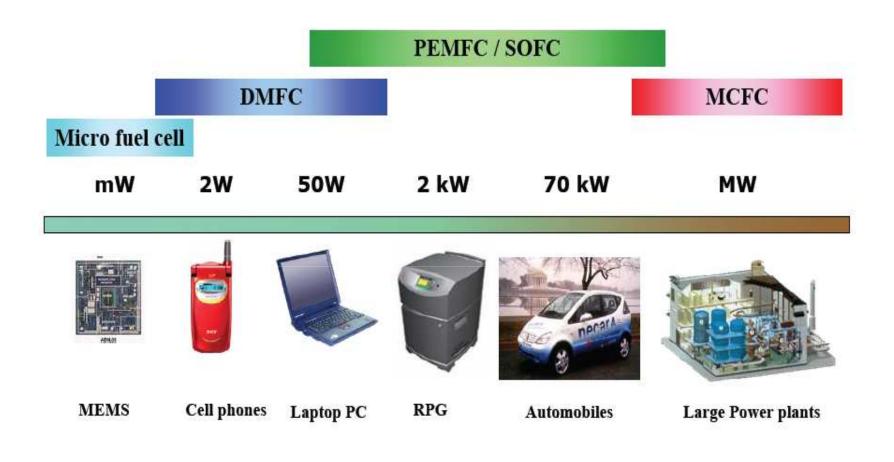
Solvent	H ₂ O (vol%)		7,	/I _d	
). -	Scan rate, v (mVs ⁻¹)			
	T 	400	200	100	.50
DMF	50	3.2	3.2	3.25	3.45
	60	3.35	3.4	3.5	3.7
1740	70	3.5	3.6	3.8	4.1
	80	3.45	3.5	3.7	4.2
	90	3.40	3.45	3.5	3.9
	100	3.0	2.92	2.95	3.1
OMSO	20	3.25	3.30	3.25	3.60
	40	3.32	3.35	3.40	3.70
	60	3.40	3.45	3.65	3.90
	80	3.45	3.50	3.70	4.0
	100	3.00	2.92	2.95	3.1
CH ₃ CN	20	1.9	2.43	2.5	4.2
	40	2.2	2.50	2.6	5.45
	60	2.3	2.55	2.65	6.7
	80	2.9	2.85	2.8	7.0
	100	3.0	2.92	2.95	3.1


Table 1 Cudies th - cc.	
rable 1—Studies on the effect of	f supporting electrolyte on current for the reduction of CO


Supporting Electrolyte,	Solvent		I_k/I_d		
0.1M		Scan rate, v(mVs ⁻¹)			
		200	100	50	
TBAP	80%CH ₃ CN	5.65	5.7	7.5	
	80% DMF	6.75	6.8	8.0	
	70%DMSO	4.3	4.4	6.5	
TEAP	100% CH3CN	3.4	3.5		
	80%CH3CN	6.45	6.5	4.2	
	70% DMF	7.0	7.2	8.3	
KCIO₄	100% H ₂ O	2.6	2.7	8.5	
	70%DMSO	3.0	3.1	2.9	
NaClO ₄	100% H ₂ O	2.55		4.0	
	80% DMF	2.8	2.6	2.85	
	77.1 8414	2.0	2.9	3.8	


Part 3. Research in Fuel Cells

Introduction to Fuel Cells



Applications

Others: military purposes, robots, portable power generators

KIST – Fuel Cell Research Center - Laboratories

MCFC Lab

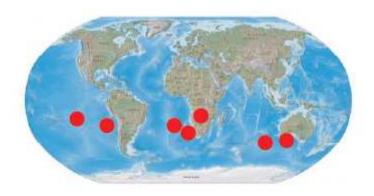
PEMFC Lab

DMFC Lab

SOFC Lab

SiFC Lab

Reformer Lab

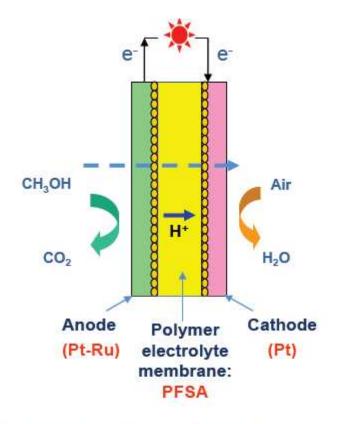

Cooperation

Foreign Organizations

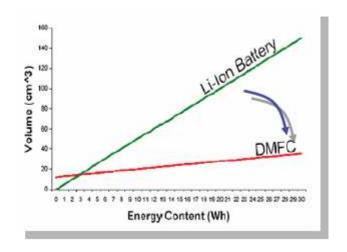
- CEA (France)
- AIST-KANSAI (Japan)
- DICP (China)
- ENEA (Italy)
- Kurchatov Institute (Russia)
- NRC (Canada)
- IEA

Domestic Companies

- Korea Electric Power Corporation
- Hyundai Motor Company
- LG Chemicals
- Samsung Advanced Institute of Technology



Direct Methanol Fuel Cell


Anode : $CH_3OH + H_2O = CO_2 + 6H^+ + 6e^-$

Cathode: $1.5 O_2 + 6H^+ + 6e^- = 3H_2O$

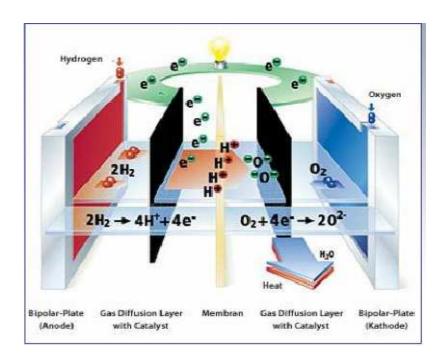
Overall : CH₃OH + 1.5O₂ = CO₂ + 2H₂O,

E° = 1.18 V

- high energy density
- ▶ longer use time
- enhanced functionality
- ▶ instant refueling
- environmentally friendly

DMFC Technology

Efforts toward Commercialization

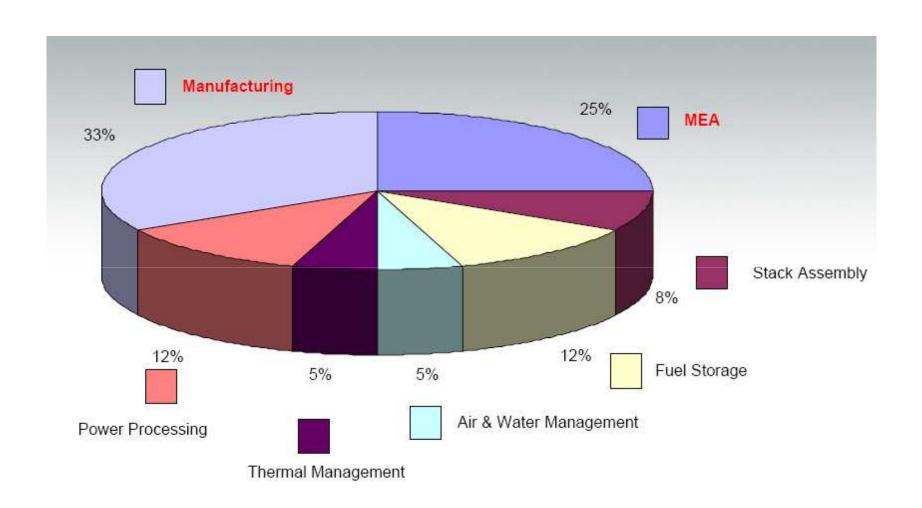

Manufactures	Power	Volume	Fuel volume	Target year	Prototypes
NTT DoCoMO and Fujitsu	9 wh (Battery charger)	160 cc	18 cc	2007	
Toshiba	100 mW (Flash) 300 mW (HDD)	80 cc 220 cc	10 cc 3.5 cc	2007	
Hitachi	1.0 W 5 hr	126 cc	3 cc	2006	
LG Chem	25 W 10 hr	1 liter	200 cc	2006	
Sanyo and IBM Japan	12~72 W 8 hr (Battery hybrid)	1.2 liter	13 <mark>0 cc</mark>	2007	&
Samsung SDI	20 W 15 hr	1 liter	200 сс	2007	1

Technical Barriers to Commercialization

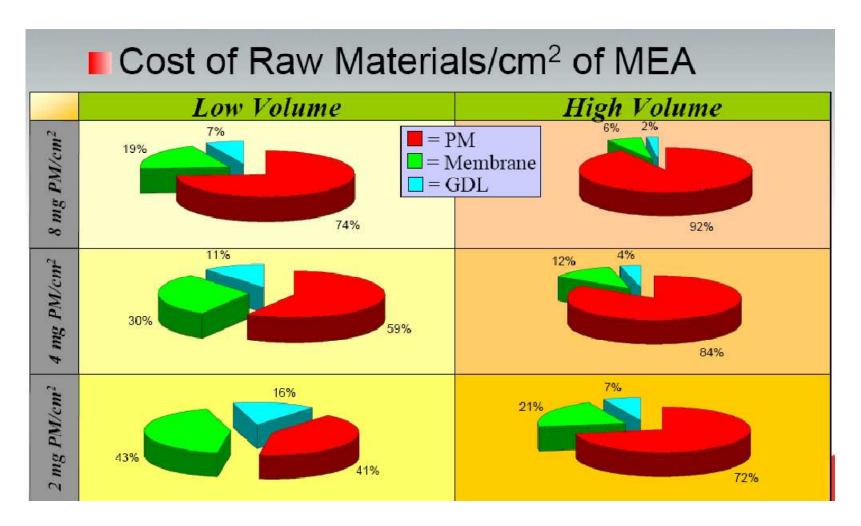
- Catalyst Activity and Cost
- Membrane Methanol Crossover
- Fuel cell stack Power Density
- Durability/reliability
- BOP Issues (thermal & water management)
- System & Component –Miniaturization
- Cost (based on technical impact)
- Conversion efficiency
- Consumer safety and Effluents
- Operating/storage envelope
- Manufacturing/Mass production
- Consumer acceptance/education/perception
- Codes & standards/Infrastructure

What Really Matters for Fuel Cell Commercialization?

Grand Challenges & Needed Breakthroughs for Fuel Cells

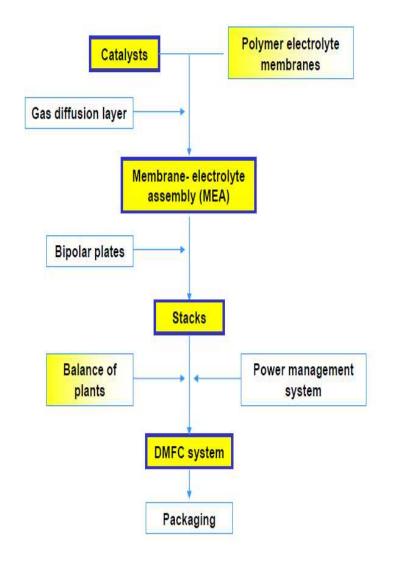

Grand Challenges

- Affordability (\$/kW)
- Durability (performance loss ~ time)


Needed Breakthroughs

- Adv. Catalysts
- · Adv. PEM Material
- Innovative CCM/MEA mft.

Cost breakdown for Automobile PEMFC Engine System



DMFC MEA Raw Materials Cost Analysis

- > Current loadings of noble metals need to be reduced
- ➤ How to extract the best possible performance?

Research Topics at KIST DMFC Lab

1. Catalysts

- Modification of carbon supports with ionomer
- Anode catalyst Pt-CeO₂ Activity/Durability/Cost
- Cathode catalyst Pt-CeO₂ Air Utilization

2. Membrane

- Surface modification by Silica layers

3. Membrane Electrode Assembly

- Optimization of electrode structure
- Durability test and Recovery measures
- Simulation of flow fields

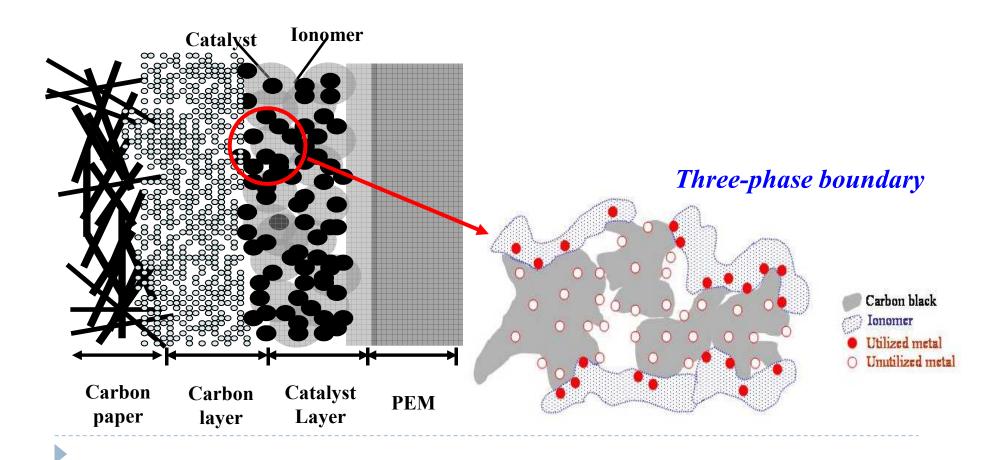
4. Stacks

- Passive monopolar stacks
- Active bipolar stacks: 20, 50, 500W stacks

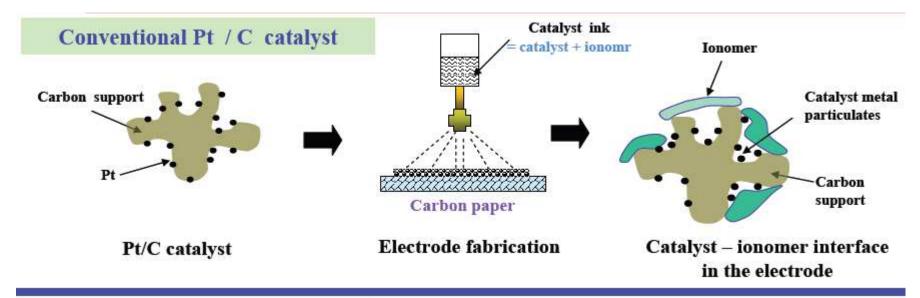
Development of Catalysts

Requirements

- Higher active surface area
- Smaller particle size
- Porosity
- Tolerant against corrosion and intermediates
- Cost

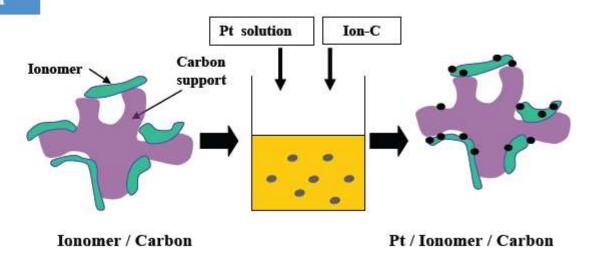

Approaches at KIST

- To increase three phase boundary
 - ✓ Ionomer coated carbon
- To increase air utilization at the cathode
 - ✓ Pt-Ceria + α
- To replace Ru from the Pt-Ru anode catalysts
 - ✓ Pt-Ceria + β

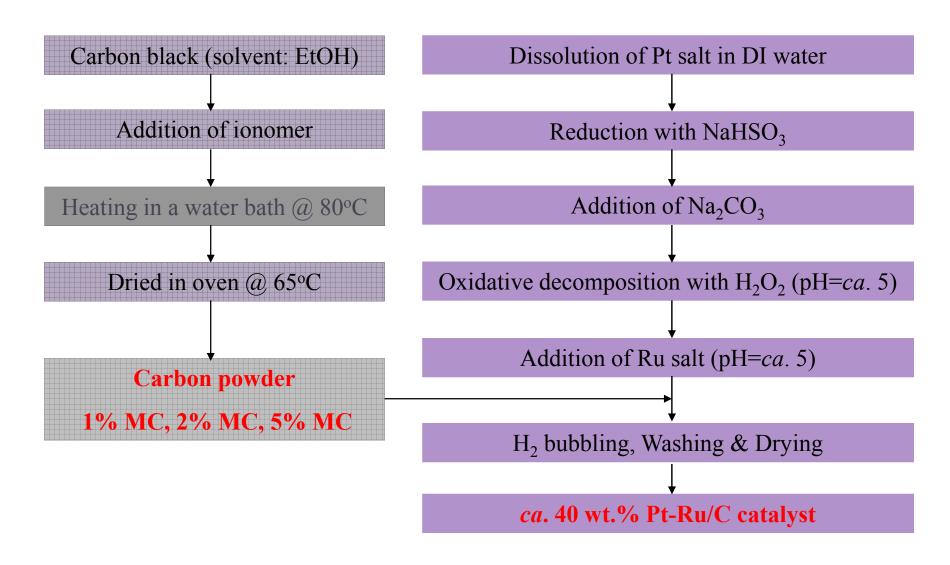

Improve the utilization of methanol oxidation catalysts

Preparation of ionomer- coated carbon supports

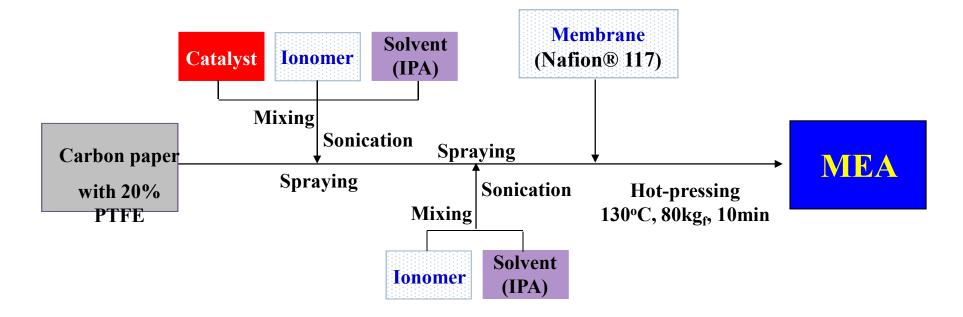
- (i) To reduce the micropore volume in carbon black particles
- (ii) To extend the area of the three-phase boundary



Ionomer Coated Carbon Supports



Pt on ionomer-coated carbon


- Strategies & objective
 - To increase the interfacial area btn Pt and ionomer
- Experimental
 - lonomer is first coated on the carbon support followed by Pt deposition

Catalyst Preparation – Colloidal Method

Fabrication of MEA (Electrode area = 10.89 cm^2)

Electrode	Catalyst	Metal Loading	Ionomer/Catalyst
Cathode	46.5 wt.% Pt/C (Tanaka)	3 mg Pt/cm ²	0.3 (inner: 1/4, outer: 3/4)
Anode	ca. 40 wt.% Pt-Ru/C (Home-made & E-TEK)	3 mg Pt-Ru/cm ²	0.15, 0.3, and 0.6 (inner: 1/4, outer: 3/4)

Ionomer Coated Carbon Supports

To increase the utilization of catalyst Use the ionomer-coated carbon as a catalyst support

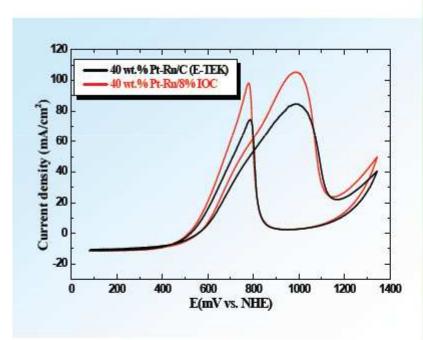
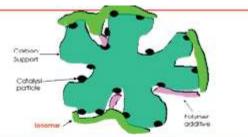
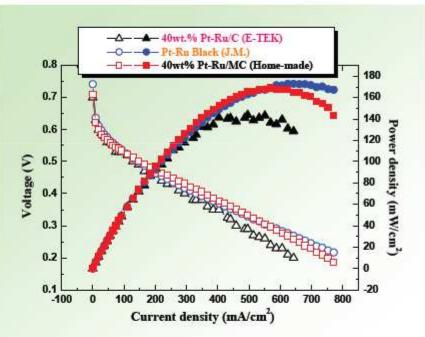
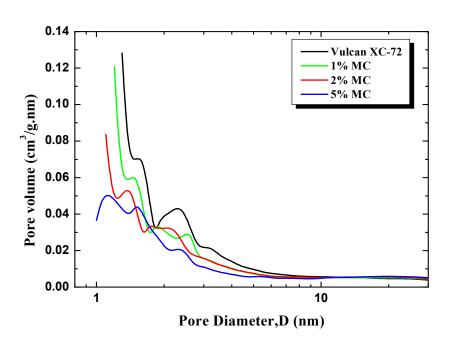
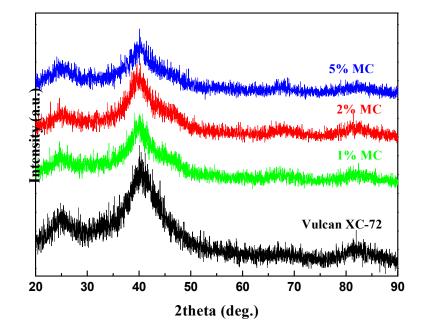



Fig. 1. Cyclic voltammetries of carbon-supported Pt-Ru catalysts for methanol oxidation in 0.5M H₂SO₄ + 2M MeOH.


Fig. 2. DMFC performance at 90 °C, 2.0M CH₃OH 5 cc/min, humidified O₂ 250 sccm. Cathode, 46.5 wt.% Pt/C (Tanaka, catalyst loading 3.0 mg Pt/cm²); membrane, Nafion-117

Ionomer Coated Carbon Supports

Pore-Size Distribution of carbon blacks

XRD Patterns of ca. 40wt.% Pt-Ru/C

The micropore volume of the modified carbons decreased compared to unmodified VC XC-72

BET surface area (m²/g):

VC XC-72 (217), 1% MC (189), 2% MC (178), 5% MC (161)

Diffraction peaks of the Pt-Ru/C slightly shift to higher 20 values with respect to Pt reflections – Evidence for the formation of Pt-Ru alloy catalyst.

Various Ionomer Coated Carbon Supports for DMFC Applications

Preparation: Colloidal Route

Characterization: BET-PSD, FTIR, XRD, TEM, CO-Stripping, CV, CA

Table 1 Physical properties of the carbon black powders

Brand name	BET surface area (m ² /g) by this work	BET surface area (m²/g) in catalogues	Primary particle size (nm) in catalogues	Maker
Vulcan XC-72R	217	254	30	Cabot
Ketjen Black (EC 300JD)	958	950	15	Ketjen Black International
PARTICIPATE THE STATE OF THE STATE OF				Company, Japan
Black Pearls (BP 2000C)	1477	1475	12	Cabot

Scibioh et al., Appl. Catal. B. Environ. 77 (2008) 373-385

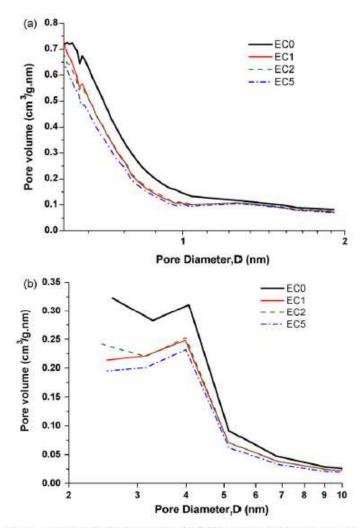
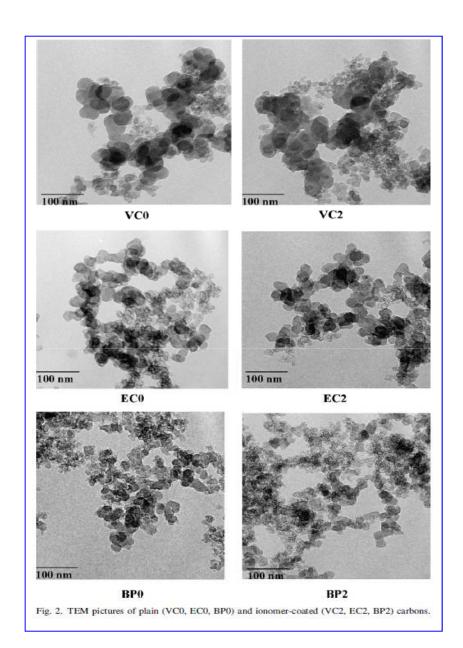



Fig. 1. Pore size distribution curves of EC 300JD plain and ionomer-coated carbon black powders. (a) Micropore region (<2 nm) made with Horvath-Kawazoe measurement. (b) Mesopore region (~2–100 nm) made with BJH method.

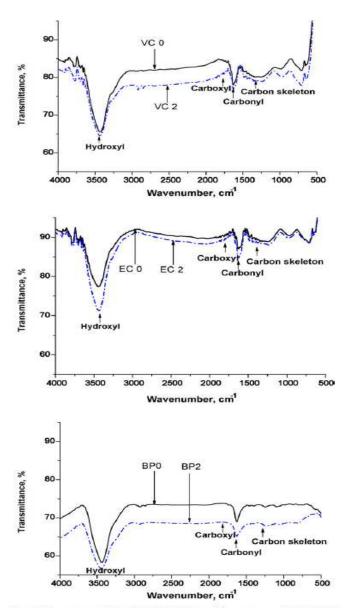
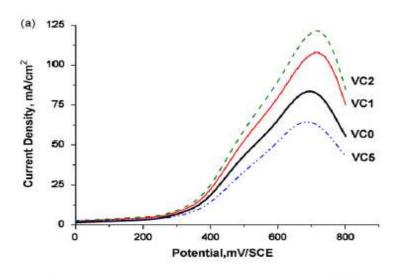



Fig. 3. IR spectra of plain (VC0, EC0, BP0) and ionomer-coated (VC2, EC2, BP2) carbon powders.

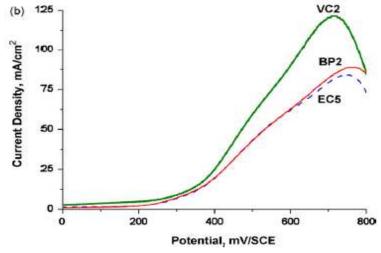


Fig. 4. (a) The forward sweep of the cyclic voltommograms of Pt–Ru/MC (MC = VC0, VC1, VC2, VC5). (b) A comparison among best performed catalyst systems with various modified carbon supports in electrolyte solution (0.5 M $_{12}$ SO₄ and 1.0 M MeOH) at 25 $^{\circ}$ C, Sweep rate = 50 mV/s.

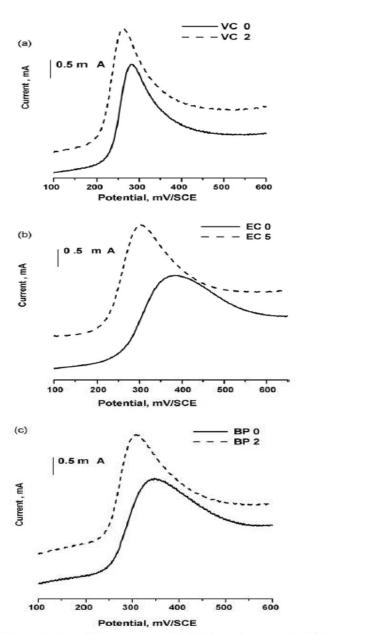


Fig. 7. CO_{ad} stripping voltammograms for the Pt–Ru/MC prepared with plain and best performed ionomer composition coated on carbon in each case. (a) VC0, VC2; (b) EC0, EC5; (c) BP0, BP2. Electrolyte: 0.5 M H₂SO₄ at 25 °C. Sweep rate = 50 mV/s.

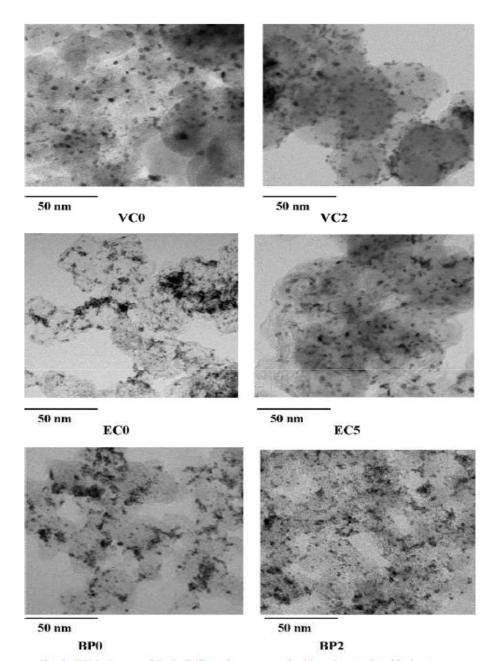


Fig. 9. TEM pictures of Pt-Ru/MC catalysts prepared with various carbon black supports.

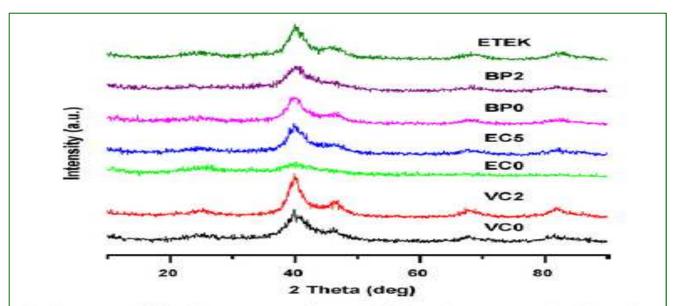


Fig. 8. X- ray diffraction patterns of Pt-Ru/MC catalysts prepared with various kinds of carbon black supports.

Catalyst 40 wt.% Pt-Ru/MC	Particle size (nm)		Particle area ^a (m ² /g)	% Metal utilization	
	TEM	XRD			
PR-ET ^b	2.6	2.75	107	53	
VC0	3.0	3.0	93	60	
VC2	3.5	3.5	79	73	
EC0	1.5	1.4	186	32	
EC5	2,5	2.5	111	56	
BPO	1.5-3.5	3.0	186	29	
BP2	2.0	1.9	144	35	

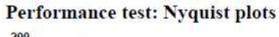
^a Particle area was calculated from TEM analysis by assuming spherical metal particles.

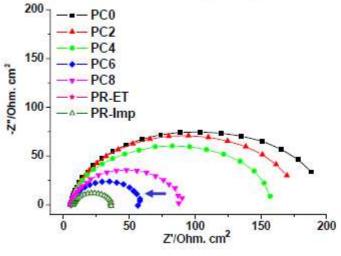
b PR-ET, commercial 40 wt, % Pt-Ru/C obtained from ETek.

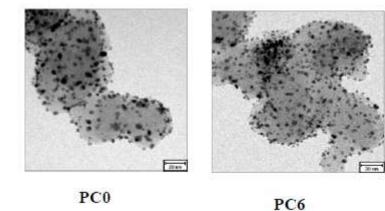
Ceria to Replace Ru in Pt-Ru Anode Catalyst

Preparation: Impregnation /Co-precipitation Method Characterization: BET-PSD, XRD, TEM, CO-Stripping, CV, CA, EIS

Pt-xCeO₂ / C Cyclicvoltammetric Study 120 -Current density, mA/cm² 100 PR-Imp PC₀ PC6 PC8 PC4 PC0 PC2 20 200 400 600 800 1000 1200 Potential, mV / NHE

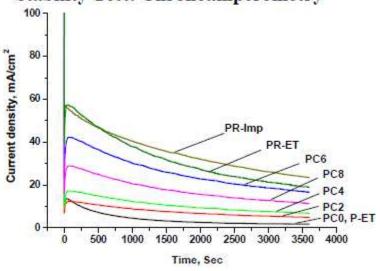

Electroxidation in $0.5M H_2SO_4 + 1M CH_3OH$, V = 25mV/s


Catalyst	On-set Potential (mV/NHE)	Peak Current Den sity (mA/cm²)	I_f/I_b
P-ET	480	49	0.54
PC0*	478	49	0.54
PC2	476	48	0.55
PC4	475	56	0.53
PC6	412	80	1.45
PC8	415	71	1.23
PR-Imp	375	102	2.17
PR-ET	378	101	2.16


^{*} The number 0 – 8 denote the ceria percentage to Pt: PC0 = pure Pt, PC2 = 2%Ceria to Pt

- PC6- Better activity than Pt only system
 - ✓ Shift in onset potential & better I,/I, ratio
- Non-noble metal oxide in the place of noble metal Ru

Pt-Ceria Anode Catalyst



• Enhanced Electrochemical Active Surface Area (ESA)

Stability Test: Chronoamperometry

Catalyst	Particle Size, n m (TEM)	ESA (m²/g)
P-ET	4.0	48
PC0	3.7	50
PC2	3.5	53
PC4	3.5	55
PC6	3.0	60
PC8	3.0	57
PR-Imp	3.5	61
PR-ET	2.6	63

CATHODE RESEARCH – MAIN FOCUS

- Selective cathode catalyst and/or
- methanol-tolerant catalyst for oxygen reduction

ORR: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ $E_r = 1.229 \text{ V}$

ORR- At Fuel Cell Electrodes- Associated Issues

Acid Electrolyte Conditions

- Reaction takes place at high, positive potentials hence most metals dissolve
- Only noble metals and some of their alloys

Even with Pt!

- Formation of surface oxide
- **❖ Complications PtO₂** is a catalyst for H₂O₂ reduction
- Involvement of high potentials sintering

Essentially, Metal dissolution & oxide formation

Catalysts for oxygen electro-reduction

Noble metal catalysts

Pt & certain Pt alloys

Amounts allowable (for the air electrode) would not produce currents required for commercial success at the desired cell terminal voltage

Attempts

- (i) Improve the activity at high positive potentials
- (ii) Develop non-noble metal complex catalysts macrocyclic organometallic chelates

State of the art cathode catalysts

Methanol tolerant catalyst

Metal phthalocynines, porphyrins, metal oxides, metal carbides & chalcogenides

ORR activity & methanol tolerant capability, but the life-time still need to improve

To improve ORR activity

Pt-Alloy catalysts

Pt-Co/C, Pt-Cr/C, Pt-Ni/C, Pt-Fe/C and Pt-Cr-Co/C

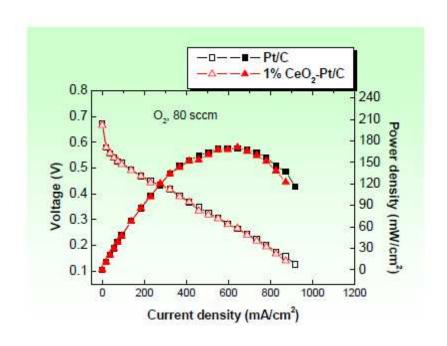
Our Directions

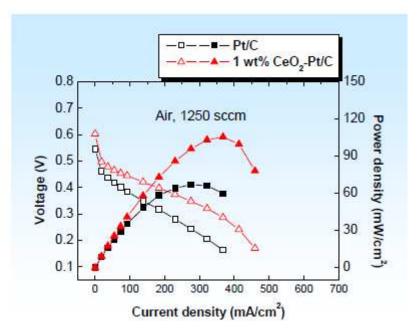
Pt-Ceria Cathode Catalyst

Our Focus

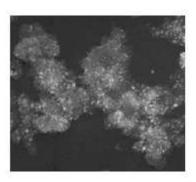
Increasing air utilization in the cathode
Incorporation of oxygen storage materials

Why Ceria?

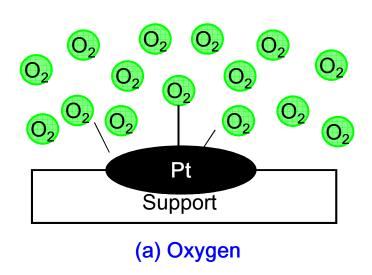

The ability of ceria to store, transport and release oxygen

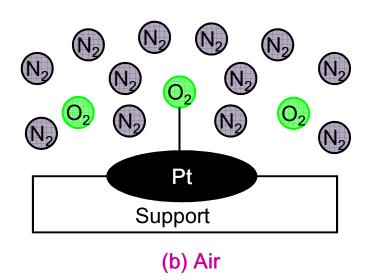

$$CeO_2 \leftrightarrow CeO_{2-x} + (x/2)O_2 \qquad (0 \le x \le 0.5)$$

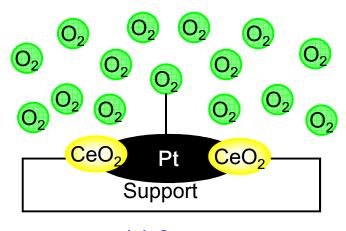
Unique & delicate balance between structural (phase formation), kinetic (rate of shift between reduced & oxidized states (Ce³⁺ ↔ Ce⁴⁺), and textural (presence of surface cerium sites) factors

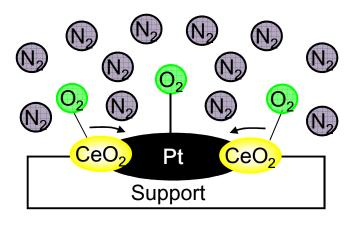

Ceria functions as an oxygen buffer

Pt-Ceria Cathode Catalyst




TEM image




Incorporation of nanophase ceria (CeO₂) into the cathode catalyst Pt/C increases the local oxygen concentration at air atmosphere leading to enhanced single-cell performance of DMFC.

Role of Ceria in ORR at Air

(a) Oxygen

(b) Air

${\rm CeO_2}$ - and ${\rm Ce_{0.8}Sm_{0.2}O_2}$ -Modified Pt/C Catalysts for Cathode of a DMFC

Catalyst Preparation – Impregnation Method

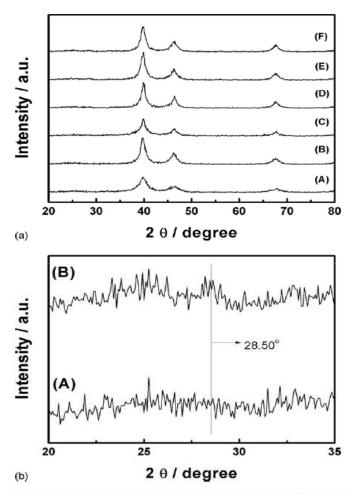
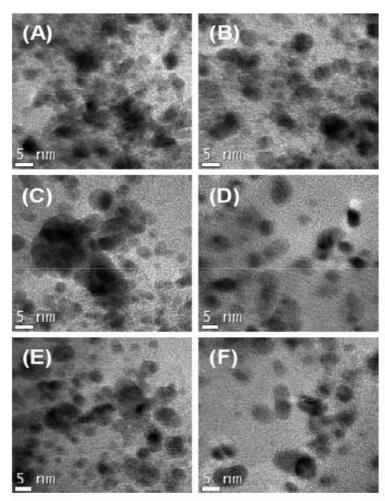



Figure 1. (a) XRD pattern of (A) Pt/C, (B) 1 wt % CeO₂, (C) 1 wt % Ce_{0.8}Sm_{0.2}O₂, (D) 2 wt % Ce_{0.8}Sm_{0.2}O₂, (E) 5 wt % Ce_{0.8}Sm_{0.2}O₂, and (F) 7 wt % Ce_{0.8}Sm_{0.2}O₂-modified Pt/C. (b) XRD pattern of (A) 1 wt % Ce_{0.8}Sm_{0.2}O₂ and (B) 7 wt % Ce_{0.8}Sm_{0.2}O₂-modified Pt/C in the 2θ range from 20 to 35°.

Figure 2. HRTEM images of (A) Pt/C, (B) 1 wt % CeO₂, (C) 1 wt % Ce_{0.8}Sm_{0.2}O₂, (D) 2 wt % Ce_{0.8}Sm_{0.2}O₂, (E) 5 wt % Ce_{0.8}Sm_{0.2}O₂, and (F) 7 wt % Ce_{0.8}Sm_{0.2}O₂-modified Pt/C.

CeO₂- and Ce_{0.8}Sm_{0.2}O₂-Modified Pt/C Catalysts

Ability of Methanol Tolerance

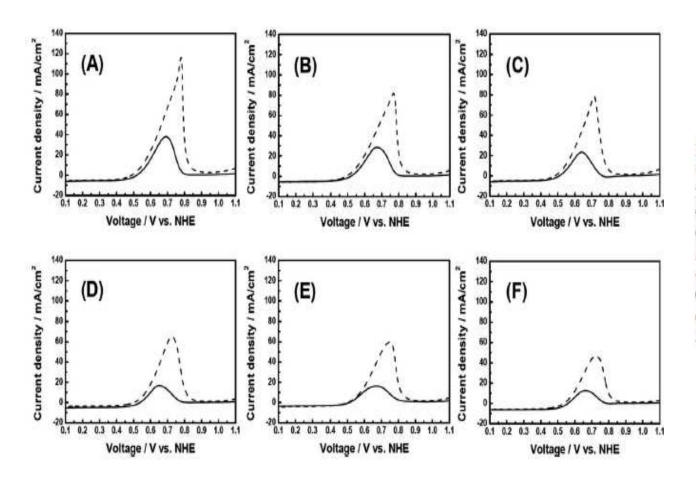


Figure 4. LSV curves for (A) Pt/C, (B) 1 wt % CeO₂, (C) 1 wt % Ce_{0.8}Sm_{0.2}O₂, (D) 2 wt % Ce_{0.8}Sm_{0.2}O₂, (E) 5 wt % Ce_{0.8}Sm_{0.2}O₂, and (F) 7 wt % Ce_{0.8}Sm_{0.2}O₂-modified Pt/C on the RDE in oxygen-saturated 0.5 M H₂SO₄ + 0.1 M CH₃OH (—, solid line) and 0.5 M H₂SO₄ + 0.5 M CH₃OH (— – –, dashed line) mixture at a scan rate of 5 mV s⁻¹.

CeO₂- and Ce_{0.8}Sm_{0.2}O₂-Modified Pt/C Catalysts for Cathode of a DMFC

ORR Activity

Ontropy of the first of the fir

Figure 5. (Color online) LSV curves for (A) Pt/C, (B) 1 wt % CeO_2 , (C) 1 wt % $CeO_8Sm_{0.2}O_2$, (D) 2 wt % $CeO_8Sm_{0.2}O_2$, (E) 5 wt % $CeO_8Sm_{0.2}O_2$, and (F) 7 wt % $CeO_8Sm_{0.2}O_2$ -modified Pt/C on the RDE in oxygen-saturated 0.5 M H_7SO_4 solution at a scan rate of 5 mV s⁻¹.

DMFC Performance

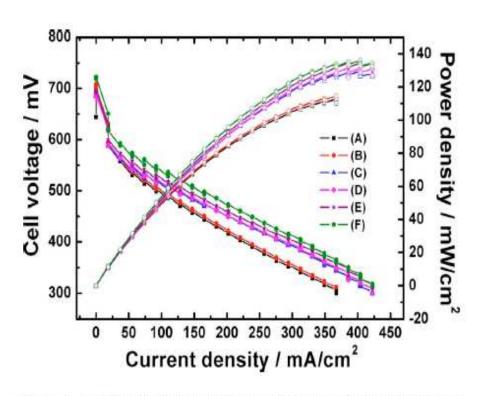
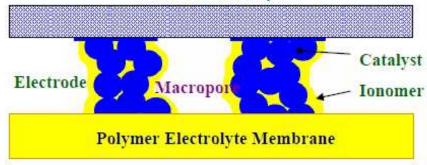
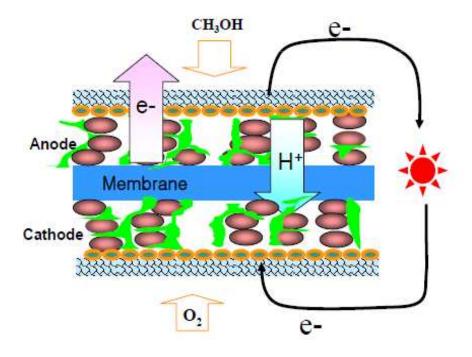
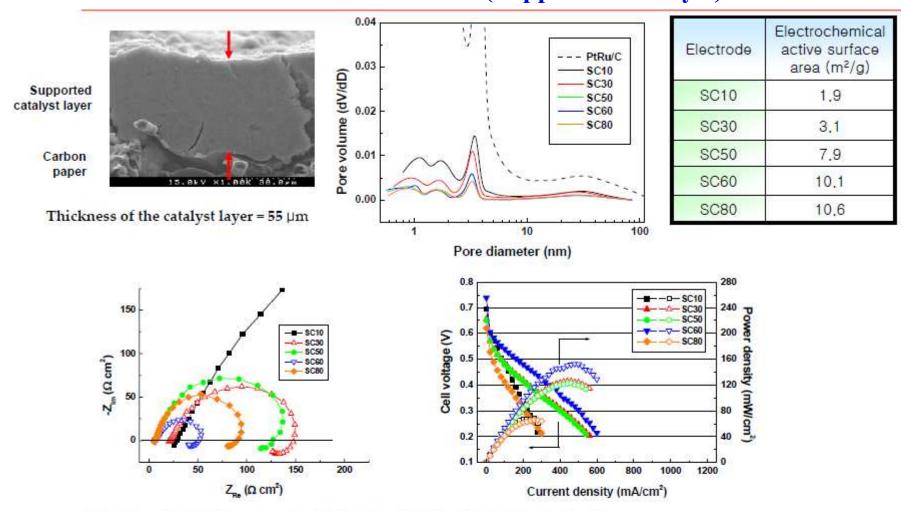
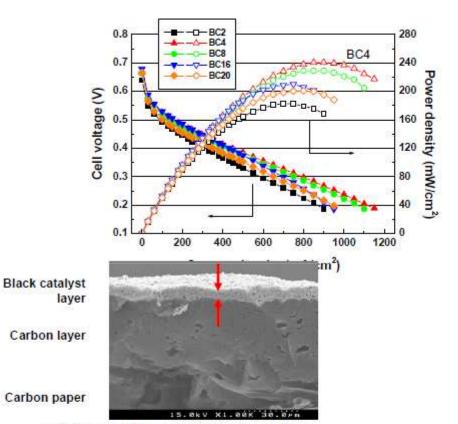




Figure 6. (Color online) The DMFC polarization curves for (A) Pt/C and (B) 1 wt % CeO₂, (C) 1 wt % Ce_{0.8}Sm_{0.2}O₂, (D) 2 wt % Ce_{0.8}Sm_{0.2}O₂, (E) 5 wt % Ce_{0.8}Sm_{0.2}O₂, and (F) 7 wt % Ce_{0.8}Sm_{0.2}O₂-modified Pt/C with 1.0 M CH₃OH fed to anode and dry air fed to cathode at 80°C.

Optimizations of MEAs

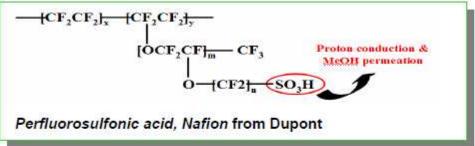

Gas Diffusion Layer


- Optimize ionomer content of catalyst layer
- Reduce thickness of catalyst layer
- Increase porosity of electrode
- Reduce charge and mass transfer resistance
- ➤ Increase hydrophobicity of catalyst layer to facilitate water removal from the cathode

Effect of Ionomer Content (Supported Catalyst)

- > Pore volume decreases with increasing the ionomer content
- >lonomer content affects pore active surface area and charge and mass transport resistances
- Maximum performance was observed at SC60

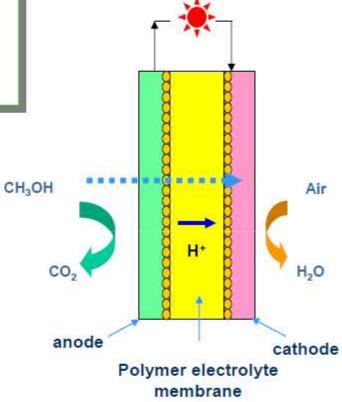
Effect of Ionomer Content (Black Catalyst)



Electrode	Relative area of H ₂ oxidation peak*	
BC2	2.00 (21,3 m ² /g)	
BC4	2,96 (31,5 m²/g)	
BC8	3.00 (31.9 m²/g)	
BC16	1,91 (20,3 m²/g)	
BC20	1,90 (20,2 m²/g)	

Thickness of the catalyst layer = 5.6 µm

- Maximum performance at around 4 and 8 wt.% of ionomer for the black catalyst
- Higher performance due to the smaller thickness of the black catalyst layer (1.6 ~ 6.5 μm) than that of the supported catalyst layer (55 μm)

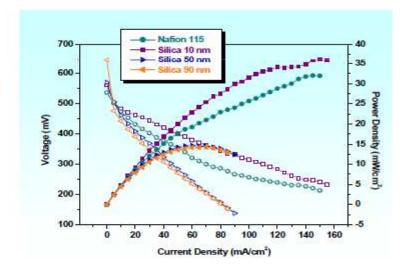

Proton Exchange Membranes

- MeOH crossover from anode to cathode
 - Mixed potential
 - Poisoning of Pt catalyst
 - Loss of fuel
 - Increase air demand in cathode
 - Reduction of efficiency

Decrease cell performance

Nano-Silica Layered Membranes

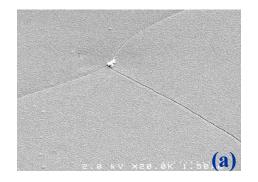
Strategies & objective

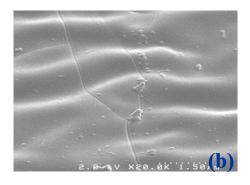

 To reduce methanol crossover by depositing a silica layer on the surface of Nafion membrane

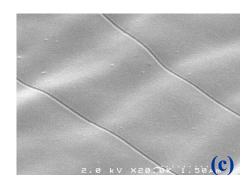
Experimental

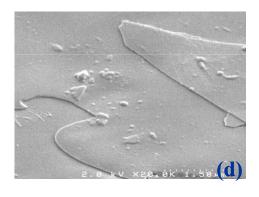
 PECVD of silica with silicon ethoxide in the chamber at 1- 500 mtorr with a 10-500W RF power at room temp.

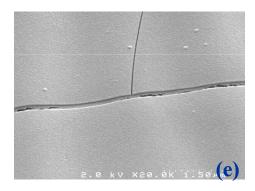
32 nm t	hick		
		àk 1∶	

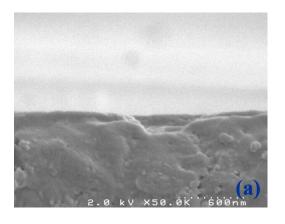

	Selectivity	Ion conductivity (S/cm)	Methanol permeability (cm²/sec)
Nation 115	35	0.098 (100%)	2.77×10 ⁻⁶ (100%)
10 nm	54	0.091 (92%)	1.68×10 ⁻⁶ (61%)
32 nm	83	0.076 (78%)	9.09×10 ⁻⁷ (33%)
68 nm	83	0.077 (79%)	9.21×10 ⁻⁷ (33%)

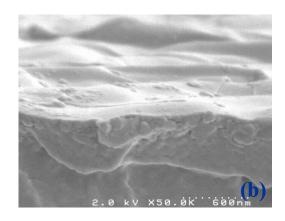


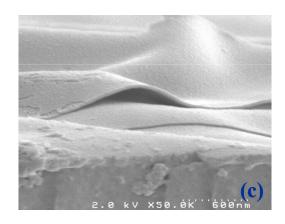

CF = characteristic factor = IC/MP * 103

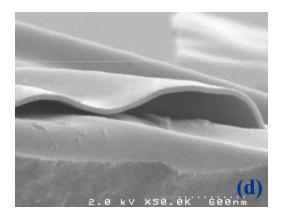

Ion conductivity of the 10 nm-Nafion/silica composite membrane was similar to the unmodified Nafion membrane, but its methanol permeability was reduced by about 40%. And performance of the cell with silica composite membrane was higher than that of the Nafion membrane.

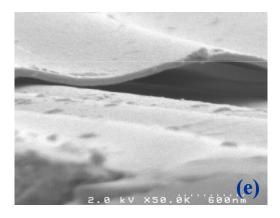

SEM Pictures 1 (Surface)








SEM images(×20,000) of the surface of the Nafion/silica composite membranes (a) Silica-10 nm (b) Silica-30 nm (c) Silica-50 nm (d) Silica-70 nm (e) Silica-90 nm


SEM Pictures 2 (Cross Section)

SEM images(×50,000) of the cross section of the Nafion/silica composite membranes

(a) Silica-10 nm (b) Silica-30 nm (c) Silica-50 nm (d) Silica-70 nm (e) Silica-90 nm

Durability of DMFC

- Loss of active electrocatalyst surface area by poisoning or sintering
- Loss of hydrophobic properties of gas diffusion electrodes
- Ruthenium crossover from anode to cathode through the membrane
- Loss of interfacial properties of membrane/electrode (or delamination)
- Loss of cathode activity due to surface oxide formation

Focus of this Study

- I. Investigation of the degradation phenomena in DMFC
- 2. Investigation of the effects of operating conditions
- 3. Exploration on the recovery techniques

Experimental – Life Time Study

> Catalyst, Membrane and MEA

➤ Anode = Pt-Ru (1:1), Johnson-Matthey

>Cathode = Pt, Johnson-Matthey

➤ Nation 115

 \rightarrow MEA = 3mg/cm² Pt-Ru/3mg/cm²-Pt, 10.9cm²

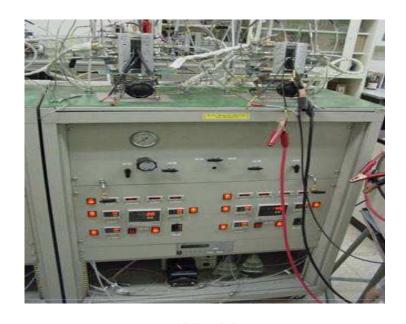
> Operation condition

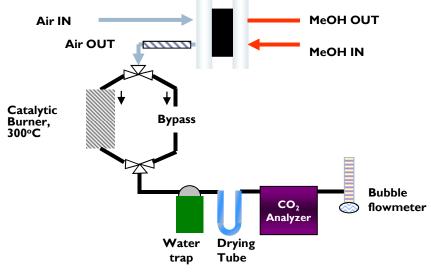
Cell temperature 80 °C, 1 atm

Anode: 0.5M methanol solution

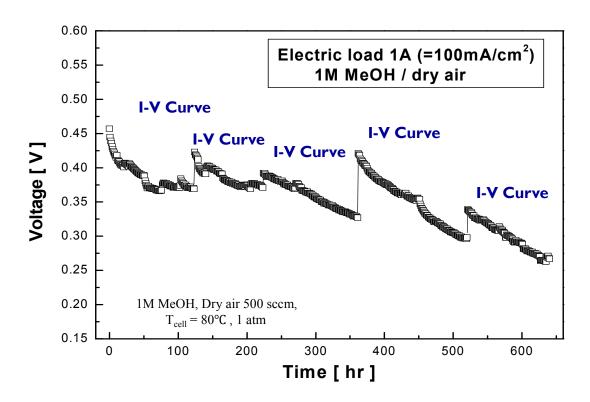
Cathode: dry air 500sccm

> Characterization

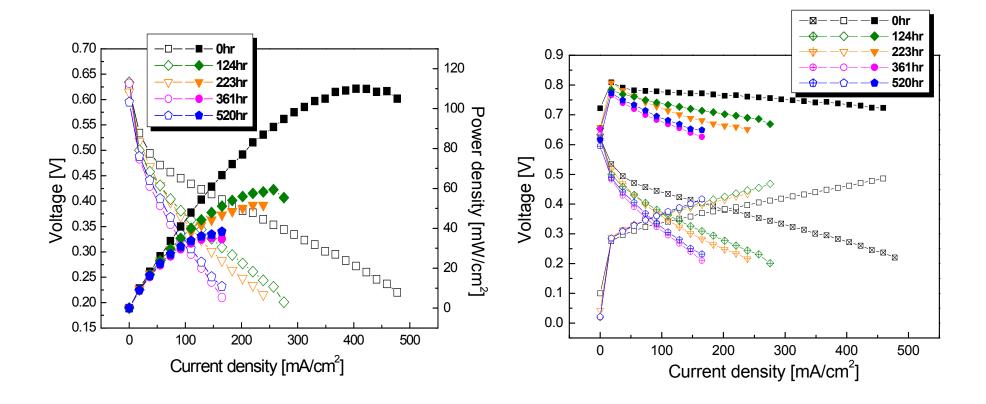

✓ AC impedance - frequency range 50m-5K Hz;


✓ Excitation potential 5mV (IM6, Zahner)

✓ Half Cell test

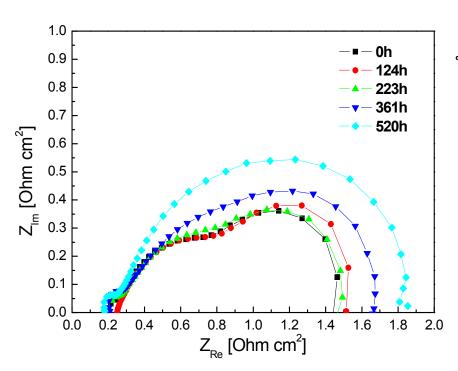

✓ Methanol conc with Gas Chromatograph

✓ CO₂ analyzer from Vaisala



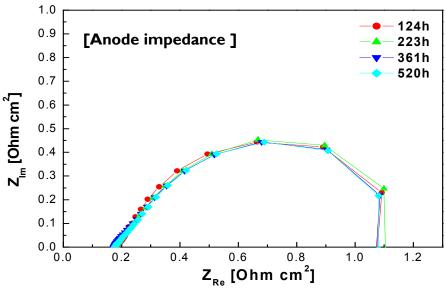
Degradation of DMFC Performance

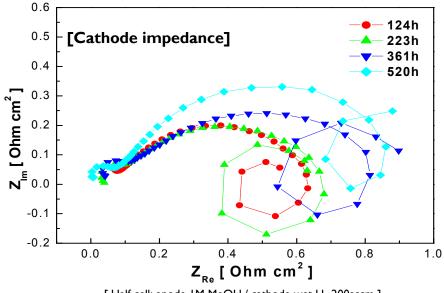
- **DMFC** performance decreases with increasing operation time.
- ➤ Intermittent on-off and changes in operating conditions help to restore the cell performance


Time Dependence of Cell Performance

- > Cell performance decreases with time
- > Degradation is more prominent in the cathode than in the anode

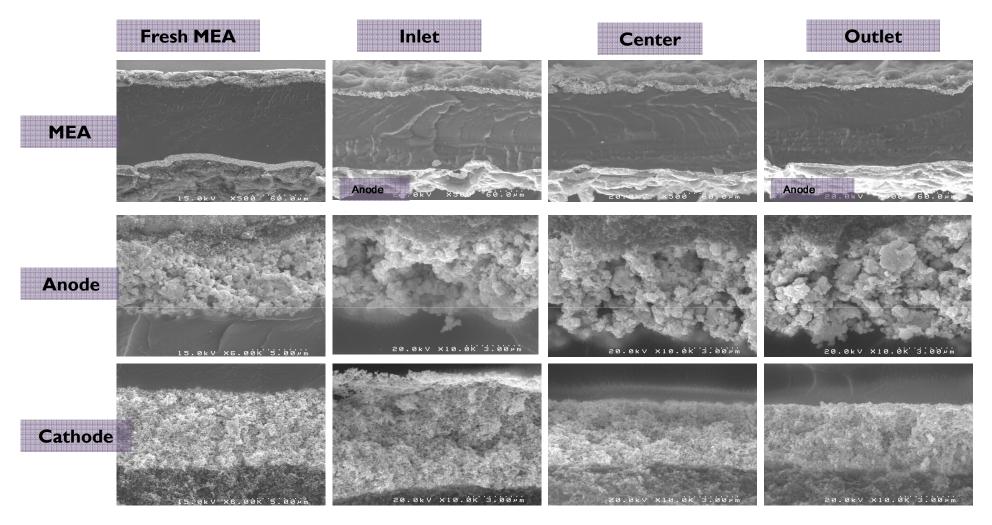
Time Dependence of Impedance

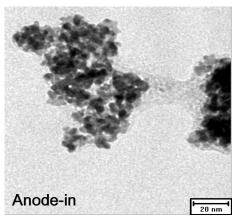

Nyquist plot . Galvano static mode. current = IA

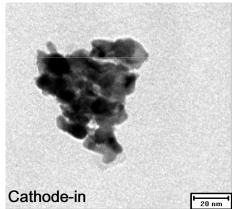


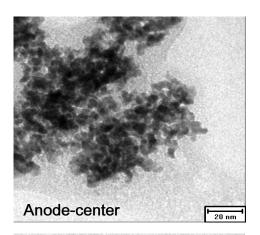
[Fuel cell impedance]

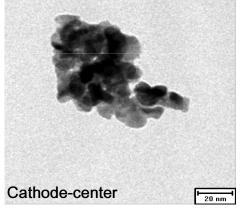
Clear evidence that the internal resistance of

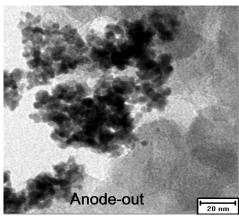

- The overall cell increases as time goes on.
- Same is the case with cathode.

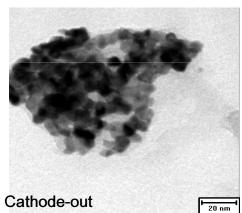

[Half cell: anode IM MeOH / cathode wet H₂ 200sccm]

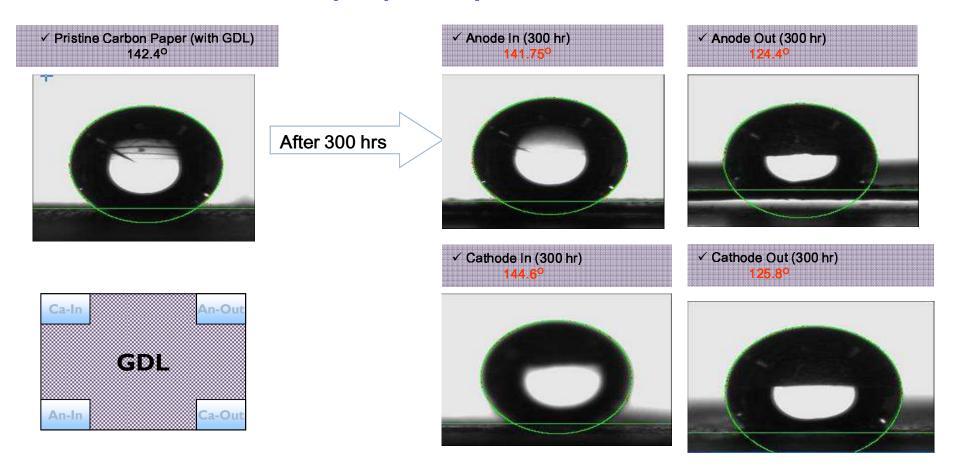

SEM Analysis



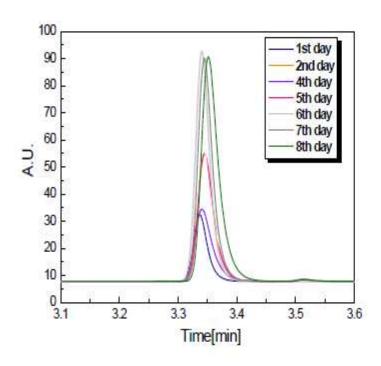

- ➤ There is no big change in the cathode layer
- ➤ There are appreciable change in the anode structure, the change appears severe at the <u>anode outlet</u>


TEM Pictures

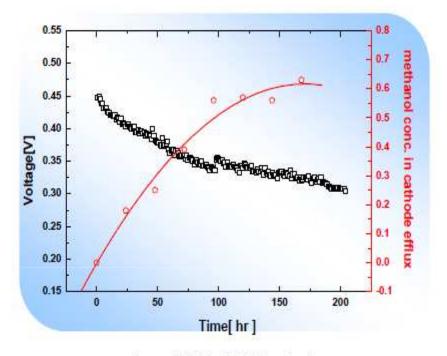




The particle size is higher at the outlet regions


	Anode (nm)	Cathode (nm)
Fresh	2.5	6.6
IN	3.0	7.0
Center	3.3	7.1
OUT	3.6	7.5

Hydrophobicity of the GDL



- The extent of the change in the contact angle of the used GDL depends on the positions
- The outlet GDL for both anode & cathode experienced an appreciable decrease in the contact angle by 15°.
- ➤ The contact angle of the inlet GDLs remained unchanged

MeOH in Cathode Effluent

GC chromatograms of methanol in the cathode effluent

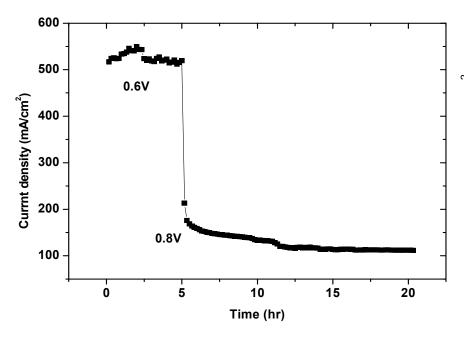
An: 1M MeOH 5 cc/min

Ca : Dry air 500 sccm

As time goes on, the unreacted MeOH at the cathode increases, probably because of deactivation of cathode catalysts

CO₂ Mass Balance in the anode and cathode

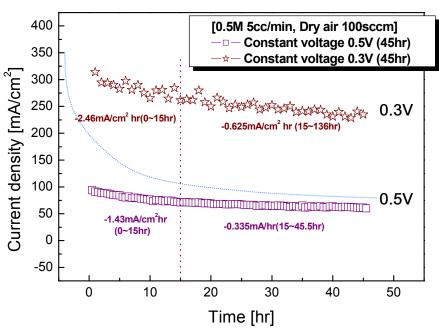
Operating	CO ₂ Flux (10 ⁻⁷ mol/sec/cm ²)				
time (hr)	Anode outlet	Cathode outlet	An + Ca	CO ₂ Flux through the membrane	
0	0.948	0.700	1.648	0.097	
70	1.182	0.431	1.613	0.105	
Remark	Increase	Decrease	constant	Increase	


<Test conditions>

• 0.5M MeOH 3cc/min, Dry air 100sccm, Electric load 100mA/cm²

- \triangleright As time elapses, CO₂ con. in the cathode stream decreases, but the CO₂ in anode stream increases
- The total amount of CO2 in the anode and cathode streams remains constant

Effect of Operating Voltage


Current variation at constant voltages in the **PEMFC** conditions

Cell: 80°C, I I cm²
3 mg/cm² PtRu, Humidified H₂, / 3 mg/cm² Pt, Humidified Air

At 0.8V, the decay rate is higher than at 0.6V due to cathode Pt oxidation

Long-term test at constant voltages of 0.3V and 0.5V, respectively

Op. Voltage (V)	Decay Rate (mA/cm²/hr)		
	0-15	15-46	
0.3V	2.46	0.625	
0.5V	1.43	0.335	

The durability at 0.3V is worse than that at 0.5V: due to flooding at lower voltage(?)

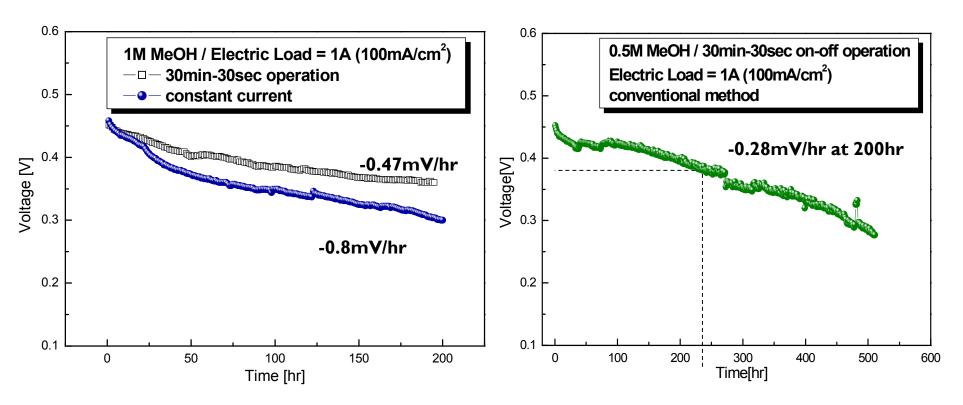
Performance Recovery

Degradation Routes

I. Permanent degradation

- Catalyst particle sintering
- Catalyst CO poisioning
- MEA delamination
- Membrane degradation

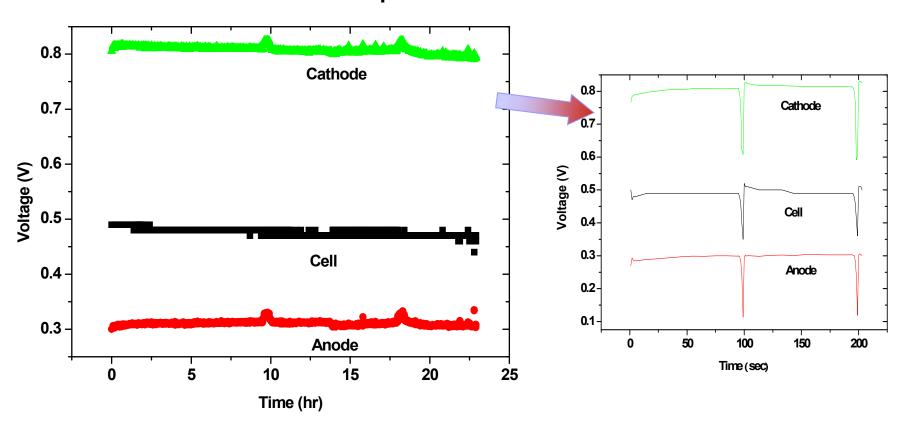
2. Recoverable degradation


- Oxidation of cathode Pt catalyst
- Water flooding in the cathode
- Adsorption of methanol intermediates
- **CO**₂ accumulation in the anode

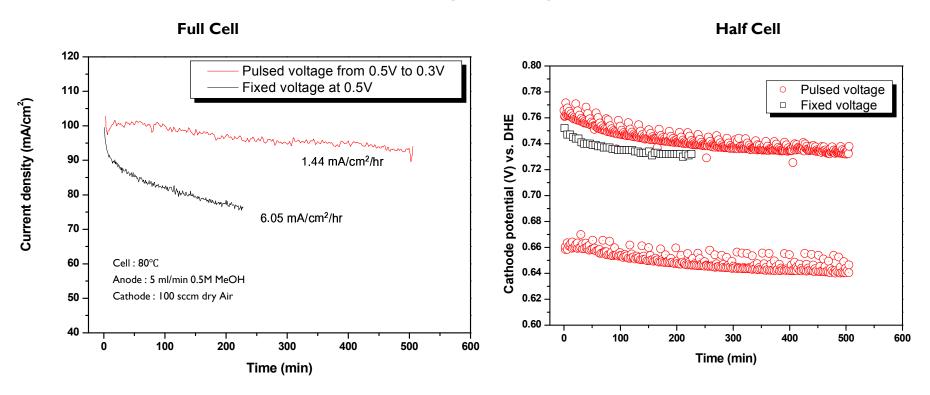
Performance Recovery Techniques

1) Repeated on-off, 2) Voltage swing, 3) Air break

On-Off Operation


30 min-on and 30 sec-off

- Deactivation rate is reduced by repeated on-off operation
- It is affected by methanol concentration


Air Break at Constant Currents

Air interruption: 100 sec ON -- 3 sec OFF

- ➤ Air interruption lowers the cathode potential to 0.5V & helps to preserve the performance
- ightharpoonup Degradation: Total = 0.87mV/hr

Voltage Swing

- Pulsed voltage: 170 s at 0.5 V 10s at 0.3 V
- Fixed voltage: 0.5V
- Sustainable performance can be obtained by voltage swing method while in case of the fixed voltage operation current dropped dramatically from the beginning.
- * With respect to the anode side, the adsorbed dehydrogenation products such as CO or methyl formate can be cleaned (oxidized) during the voltage swing.

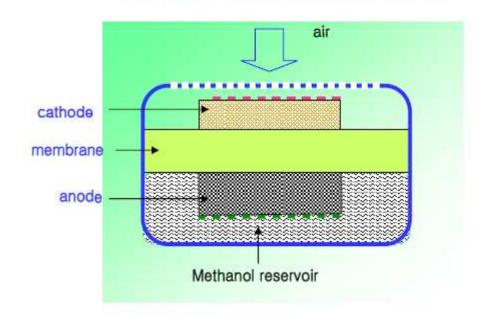
Life Test Study of DMFC – Our Findings

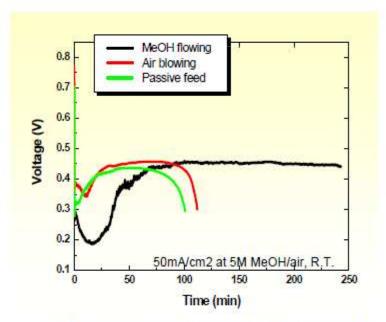
- I. The DMFC looses its performance during the long term operation, and the loss is more in the cathode than in the anode
 - ✓ Internal resistance increases (Impedance results)
 - ✓ Loss of GDL hydrophobicity is severe in the outlet regions than in the inlet ones.
- 2. At the cathode outlet, the CO₂ concentration decreases and the unreacted methanol concentration increases as time goes on
- 3. The variation in the operating condition by repeated on-off, voltage swing and air break help to mitigate performance degradation.
 - The air break method shows the best result

Passive & Air-breathing DMFCs

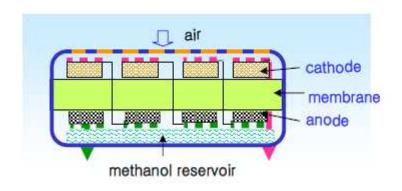
To apply for micro powers less than 10W

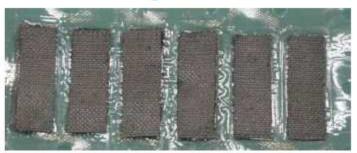
To minimize the system volume

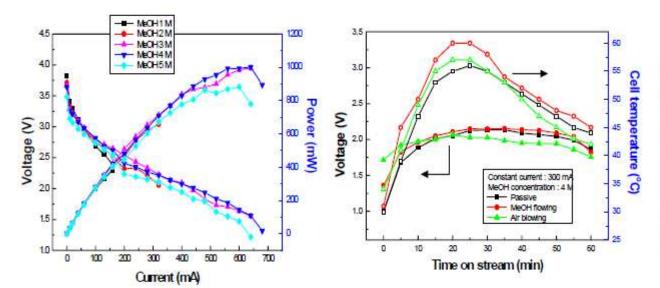

To increase the energy density


To eliminate parasite power losses to pumps and blowers

A passive DMFC for a MP3 player


Completely or semi passive designs




Methanol supply is more important than air supply

Monopolar Stacks

Monopolar MEA

Radiophone (1100mW), 2001

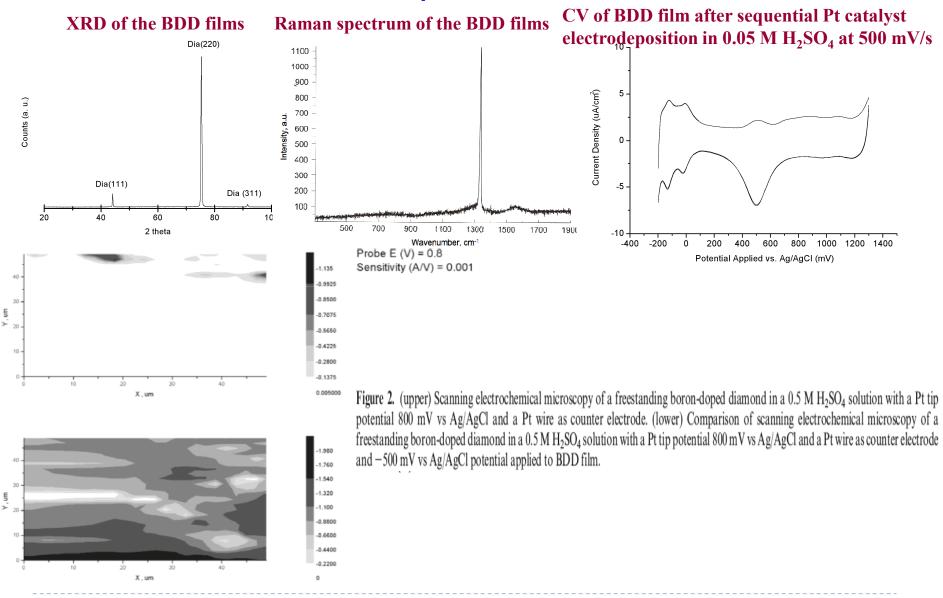
Research in Fuel Cell - DMFC - Bird's Eye View

1. Catalysts

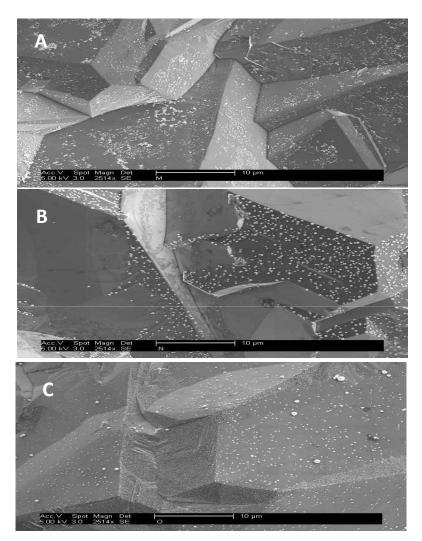
- Modification of various carbon supports with ionomer To Enhance 3 Phase boundary
- Anode catalyst Pt-CeO₂ Activity/Durability/Cost
- Cathode catalyst Pt-CeO₂ Air Utilization, Pt-CeO₂ + Sm MeOH Tolerant ORR Activity

2. Membrane/ Methanol Cross over

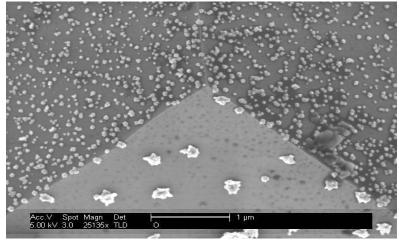
- Surface modification by Silica layers
- Consequences of MeOH crossover Fundamental Study

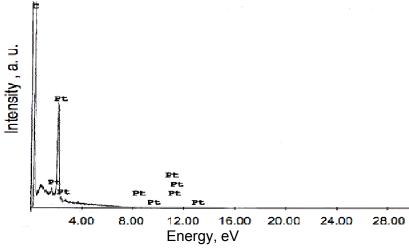

3. Membrane Electrode Assembly

- Optimization of electrode structure
- Durability test and Recovery measures
- Simulation of flow fields


4. Stacks

- Passive monopolar stacks Design & Fabrication
- Active bipolar stacks: 20, 50, 500W stacks


Facet-Selective Platinum Electrodeposition at Freestanding Polycrystalline Boron-doped Diamond Films



SEM

Polycrystalline free standing BDD films after Pt deposition in a 1 mM $\rm K_2PtCl_6/0.5~H_2SO_4$ by CV at different scan rates (mV/s): (A) 100 (B) 250 (C) 500

Sample (C) showing edge lines of facets (111) with intersection angle 60° &120° and the corresponding EDS of platinum particle on BDD film

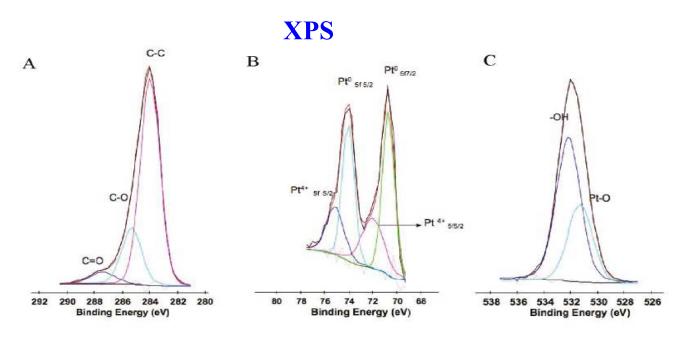
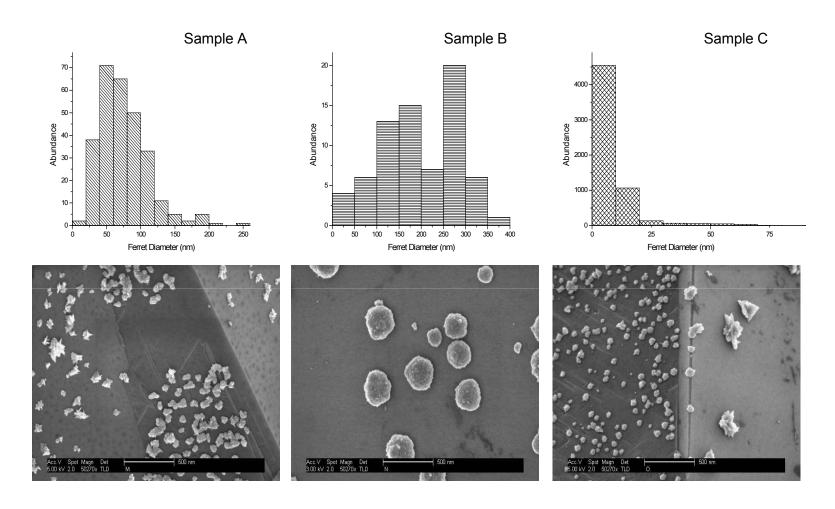
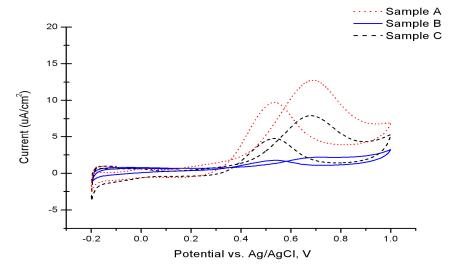
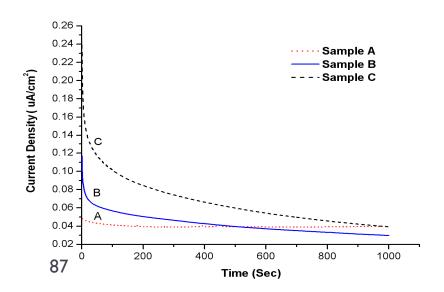



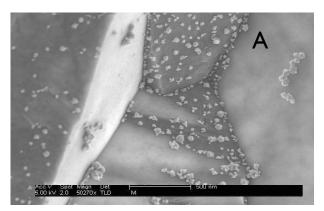
Figure 3. High resolution X-ray photoelectron spectra of the Pt particle decorated boron-doped diamond film. (A) C 1s, (B) Pt 4f, and (C) O 1s binding energy regions.

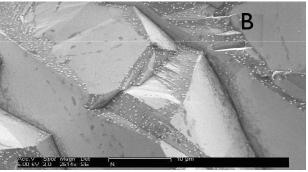

	Carbon Region, 1s CO/C=O			Oxygen Region, 1s (O-H) / Metal Oxides		
	(A)	(B)	(C)	(A)	(B)	(C)
BDD	2.4	4.59	5.82	6.05	3.64	16.48
Pt-BDD	1.40	2.67	2.81	1.39	2.57	6.68

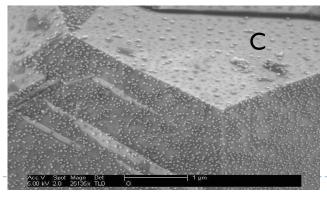
Histogram of the ferret diameter of the Pt particles deposited



SEM - Polycrystalline free standing BDD films after Pt deposition by CV in 1 mM K₂PtCl₆/0.5 H₂SO₄ at (A) 100 (B) 250 and (C) 500 mV/s


CV on 0.5 M CH₃OH/ 0.5 M H₂SO₄ Pt particles deposited on BDD films




Chronoamperometry at 400 mV vs.Ag/AgCl of Pt on BDD films by CV on 0.5 M CH₃OH/ 0.5 M H₂SO₄

SEM of Pt/BDD film after methanol oxidation measurements

Modulation of Electron Transfer Activity at Diamond Films by Dissolved Oxygen in Aqueous Solution

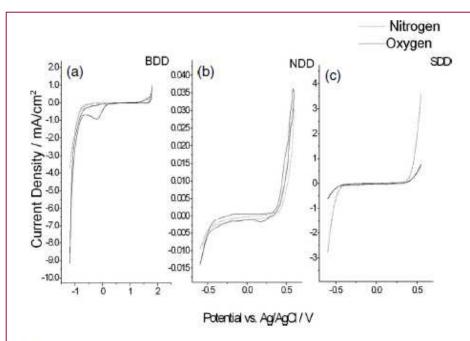


Figure 1. Cyclic voltammetry curves for (a) BDD, (b) UDD, and (c) SDD (5% sulfur) samples in N_2 -sparged (solid line) and O_2 -sparged (dashed line) 0.5 M H_2SO_4 at 50 mV s⁻¹.

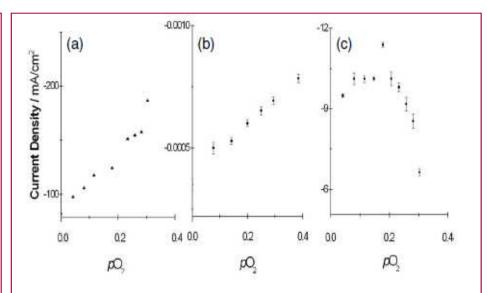


Figure 2. (a) Current density at an applied potential of -0.90 V vs Ag/AgCl for a BDD sample; (b) -0.60 V vs Ag/AgCl for a UDD sample; and (c) -0.60 V vs Ag/AgCl for an SDD (3% sulfur) sample; all were measured in 0.5 M H_2SO_4 at various $O_2/(O_2 + N_2)$ ratios (O_2 partial pressure) sparged through the electrolyte solution.

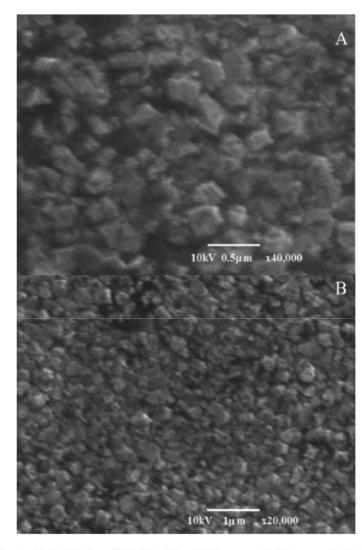


Figure 3. SEM of an SDD film deposited on a molybdenum substrate at different magnifications: (a) $40,000 \times$ and (b) $20,000 \times$.

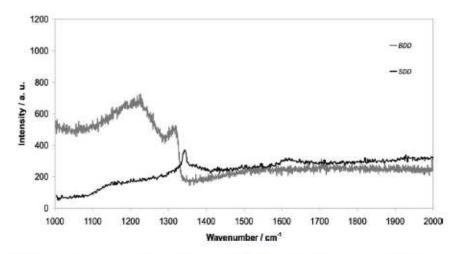


Figure 4. Raman spectra of SDD (3% sulfur) (gray curve) and BDD (black curve) films deposited on a molybdenum substrate and a silicon wafer, respectively.

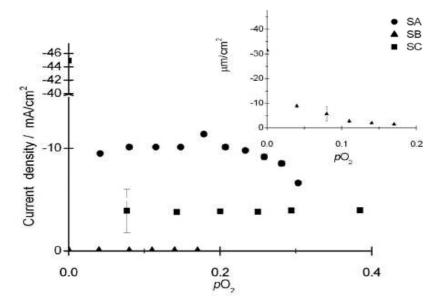


Figure 5. Current density at -0.60 V vs Ag/AgCl for several SDD samples in 0.5 M H₂SO₄ at various O₂/(O₂ + N₂) ratios (O₂ partial pressure) sparged through the electrolyte solution: \bullet (SA: 3% sulfur), σ (SB: 5% sulfur), and \bullet (SC: 9% sulfur).

Table I. Characteristic results from Raman spectroscopy, XPS, and electrochemical measurements on the UDD films.

Sample	Diamond/carbon ^a by Raman	Sulfur by XPS (atom %)	O/C proportion by XPS	Calibration curve slope (mA/% O ₂)
NA	0.056	0.001	0.34	-2
NB	0.0072	0.001	0.20	-0.5
NC	0.038	0.001	0.13	-0.3
ND	0.080	0.001	0.12	-0.1

a sp3/sp2 form the D/G band ratio.

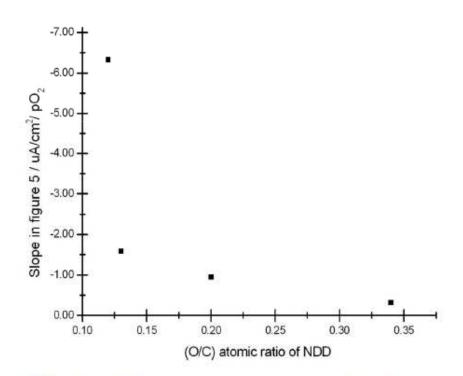
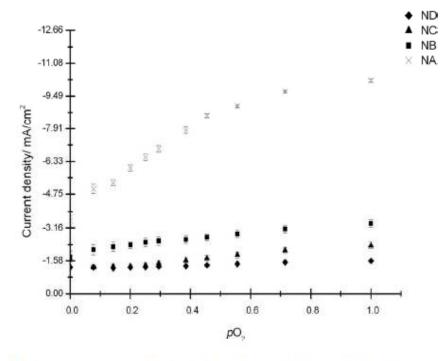


Figure 7. Relationship between the oxygen sensitivity and the surface composition of the UDD films as determined by XPS.



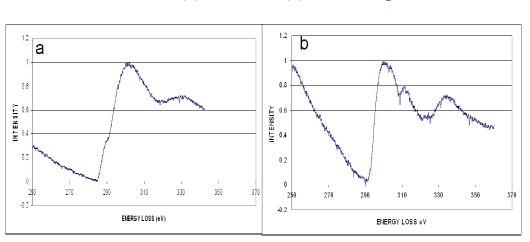
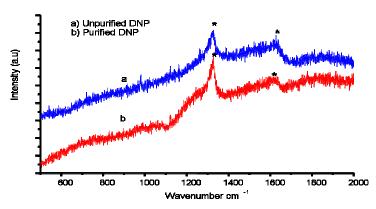
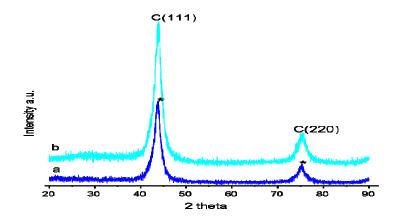
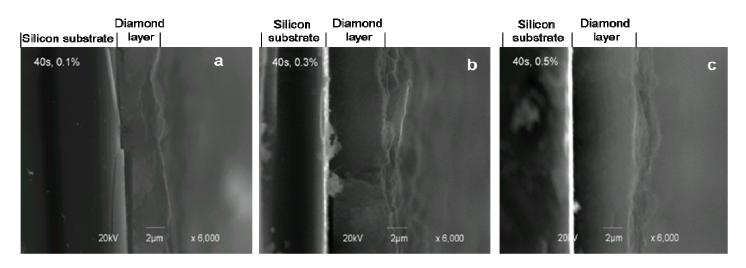
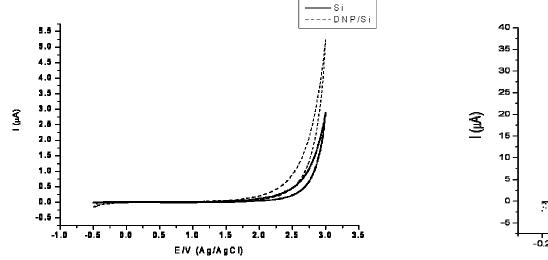


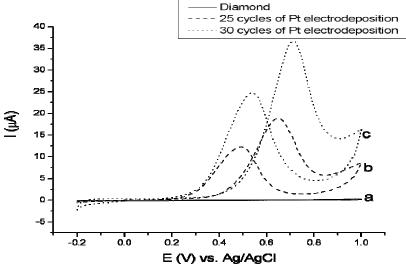
Figure 6. Current density at -0.60 V vs Ag/AgCl for several UDD samples in 0.5 M H₂SO₄ at various O₂/(O₂ + N₂) ratios (O₂ partial pressure) sparged through the solution: \times (NA), \blacksquare (NB), \blacktriangle (NC), and \blacklozenge (ND).

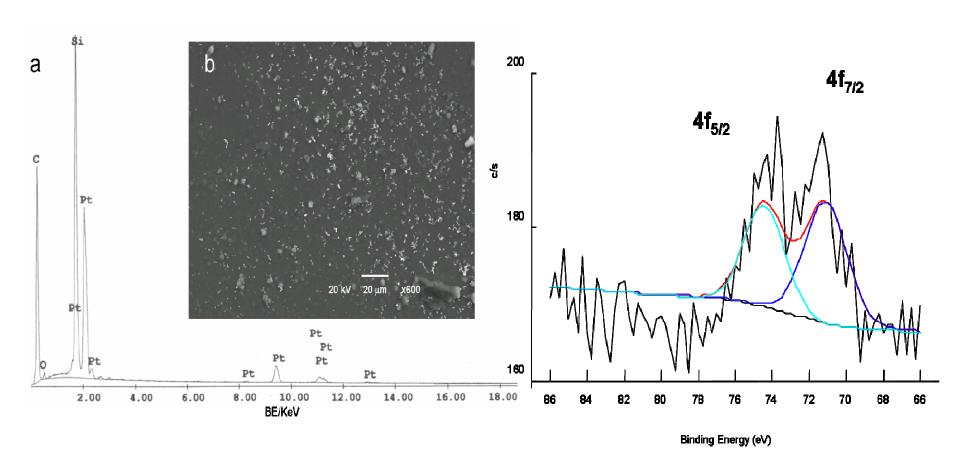

Electrodeposition of Pt onto electrophoretically fabricated diamond nanoparticle layers for methanol oxidation


TEM – DNP before (a) and after (b) chemical pretreatment


Electron Energy Loss Spectra - DNP before (a) after (b) chemical pretreatment


Raman Spectra - DNP before (a) after (b) chemical pretreatment


XRD of unpurified (a), purified (b) DNP by HNO₃ reflux process.


SEM -Electrophoretically deposited layers of DNP onto Si wafers for 40 s, At 260 V, with different suspension concentrations 0.1% (a), 0.3% (b) and 0.5% (c).

CV of Si wafer & electrophoretically deposited DNP

CV of methanol 1.0 M in H₂SO₄ 0.5 M at 20 mV/s

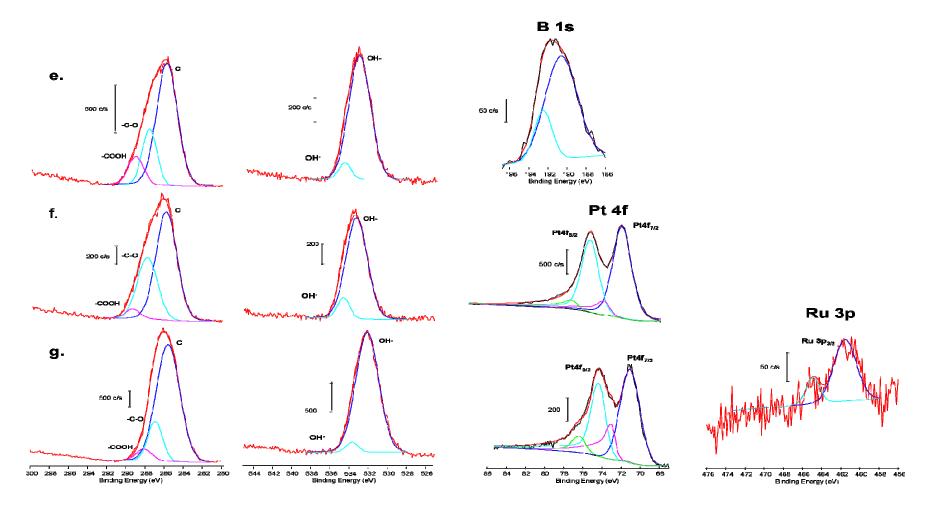


(a) EDS - Pt on electrophoretically deposited DNP

(b) SEM - Various sizes of Pt particles

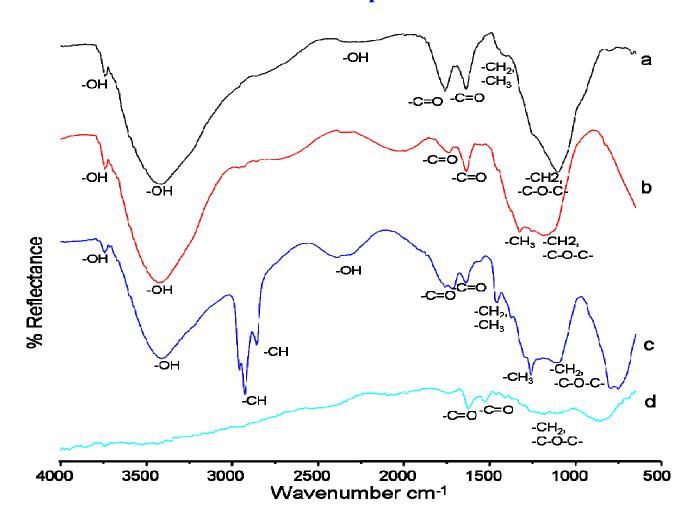
XPS- Pt in metallic state on DNP

Facile synthesis of Pt & PtRu nanocatalysts on undoped & boron doped diamond nanoparticles via chemical reduction route


Unpurified (a), purified (b) DNP HNO₃ reflux purification reduced (NaBH₄) DNP (c), boron doped diamond nanoparticles (d)

Pt (a), Pt-Ru nanoparticles supported on purified (concentrated HNO₃) DNP surface, Pt (c), and Pt-Ru nanoparticles on BDD nanoparticles

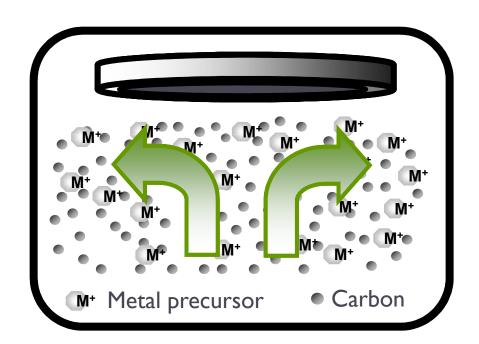
Pt (331)


Pt (420)

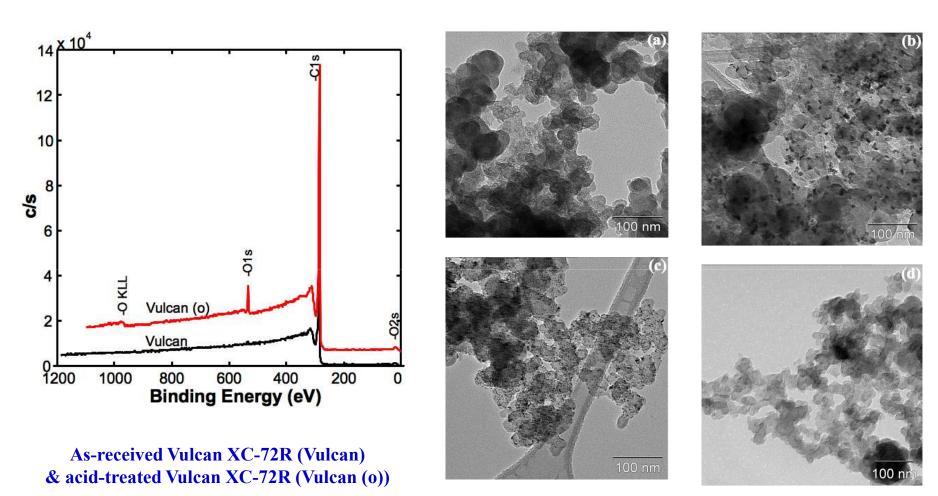
XPS

e) C_{1s} , O_{1s} and B_{1s} of BDD nanoparticles cleaned in HNO $_3$, f) C_{1s} , O_{1s} and Pt_{4f} of BDD nanoparticles cleaned in HNO $_3$ with chemically reduced Pt, and g) C_{1s} , O_{1s} , Pt_{4f} , and Ru_{3p} of purified BDD nanoparticles in HNO $_3$ with chemically reduced Pt and Ru.

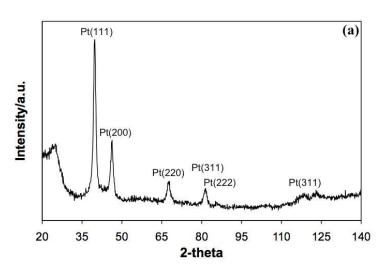
FT-IR spectra

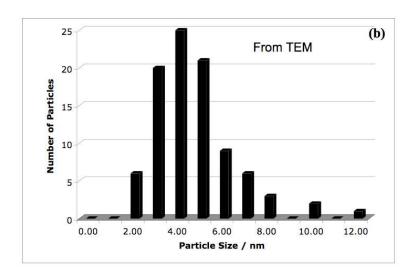


a) Unpurified DNP, b) purified DNP in Con. HNO₃, c) DNP in reaction with reducing agent NaBH₄, and d) DNP decorated with metallic Pt by chemical reduction using reducing agent (NaBH₄)

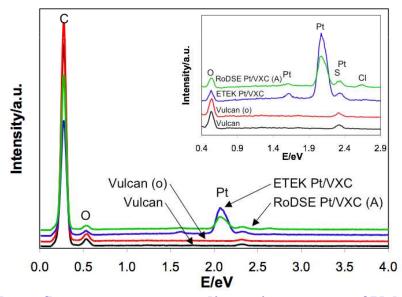

Platinum Electrodeposition at Vulcan-XC-72R Using a Rotating Disk-Slurry Electrode Technique

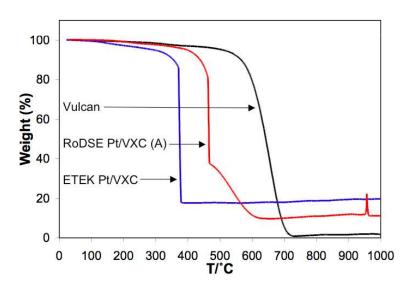
Catalysts preparation by electrodeposition (RoDSE)

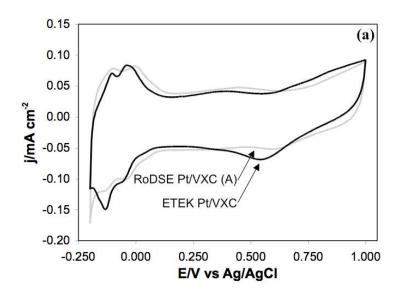

- Consists of a disk at the end of an insulated shaft
- Hydrodynamic convection
- Potential Control
- RoDSE allows for bulk preparation

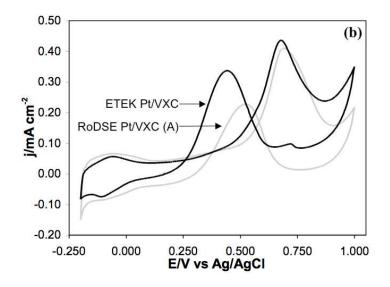


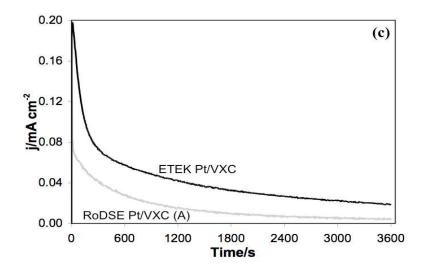
XPS TEM



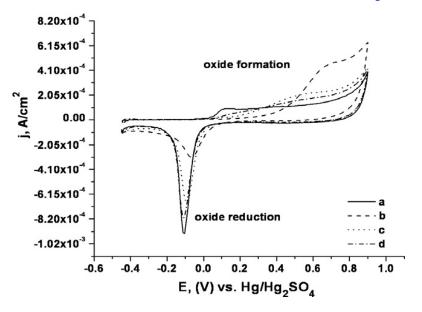

(a) Vulcan (o), (b) RoDSE Pt/VXC (A), (c) ETEK Pt/VXC, and (d) RoDSE Pt/VXC (B)

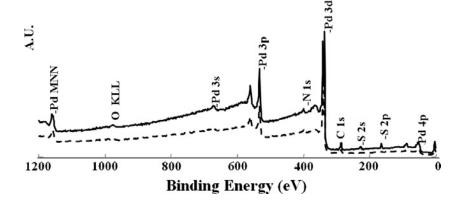

XRD of RoDSE Pt/VXC (A) sample (a), & particle size histogram from TEM for RoDSE Pt/VXC (A) sample (b)

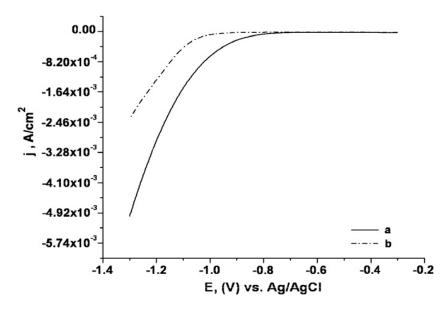



X-ray fluorescence energy dispersive spectra of Vulcan, Vulcan (o), RoDSE Pt/VXC (A) and ETEK Pt/VXC

Thermal gravimetric analysis (TGA) traces of Vulcan, RoDSE Pt/VXC (A) and ETEK Pt/VXC catalysts

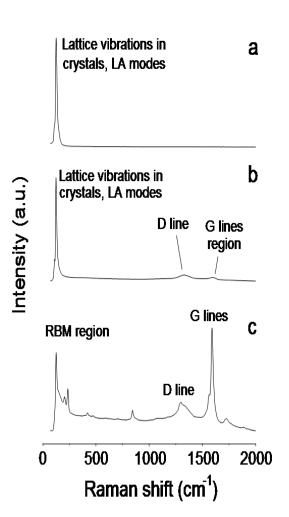


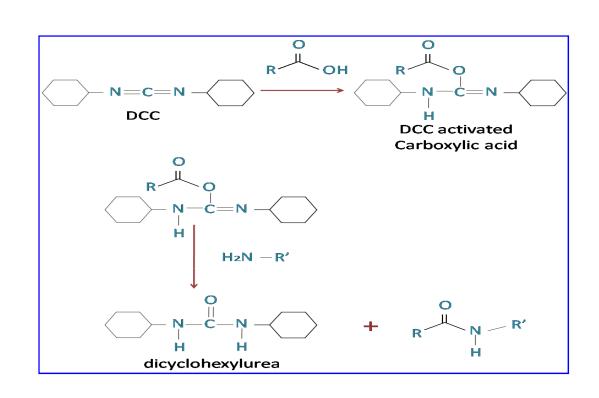

RoDSE Pt/VXC (A) and ETEK Pt/VXC catalysts (a) CV in 0.5 M $_2$ SO₄ at 50 mV s⁻¹, (b) 1 M CH₃OH / 0.5 M $_2$ SO₄ at 50 mV s⁻¹, and (c) CA of 1 h in 1 M CH₃OH / 0.5 M $_2$ SO₄ at 0.500 V vs. Ag/AgCl



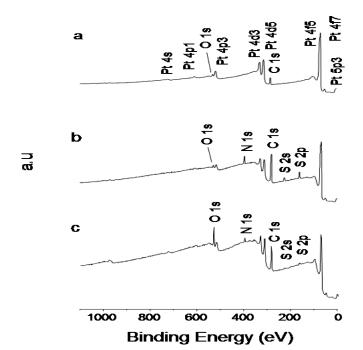
Self-assembled monolayers of L-cysteine on Pd electrodes

CV for bare Pd (a) and first (b) second (c) third cycle (d) to L-cysteine modified Pd in 0.1 M H2SO4 at 100 mV/s.

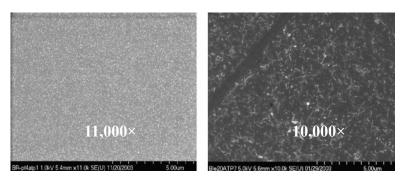


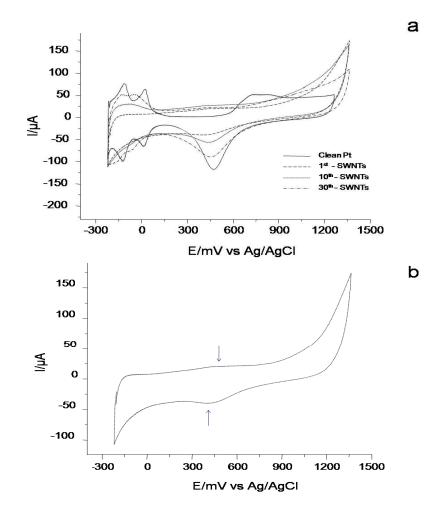

LSV for bare Pd(a) and L-cysteine modified Pd (b) in 0.1 M KOH at 20 mV/s, showing reductive desorption of L-cysteine monolayer on Pd electrode.

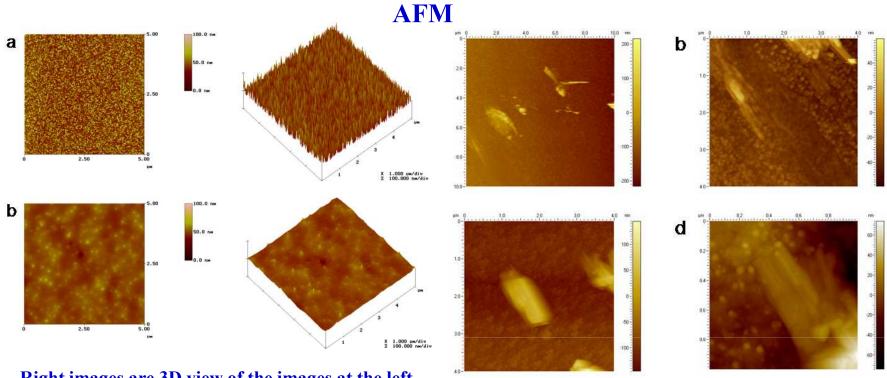
XPS for unmodified Pd surface (dash line) and L-cysteine modified Pd surface (solid line) after of a period of 24 h of immobilization.

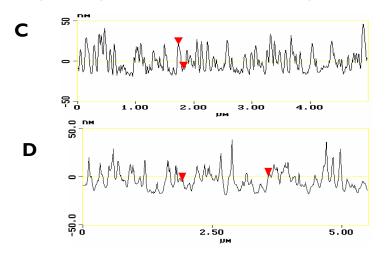

Single-wall CNT chemical attachment at Pt electrodes

Raman Spectra



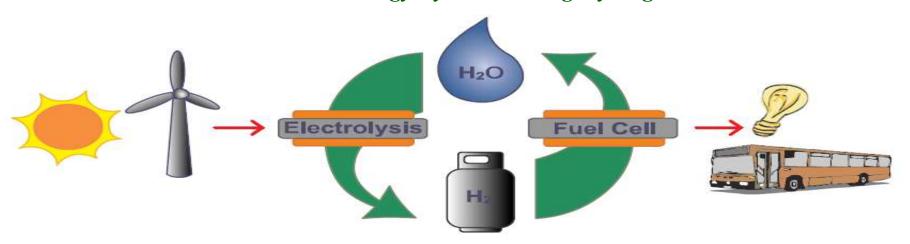

Sample	Crystal lattice vibration / cm ⁻¹	RBM region / cm ⁻¹	D line / cm ⁻¹	G lines / cm ⁻¹
Clean Pt	127	-	-	-
Ethanol / SWCNTs Pt	125	-	1330	1597
4-ATP/ SWCNTs Pt		100-300	1300	1561,1590


XPS of (a) a clean, (b) a 4-ATP modified (c) SWCNT modified Pt electrode

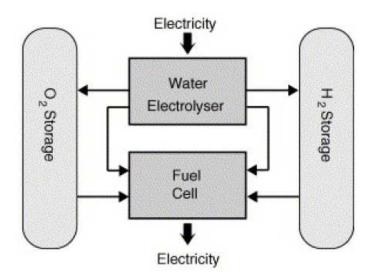

SEM - (a) 4-ATP modified Pt electrode (b) 4-ATP/SWCNT modified Pt electrode

CV in H2SO4 0.5M (a) for (—) bare Pt electrode; (---) first $(\cdots\cdots)$ tenth (---) 30th cycles of 4-ATP/SWCNT modified Pt surface, (b) first cycle of 4-ATP/SWCNT modified Pt surface.

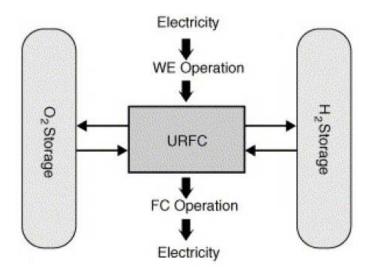
Right images are 3D view of the images at the left.



AFM for SWCNTs deposited over clean Pt electrodes from an ethanol suspension at scan size of (a) 10.0m (b and c) 4.0m, and (d) 1.0m.


AFM (a) bare (b) 4-ATP modified Pt. Scan size: 5.00m & Z scale at 100 nm. Cross-section analysis: (c) bare (d) 4-ATP modified Pt.

Energy Generation

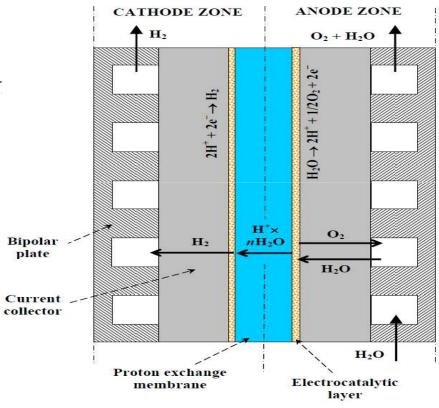

Ideal Energy Cycle Involving Hydrogen

Regenerative fuel cell (RFC)

Unitised regenerative fuel cell (URFC)

Water Electrolysis Using PEM – Relevance & Importance

Why Water Electrolysis?


PEM Electrolysis Cell

- An obvious way of producing Hydrogen
- Water is plentiful & product hydroger is pure
- Most practical & efficient route
- Reaction is endothermic Simplest way – Electrochemical splitting

Cathode: $4H^+ + e^- \rightarrow 2H_2$

Anode: $2H_2O \rightarrow O_2 + 4H^+ + e^-$

Total: $2H_2O \rightarrow O_2 + 2H_2$

Overall reaction: $H_2O \rightarrow 1/2O_2 + H_2$

Inherent gas separation by membrane electrolyte

Water Electrolysis – Associated Advantages

Advantages

- Environment No carbon emissions
- Very pure hydrogen (no CO poisoning of fuel cell catalysts)
- Pure oxygen as a by-product
- No dependence on hydrocarbon sources
- Scalable Architectures
 Small scale / real time
 hydrogen supply is simple
- Utilises renewable primary energy sources
- Reduce / eliminate mechanical compression

Distributed Energy System Models

Modern Water Electrolyzers – Types

- PEM electrolyzer
- Alkaline electrolyzer
- **SOE** electrolyzer

PEM - electrolyzer

cathode anode oxygen gas hydrogen gas 2H++2e-→ Hz H₂0-1/20₂+2H++2e H++ H20 pure water Pt electrode Pt electrode solid polymer electrolyte membrane Schematic illustration of solid polymer electrolyte water electrolysis.

Proton conducting membrane: solid polymer electrolyte, e.g. Nafion® (acidity ~20% sulfuric acid); zero gap: electrodes attached to the membrane; acid or de-ionized water high-pressure operation (< 200 bar)

Alkaline- electrolyzer

Diaphragm: NiO, polysulfone; 20 - 40% KOH: high-pressure operation (7 - 30 bar)

PEM Vs Alkaline Vs High Temperature Water Electrolyzer

PEM electrolyzer

temperature: 70 – 80°C;

current density: 600 – 1000 mA/cm²

H₂-generation capacity:

100 Nml/min – 10 Nm³/h

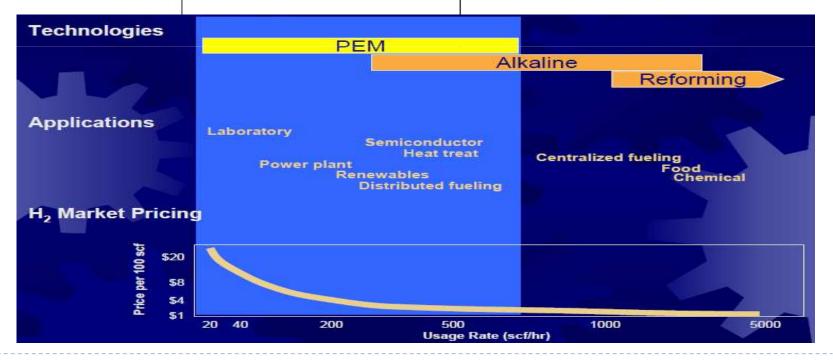
electrical power: 100 W – 50 kW

still a matter of research

Alkaline electrolyzer

temperature: 70 – 90°C; current density: 200 – 400 mA/cm² H₂-generation capacity: 1 – 760 Nm³/h

electrical power: 5 kW – 3.4 MW established technique


SOEC solid oxide electrolyzer cell

Diaphragm: yttria stabilized zirconia Y₂O₃ / ZrO₃ (YSZ);

steam;

cathode: Ni/ZrO₂; anode: LaMnO₃;

temperature: 850 – 1000°C; current density: 300 mA/cm²

PEM Vs Alkaline System Comparison

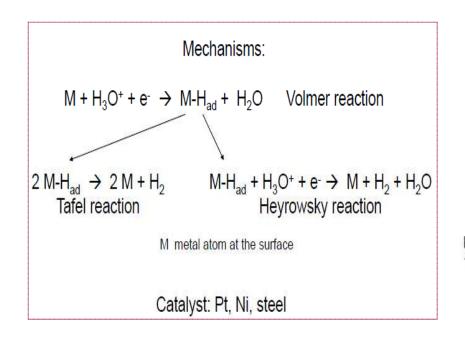
Characteristic	PEM Water Electrolysis	Alkaline Water Electrolysis
Stack Configuration/Cost	- More conducive to cost reduction through mass manufacturing techniques - Capable of very high current densities, stack can be highly compact with fewer cells - Capable of high differential pressure- safer design	- Alkaline environment generally allows for use of less costly materials, but not mass manufacturing - Typical current densities are low, limiting ability to reduce the package size Difficult to scale down in size
System Configuration/Cost	- Low pressure oxygen reduces material costs - Scaleable from 50 ccm up to 50 Nm³/h -Ultra compact systems available	- Balanced pressure complicates system design - Limited ability to scale package size down -Nitrogen purge and explosion- proof fixtures may be required
System Reliability	- Proven for high-reliability life support in submarines - Proven in over 40,000 laboratory scale systems since 1980 -More than 400 HOGEN systems worldwide	-Proven commercial designs, relatively robustPotential KOH contamination of piping

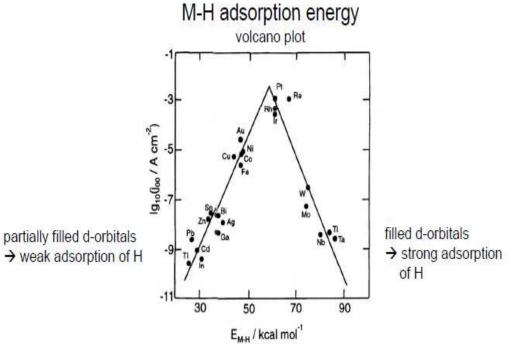
PEM Vs Alkaline: Safety

Characteristic	PEM Electrolysis Differential Pressure	Alkaline Electrolysis Balanced Pressure
Hydrogen/Oxygen Pressure	-Up to 3,000 psi differential pressure demonstrated -Hydrogen released safely via normally open valves at shutdown or power failure -Impossible for oxygen to enter hydrogen stream	- Very small differential pressure tolerated -Difficult to shut down safely. Requires special controls and backup power to avoid possible catastrophic rupture and mixture of H2 and O2 -Oxygen can flow into product hydrogen in failure mode.

Pressure

Hazardous Materials

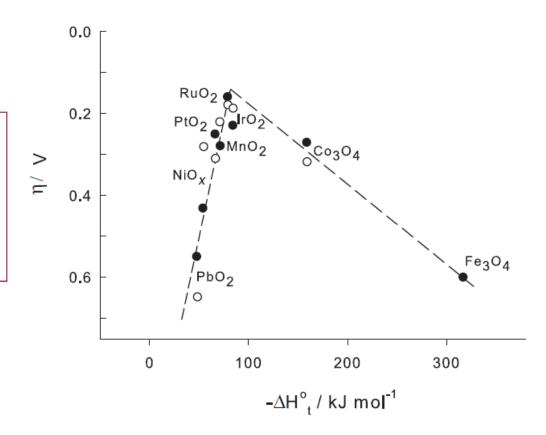

Characteristic	PEM Electrolysis	Alkaline Electrolysis
Hazardous materials	-NONE - System uses clean water only -No special safety equipment requirements -No hazardous waste -Surgical gloves required to keep contaminants from entering system	- KOH (potassium Hydroxide)Extremely corrosive, especially at 60C operating temperature -May require eyewash station or full-body shower -Special hazardous waste disposal rules may apply -Special protective gear required for service


Electrolysis of Water

Anode: $2H_2O \rightarrow O_2 + 4H^+ + e^-$

Cathode: $4H^+ + e^- \rightarrow 2H_2$ Total: $2H_2O \rightarrow O_2 + 2H_2$

Hydrogen Evolution Reaction HER



Oxygen Evolution Reaction OER

Mechanism

 $4 H_2O \rightarrow 4 OH_{ad} + 4 H^+ + 4 e^ 4 OH_{ad} \rightarrow 2 H_2O + 2 O_{ad}$ $2 O_{ad} \rightarrow O_2$

Adsorption at metal oxide surface layer

OER Electrocatalytic activity of various oxides As a function of enthalpy of lower → higher oxide transition in acid (o) & alkaline (•) solutions

Typical Parameters of HER & OER

HER (Pt; 1 M H₂SO₄) exchange current density: 10⁻³ A/cm² OER (Pt; 1 M H₂SO₄) exchange current density: 10⁻⁶ A/cm²

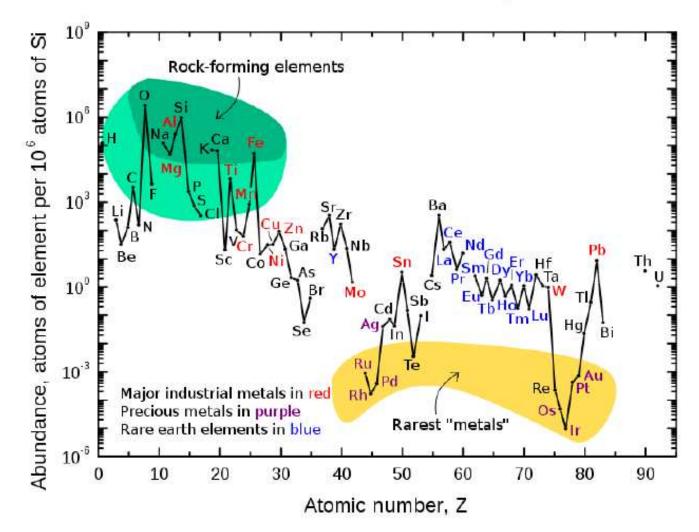
HER (Ni; 1 mA/cm²; 0.4 M NaOH) overpotential: 0.3 V OER (Ni; 1 A/cm²; 1 M KOH) overpotential: 1.05 V

The Oxygen electrode is the main factor related to energy efficiency

Critical Issues for Research

Hydrogen Cathode

- > Pt is the natural choice. Very low over potential at low CDs
- **Problems:** decreased loading, lateral resistance is high at high CDs


Oxygen Anode

- Oxides of noble metals (Ir, Ru) mixed with non-noble metal oxides (Sn, Ti, Ta) based on knowledge from DSA- technology
- Problems: Catalytic activity, electrical conductivity and stability related to composition and loading

The Oxygen electrode is the main factor related to energy efficiency

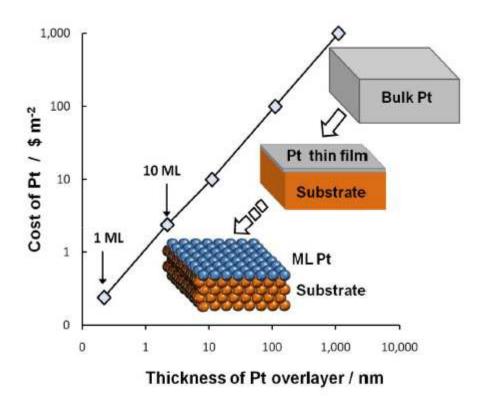
We have given this part priority

Abundance of Elements of Catalytic Interests

Pt-group metals (Pt, Ir, Pd, Rh, Ru) are expensive and limited in supply

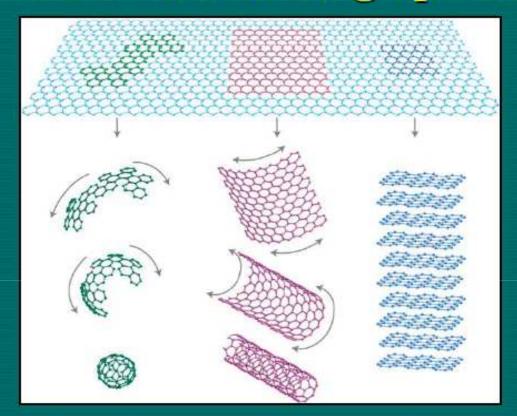
Needs of Pt in Catalysis and Electrocatalysis

Demand in Heterogeneous Catalysis:

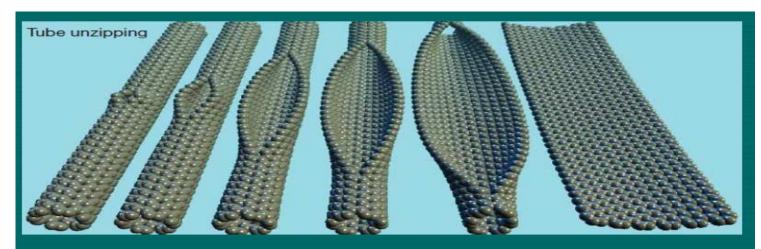

Pt catalysts are used in many chemical and refining processes

Demand in Emerging Clean Energy Technologies:

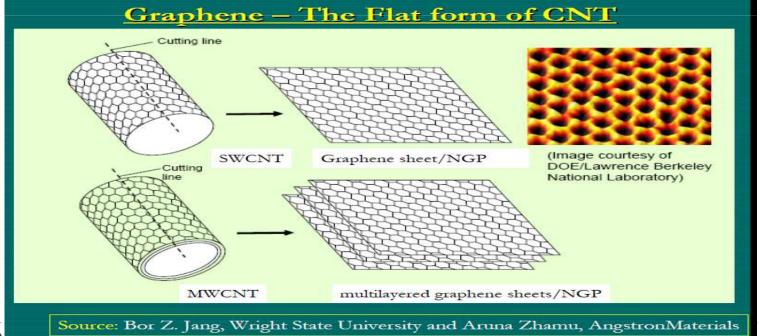
Pt electrocatalysts are required in low-temperature fuel cells, electrolyzers, and photoelectrochemical cells in significant amounts


- Research Efforts in Solving "Pt Challenge":
 - I. Replace Pt with alternative materials with similar activity and stability
 - II. Reduce loading of Pt using monolayer catalysts and electrocatalysts

Reduce Pt Loading with Monolayer (ML) Pt


Challenge: Identify substrates with Pt-like bulk properties

Graphene - Mother of all graphitic forms

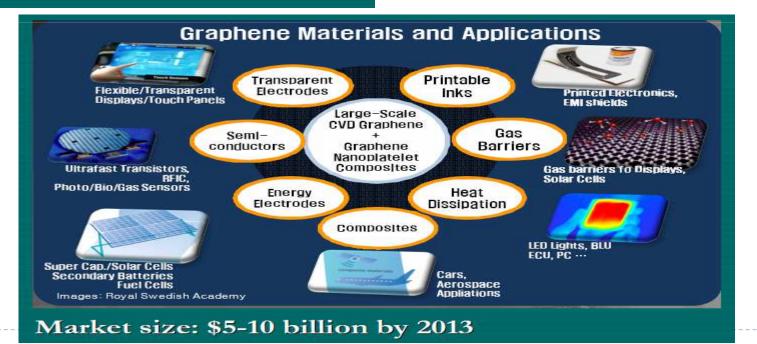

Graphitic family: 0-dimensional fullerene, 1-dimensional carbon nanotube, 2-dimensional graphene, 3-dimensional graphite

Courtesy: A. K. Geim and K. S. Novoselov, Nature Mater., 2007, 6, 183

Unzipping the Carbon nanotube to monolayer graphene

Source: Baraton et. al., Nanotechnology 22 (2011) 085601

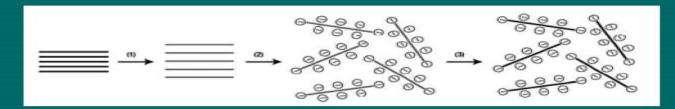
Characteristics of graphene


- ✓ thinnest possible material that is ever feasible
- ✓ Highest thermal conductivity (up to ~5,300 W/m-K),
 five times that of copper faster thermal dissipation
- ✓ Electrical conductivity similar to Cu, yet its density is four time lower than Cu − lighter weight components
- ✓ Ultra-high Yong's modulus (approximately 1,000 GPa) and highest intrinsic strength (~130 GPa)
- ✓ High specific surface area (up to ~ 2,675 m²/g)
- Outstanding resistance to gas permeation
- ✓ ~200 times stronger than steel
- ✓ "It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap." - Researchers at Columbia University's Fu Foundation School of Engineering
- ✓ Readily surface-functionalizable
- Dispersible in many polymers and solvents
- High loading in nanocomposites

Methods of preparing graphene

- Top-down approaches
 - ✓ scotch tape stripping
 - ✓ ion sputtering
 - ✓ pulsed laser deposition
 - ✓ ball milling
 - ✓ arc discharge
- Bottom-up approaches
 - ✓ chemical vapour deposition (CVD)
 - ✓ wet chemistry
 - ✓ ion implantation
 - ✓ pyrolysis

Exfoliation of graphite


- ✓ Chemical exfoliation
- ✓ Chemical and thermal exfoliation
- ✓ Electrochemical exfoliation
- ❖ These methods assume significance
 - * ability to prepare graphene in large quantities
 - ♦ cost-effective

Role of graphene in fuel cells

Graphene – good electrical conductivity and large specific surface area – how we can use it?

Schematic route for anchoring of Pt/Pt-Ru nanoparticles on graphene to prepare Pt/Pt-Ru-graphene nanocomposites

- * Water-ethylene glycol is used as the medium
- oxidation of graphite to graphite oxide (GO);
- exfoliation of GO to graphene oxide sheets by sonication in water;
- attachment of Pt/Pt-Ru particles on the graphene oxide sheets;
- chemical reduction of graphene oxide sheets

Source: Xu et al., J. Phys. Chem. C 112, (2008) 19841-19845

- Nitrogen-doped graphene metal-free electrode
 - Offers enhanced electro-catalytic activity
 - long-term operation stability
 - tolerance to crossover effect than Pt for ORR oxygen reduction via a four-electron pathway in alkaline solutions producing water as a product

Role of graphene in fuel cells

- In proton exchange membrane fuel cells (PEMFCs) Pt based electro-catalysts are widely used as anode and cathode electrocatalysts for hydrogen oxidation and for ORR, respectively.
- Graphene nanosheets (GNS) and nitrogen doped-GNSs can serve as the catalyst support for Pt nanoparticles for ORRs in PEMFCs.
- Nitrogen doping
 - creates defects, which could act as anchoring sites for the deposition of Pt nanoparticles
 - increase the electrical conductivity
 - * improve carbon-catalyst binding

Gratefully Remembering...

Loyola College, India

University of Madras, India

CLRI, India


IITM, India

KIST, South Korea

NASA-URC, UPRRP, PR, USA

NC State University, USA

