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ABSTRACT 

An efficient method to convert CO2 to fuels using renewable energy could displace crude 

oil without increasing CO2 emission and provide high-density energy storage reservoirs similar 

to liquid fuels or batteries. Although photoelectrochemical conversion of CO2 is possible, solar-

to-fuel efficiencies are lower than the combination of conventional photovoltaics (up to 40% 

efficiency) and electrochemical cells (up to 80% Faradaic efficiency).  In the electrochemical 

case, electrical energy from renewable sources may be converted to hydrocarbons or alcohols 

using electrocatalysts.  

The direct reduction of CO2 to CH3OH is known to occur at several types of 

electrocatalysts including oxidized Cu electrodes. In this thesis, we first examine the yield 

behavior of an electrodeposited cuprous oxide thin film and explore relationships between 

surface chemistry and reaction behavior relative to air-oxidized and anodized Cu electrodes.  

CH3OH yields and Faradaic efficiencies observed at cuprous oxide electrodes are remarkably 

higher than air-oxidized or anodized Cu electrodes suggesting Cu(I) species may play a critical 

role in selectivity to CH3OH. Experimental results also show CH3OH yields are dynamic and the 

copper oxides are reduced to metallic Cu in a simultaneous process.  

In order to improve CH3OH activity and electrode surface’s stability, single crystal ZnO 

(10-10) is considered as a support since ZnO support are well known for methanol synthesis in 

an industrial hydrogenation reaction scale.  Although experimental conditions pose challenging 

barriers to repeatability, Infrared Spectroscopy and yields suggest the oxide may provide stable 

surfaces with selectivity to CH3OH. Yield behavior is discussed in comparison with 

photoelectrochemical and hydrogenation reactions where the improved stability of Cu(I) species 

may allow relatively constant CH3OH generation. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

A rapidly growing population and industrialization has caused the world’s natural 

resources difficulty in keeping up with demands. Today, fossil fuels such as coal, oil or natural 

gas (i.e., hydrocarbons) are burned in power plants to produce energy. Primarily 27 % of world 

energy comes from coal.  From the International Energy Outlook 2010, with society’s current 

level of energy consumption and high standards of living, world total energy consumption will 

increase by 49 % from 495 quadrillion Btu (2007) to 739 quadrillion Btu (2035) (Conti et al., 

2010). Additionally, civilization and  industrialization have brought not only technology, modern 

life, convenience to humanity but also pollution and emissions from factories, vehicles, and 

chemical plants, especially with an increase in atmospheric CO2 concentration  by 30 % from 

300 ppm (1960) to 390 ppm (2009) (Tans, 2009). Carbon dioxide is one of the primary green 

house gases causing Earth’s global warming effect. Finding solutions for energy and 

environmental crisis has become a challenge. 

Methanol is a primary feedstock for many organic compounds, as well as a vital 

intermediate for various chemicals used in daily life products such as silicone, paint, and plastics. 

Being the perfect green chemical alternative with a volumetric energy density relatively similar 

to that of gasoline (methanol: 15.6 MJ/L; gasoline: 34.2 MJ/L), methanol is an ideal fuel for 

combustion, and transportation (Olah et al., 2006). Methanol is also currently used in Direct 

Methanol Fuel Cell, an electrochemical device that directly converts chemical energy of fuels 

into electrical energy. Most importantly, in its liquid form, methanol presents an excellent way to 

store energy conveniently and safely. Methanol is originally produced from synthetic gas (a 

mixture of carbon monoxide, carbon dioxide and hydrogen) in large scale industrial plants for 
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commercial purposes at millions of tons per year (Olah et al., 2006). Methanol can also be 

produced from methane conversion such as through selective oxidation of methane, catalytic gas 

phase oxidation of methane, liquid phase oxidation of methane, mono-halogenation of methane, 

and microbial or photochemical conversion of methane (Olah et al., 2006). Ultimately, methanol 

conversion from carbon dioxide reduction provides a highly attractive solution by recycling 

carbon dioxide from industrial exhaust into useful energy storage simultaneously with saving 

diminishing natural resources.  

For over a century, electrochemical reduction of carbon dioxide has been studied due to 

its significant impact as a solution for both the energy and environmental issue. Using carbon 

dioxide as a feedstock is a way to maintain CO2 levels in atmosphere. In this method, electricity 

generated from renewable energy sources such as solar, wind, hydro, nuclear, wave, tides, and 

geothermal serves as an external power supply for electron transport. With highly efficient 

electrocatalyst designs, carbon dioxide reduction reaction to valuable compounds and alternative 

fuels can displace the conventional fuels and ease the world’s dependence on fossil fuels.  

From the early 1900’s to the 1980’s, electrochemical carbon dioxide reduction studies 

focused on several types of metal electrodes such as amalgamated zinc, amalgamated copper, 

lead, mercury with formic acid as the main product (Coehn et al., 1904; Fischer et al., 1914; 

Teeter et al., 1954; Paik et al., 1969). In the mid of 1980’s, Frese et al. investigated methanol 

formation from carbon dioxide at several metals and semiconductors such as ruthenium, 

molybdenum, GaAs, InP with promising results; however, current densities were lower than 

1mA cm
-2

 (Canfield et al., 1983; Frese et al., 1985; Summers et al., 1986). In 1985, Hori et al. 

discovered metallic copper can electrochemically reduce carbon dioxide to hydrocarbons 

(methane, ethylene, etc.) at high rates and efficiencies (Hori et al., 1985). This served as a basis 
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for a larger focus on copper electrodes as the rational catalyst in the hope of finding the ideal 

electrocatalysts for CO2 reduction. Figure 1.1 is the Pourbaix diagram for carbon dioxide 

showing the equilibrium reduction potentials as a function of pH.  Reduction reactions of carbon 

dioxide at metallic copper are listed below with standard potentials Eo. 

2H
+
 + 2eˉ ⇌ H2    Eo = 0.0 V vs. SHE            (1.1) 

CO2 + 12H
+
 + 12eˉ ⇌ C2H4 + H2O  Eo = 0.079 V vs. SHE            (1.2) 

CO2 + 8H
+
 + 8eˉ ⇌ CH4 + H2O  Eo = 0.169 V vs. SHE            (1.3) 

CO2 + 2H
+
 + 2eˉ ⇌ CO+ H2O  Eo = –0.103 V vs. SHE          (1.4) 

CO2 + H
+
 + 2eˉ ⇌ HCOOˉ + H2O  Eo = –0.225 V vs. SHE           (1.5) 

 

Figure 1.1. Pourbaix diagram for carbon dioxide reduction reaction at 25˚C 

CO3(-2a)HCO3(-a)

CH3OH(a)

CO2/CH4

CO2/C2H4

CO2/HCOO⁻

CO2/CO

H2O System at 25˚C

H2CO3(a)

H+/H2
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This study focuses on the electrochemical reduction of carbon dioxide to methanol and 

more specifically relating surface properties with yield and selectivity. The overall reaction of 

methanol formation (Equation 1.8) is a combination of the reduction reaction at the cathode 

(Equation 1.6) and the oxidation reaction at the anode (Equation 1.7). 

Cathode: CO2 + 6H
+
 + 6eˉ ⇌ CH3OH + H2O  Eo = 0.02 V vs. SHE      (1.6) 

Anode:  3H2O ⇌ 1.5O2 + 6H
+
 + 6eˉ   Eo = 1.23 V vs. SHE      (1.7) 

Overall: CO2 + 2H2O ⇌ CH3OH + 1.5O2  Eo = 1.21 V vs. SHE      (1.8) 

Thermodynamically, it is possible to electrochemically reduce carbon dioxide to methanol; 

however, carbon dioxide’s reduction potential is only 20 mV positive of water reduction, which 

results in hydrogen generation. Therefore, an ideal catalyst should have a high hydrogen 

overpotential which allows the reduction reaction of carbon dioxide to achieve high selectivity 

and rates well before water reduction occurs. Copper oxides, specifically Cu(I), and copper based 

zinc oxide (10-10) are chosen as working electrodes in this work. Results with oxidized copper 

show methanol yields are directly related with Cu(I) intensities; however, the reaction is dynamic 

and the electrodes loose activity during reaction indicating unstable electrodes. Copper and 

copper oxides supported on zinc oxide electrodes show relatively more stable results over longer 

reaction time as well as reusable catalyst’s surface; however, reproducible methanol yields are 

difficult to establish. While surface structure and morphology are crucial in determining 

methanol yields, there are many challenge barriers such as the operating conditions of 

temperature, pressure, and local pH near the electrode surface (Hori, 2008).  

1.2 Overview 

The ultimate goal of this study is to gain a fundamental understanding of CO2 reduction 

at the molecular level to create catalyst design with high selectivity and yields.  
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Chapter 2 introduces several carbon dioxide reduction pathways such as hydrogenation, 

photoelectrochemical reduction and electrochemical reduction. Catalytic hydrogenation reaction 

for methanol synthesis requires high temperature and pressure conditions, whereas 

photoelectrochemical and electrochemical reduction processes offer convenient ways to reduce 

carbon dioxide to hydrocarbons and oxygenates at mild conditions.    

While carbon dioxide electrochemical reduction has been proven to primarily yield 

methane and ethylene at metallic copper, Chapter 3 focuses on the experimental details of 

electrochemical reduction of carbon dioxide to methanol at copper oxide electrodes. Chapter 3 

also describes the relationship between surface chemistry and catalyst performance via 

characterization. Although copper oxides show promising results in methanol formation, the 

reactions are dynamic, and copper oxides are reduced to metallic copper in a simultaneous 

process. It is essential to construct a better catalyst design which allows a stable reaction with 

high catalytic activity and selectivity, as well as reproducible results.  

Chapter 4 describes the experimental work for electrochemical reduction reaction of CO2 

at copper, copper oxide based zinc oxide electrodes. Infrared spectra and yields confirm CO2 

reduction activity toward methanol formation. In the future, fundamental theory and leveraging 

DFT will help explain the effects of surface chemistry on yields, selectivity, and stability at the 

molecular level to form a basis for CO2 reduction electrocatalysts. 

Possible mechanism pathways for direct electrochemical reduction of carbon dioxide to 

methanol are discussed in Chapter 5, as well as major conclusions and future recommendations. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 CO2 Reduction Pathway 

In the past century, researchers have focused on investigating different pathways to 

convert carbon dioxide to valuable products such as hydrocarbons and alcohols. Hydrogenation 

of carbon dioxide has been intensively studied and has shown promising results in pilot plants; 

however, high temperature and high pressure conditions, in addition to high consumption of 

hydrogen, make this process less efficient. The conversion of carbon dioxide at room 

temperature and atmospheric pressure using solar light or electrical energy are more attractive 

routes. Photocatalysis uses semiconductor to promote reactions in the presence of light radiation. 

Formic acid, methane, methanol, and ethanol are common products of the photoelectrochemical 

reduction of carbon dioxide at metal/oxide electrodes; however, the quantum efficiency and 

production rate are very low. A recent innovation in conversion of carbon dioxide has been 

developed via aqueous electrocatalytic reduction (Hori, 2008).  

2.2 CO/CO2 Hydrogenation 

The effort to convert carbon dioxide to hydrocarbons has been studied for over a century. 

In 1920, Franz Fischer and Hans Tropsch invented the Fischer-Tropsch process with two main 

steps. The first step is the partial oxidation of coal or natural gas to hydrogen gas and carbon 

dioxide. The carbon dioxide and hydrogen are then converted into alternate fuel sources such as 

formic acid, methanol, and ethanol. Commercially, methanol has been produced from synthetic 

gas, which contains mostly carbon monoxide, hydrogen, and a small amount of carbon dioxide. 

The combination of synthetic gas is demonstrated by a stoichiometric number S whish is shown 

in Equation 2.1 below. 

2

22

molCOmolCO

molCOmolH
S






    (2.1)
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Ideal S for methanol formation is slightly below 2. Excess hydrogen increases S leading the 

reaction to produce ammonia. The presence of carbon dioxide will lower S and improve 

productivity. Moreover, some studies have shown that a mixture with proper combination of 

carbon dioxide and carbon monoxide not only can increase the yield of methanol but also 

decrease the activation energy of the reaction (Klier et al., 1982; Lee et al., 1993; King et al., 

1996). Production of methanol from synthetic gas under high temperature (300-400 ˚C) and high 

pressure (250-350 atm) was first brought to an industrial scale by BASF in the 1920s using zinc 

chromite catalyst. Until the end of World War II, coal-derived synthetic gas was the main 

reactant for methanol production. Synthetic gas can be produced from coal by gasification, a 

process which combines partial oxidation and steam treatment. Coal was then replaced by natural 

gas, which had a lower cost and fewer impurities. 

Methanol production via catalytic hydrogenation of carbon dioxide is an exothermic 

reaction (Equation 2.2). The technical method has been applied in many pilot plants using a two 

step approach:  the reverse water gas shift (RWGS) with the conventional methanol synthesis 

process. 

CO2 + 3H2 → CH3OH + H2O ΔH298 = –49.5 kJ/mol ; ΔG298 = 3.30 kJ/mol (2.2) 

CO2 + H2 → CO + H2O ΔH298 = 41.2 kJ/mol ; ΔG298 = 28.6 kJ/mol (2.3) 

CO + 2H2 → CH3OH  ΔH298 = –91 kJ/mol ; ΔG298 = –25.34 kJ/mol (2.4) 

Water formation from the RWGS (equation 2.2) is a critical issue. Besides playing a vital role in 

initially accelerating the conversion of H2 and CO2 to CO and H2O, water acts as an inhibitor on 

the catalyst and slows down the consecutive step of methanol synthesis (equation 2.3).  Catalysts 

for carbon dioxide hydrogenation to methanol should be able to overcome water intolerance, as 

well as improve activity, selectivity, and stability.  
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Although different catalyst combinations and preparations have been thoroughly studied 

over the past few decades, copper – zinc oxides containing various promoters such as ZrO2, 

Ga2O3, and SiO2 remain important catalysts (Liu et al., 2003).  Because methanol synthesis using 

copper based catalyst is a highly surface sensitive reaction, the activity and selectivity strongly 

depend on the catalyst’s surface structure and stability. The roles of the catalyst active sites have 

attracted many researchers’ interests. Several researchers (Pan et al., 1988; Rasmussen et al., 

1994; Rasmussen et al., 1994; Askgaard et al., 1995; Deng et al., 1996) suggested methanol is 

formed on a metallic copper surface of a copper based catalyst, and the activity of the catalyst is 

directly proportional to the surface area of metallic copper. Chinchen et al. found that the 

catalytic activity for methanol synthesis is independent of the Cu
O
 surface area (Chinchen et al., 

1987), while Herman et al. claimed Cu
+
 sites are the active sites in methanol synthesis (Herman 

et al., 1979). A comparison of clean Cu (100) with oxidized Cu (100) showed increased 

methanol formation in oxidized Cu (100) by an order of magnitude (Szanyi et al., 1991). The 

formation of Cu(I) sites from oxidation of Cu particles was proven to stabilize reaction 

intermediates (carbonate, formate, and methoxy species) during methanol synthesis (Bailey et 

al., 1995).  Similar observation was found by using near-infrared-visible absorption spectrum, 

dissolved Cu(I) on  ZnO matrix forming Cu
+
-O-Zn was believed to be the active site (Klier, 

1982). 

In addition to the active sites, an appropriate support is crucial in improving the yield and 

activity. Metal oxides are common supports for preparing catalysts used in methanol synthesis. 

In 1979, Herman and colleagues showed that at 250 ˚C  and 75 atm, pure Cu metal yielded less 

than 10
-8

 kg of methanol per square meter of the catalyst per hour, while a supported copper 

based catalyst copper/zinc oxide with 30/70 composition by weight yielded 3.63x10
-5

 kg of 
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methanol per square meter of the catalyst per hour (Herman et al., 1979). ZnO is a wurtzite, n-

type semiconductor. Besides oxygen vacancies, ZnO contains an electron pair which may serve 

as an active site for methanol synthesis. According to Herman et al., the electron pair in Zn
+
 may 

create cation and anion lattice vacancies which can improve the adsorption and transformation of 

the reactant, as well as enhance copper dispersion. Consequently, while optimizing the 

dispersion of the copper particles, ZnO creates a copper – zinc active site on the catalyst. As 

shown in Figure 2.1, formate intermediate may adsorb at the interface between Cu and ZnO or 

Cu-O-Zn (Nakamura et al., 2003). Ultimately, migrating ZnO onto Cu particles provides an 

active site for methanol synthesis. Using mixtures of Cu/SiO2 + ZnO/SiO2
 
to examine the role of 

ZnO in Cu/ZnO methanol synthesis, Choi et al. concluded that ZnO created Cu-Zn active sites 

for methanol synthesis and the morphology of Cu was not changed (Figure 2.2.) (Choi et al., 

2001). 

 

Figure 2.1. In situ IR absorption spectra of formate species and methoxy species on clean 

Cu(111) and Zn/Cu(111) during CO2 hydrogenation at 343 K and 760 torr (reprinted from 

(Nakamura et al., 2003)). 
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Figure 2.2. Model of the active site for methanol synthesis over a physical mixture of Cu/SiO2 + 

ZnO/SiO2 (reprinted from (Choi et al., 2001)) 

Most importantly, ZnO is believed to stabilize many active sites after extensive operating and 

increases catalyst’s life time by absorbing the impurities presenting in the synthetic gas stream 

(Twigg et al., 2001). Since copper is very sensitive, and a low level of sulfur can poison the 

catalyst causing deactivation, ZnO acts as a support which can efficiently remove the poisons. 

Apart from catalyst selection, an optimal reaction condition is also essential in 

maximizing the product yield, as well as the catalyst life time. Since hydrogenation of carbon 

monoxide and carbon dioxide in methanol synthesis is an exothermic reaction, according to Le 

Chatelier’s principle, methanol conversion is favored by increasing pressure and decreasing 

temperature. The equilibrium constant decreases with an increase in temperature; hence, 

methanol synthesis would prefer a low temperature condition. On the other hand, increasing 

temperature may improve the reaction rate for carbon monoxide and carbon dioxide 

hydrogenation. Methanol synthesis exhibits various optimal temperature ranges when different 

catalysts are used; therefore, temperature control is extremely important. Overheating the 

catalyst can rapidly reduce its activity and shorten its lifetime. Heating can cause sintering and 
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agglomeration of copper based catalysts. Also, the catalyst life is very sensitive to operating 

pressure. Catalysts tend to deactivate faster at high pressures. A search for ideal catalysts to be 

used at low pressure and still achieve high activity in the long run is still in the research phase. 

In the near future, finite and non-renewable natural feed stocks should be replaced by 

renewable resources. Carbon dioxide necessary for methanol production can be obtained from 

various emissions and the atmosphere. The recovery of fossil fuel burning sources and carbon 

dioxide extracted from air could provide a sufficient amount of carbon dioxide for the 

hydrogenation procedure. The capture of carbon dioxide is not a difficult task compared to the 

formation of hydrogen. One draw-back with hydrogenation of carbon dioxide is high energy 

consuming of hydrogen generation. The water electrolysis to produce hydrogen occurs by 

applying an electric current between electrodes inserted into the water. The process requires 

more hydrogen per consumption then hydrocarbon and alcohols being produced. Other ways to 

overcome these difficulties are photochemical and electrochemical reduction of carbon dioxide. 

These methods can produce methanol, formaldehyde, formic acid, methane, and ethylene at 

relatively high selectivity with minimal energy input. 

2.3 Photoelectrochemical Reduction of CO2 

Photoelectrochemical reduction of carbon dioxide or photocatalysis generally uses 

semiconductors to promote reaction in the presence of sun light. The semiconductor is used as a 

catalyst to absorb solar energy and generate electrons and protons needed for the reduction of 

carbon dioxide. While hydrogenation of carbon dioxide requires high temperature and high 

pressure conditions ((400-800 K, 2-12 MPa) (Chinchen et al., 1987; Joo et al., 1999; Wu et al., 

2001; Saito et al., 2004), photocatalysis occurs under relatively mild conditions with 

advantageous energy input – sun light – a continuous and readily available source. Photocatalytic 
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method not only can reduce carbon dioxide emissions, but also can produce very useful 

chemicals such as formic acid, formaldehyde, methanol, methane, etc. Figure 2.3 shows a model 

of the CO2 photocatalytic reduction mechanism on Cu/TiO2. With the assistant of light radiation, 

an electron hole pair (e
-
 and h

+
) is generated per absorbed photon. While OH radicals and O2 are 

formed from the scavenging holes on titania (TiO2), CO2 and H2O molecules interact with the 

trapped electrons on the Cu clusters to produce methanol. 

 

Figure 2.3. Mechanism of CO2 photocatalytic reduction on Cu/TiO2 (reprinted from (Tseng et al., 

2002)) 

Intensive research on photochemical reduction of carbon dioxide has been conducted 

during the past four decades. In 1975, the first photoelectrochemical cell, which consisted of a 

TiO2 single crystal anode and a platinum cathode, was invented (Fujishima et al., 1975). This 

photocell, when irradiated by light, generated oxygen at the anode and hydrogen at the cathode. 

The reactor could produce 1.1 liters of hydrogen per day or 6.6 liters of hydrogen per square 

meter of TiO2. While metals have continuum electronic states, semiconductors have a band gap 

that extends from the top of the fully filled valance band to the bottom of the vacant conduction 

band (Figure 2.4.). When being exposed to light radiation, the generation of electron hole pairs 
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(e
-
 and h

+
) promotes the reduced – oxidized reaction. The semiconductor electrode immersed in 

the electrolyte is connected to the counter-electrode through an external circuit.  

 

Figure 2.4. Band-gap diagram (formation of holes (h
+
) and electrons (eˉ) upon UV irradiation of 

semiconductor surface) ( reprinted from(Kabra et al., 2004)) 

In 1978, a photoelectrode consisting of a single crystal p-gallium phosphide was used for 

the photoelectrochemical reaction (Halmann, 1978). Unlike the reduction of carbon dioxide on 

metal cathodes which stops essentially after two electron transfer because of the high 

overpotential for formic acid reduction, the photo-electrolysis on p-gallium phosphide proceeds 

further to yield formaldehyde and methanol. After 90 hours of irradiation, product concentration 

was as follows: formic acid 5x10
-2 

M, formaldehyde 2.8x10
-4 

M, and methanol 8.1x10
-4 

M. 

The active solid surface for photoelectrochemical reduction of carbon dioxide has also 

been under intense study. Hemminger et al. introduced the four distinct processes taking place at 

the active solid surface: i) photoelectron – hole pair generation, charge separation and trapping, 

ii) oxidation and reduction reactions of the adsorbates, iii) rearrangement and other surface 

reactions of intermediates, and iv) removal of the products and regeneration of the surface 

(Hemminger et al., 1978). Using TiO2 and SrTiO3 crystal surfaces, they discovered the 

importance of Ti
3+

 surface ions for the dissociative adsorption of water and the importance of the 
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band gap illumination for Ti
3+ 

regeneration after being oxidized in the presence of water. Various 

semiconductor photoelectrocatalysts such as WO3, TiO2, ZnO, CdS, GaP, and SiC (99.5-

99.9999% purity) have been studied to form organic compounds such as formic acid, 

formaldehyde, methanol, and methane (Inoue et al., 1979). They concluded that when estimating 

charge transfer for semiconductor electrodes, photo excited electrons in the more negative 

conduction band reduce carbon dioxide more efficiently. 

 

 

Figure 2.5. XPS of Cu 2p on Cu/TiO2 catalysts (reprinted from (Wu et al., 2005)) 

One of the most challenging tasks for photoelectrochemical reduction of carbon dioxide 

to methanol is enhancement efficiencies. From a thermodynamic perspective, converting one 

mole of carbon dioxide to methanol requires 228 kJ of energy. Six electrons are required to 

reduce C
+4

 of CO2 to C
-2

 of CH3OH as discussed from equation 1.6. The reaction mechanism in 

the photoreduction of carbon dioxide involves two main radicals H• and •CO2ˉ. These radicals 
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are produced by electron transfer from the valence band to the conducting band in the 

semiconductor by photon absorption having an energy equal to or greater than the band gap of 

the semiconductor. With a band gap of 3.2 eV, TiO2 is ideal to promote the carbon dioxide 

reduction using UV illumination. Several researchers have investigated the efficiency and 

selectivity of the processes by modifying the photocatalyst surface with metal. In 1992, 

photocatalytic reduction of carbon dioxide in an aqueous TiO2 suspension mixed with copper 

powder was introduced (Hirano et al., 1992); however, TiO2 by itself is an inefficient catalyst for 

the photochemical reduction of carbon dioxide because of  low product yields. The presence of 

copper particles on the TiO2 surface not only offers reaction sites for carbon dioxide with an 

excited electron but also helps the reducing species react with positive holes on the 

semiconductor site. By adding potassium bicarbonate (0.01 M KHCO3) into the CO2 saturated 

aqueous solution containing TiO2 suspension mixed with copper powder, methanol yield was 

doubled as compared with the bicarbonate-free solution (Hirano et al., 1992). Tseng et al. used 

titania and titania supported copper catalysts prepared by an improved sol-gel, a homogeneous 

hydrolysis technique, to improve the photoelectrochemical reduction efficiency (Tseng et al., 

2002). Concentration of catalyst and copper loading were also investigated. Energy Dispersive 

X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) analyses revealed that 

Cu 2p3/2 is 933.4 eV, which indicated primary Cu2O species on the TiO2 supports and most 

copper clusters were on the TiO2 surface. In addition, Wu and colleagues experienced a 

maximum yield of methanol at 0.45 mmole/g catalysts/hr using 1.2 wt % Cu/TiO2 catalyst under 

a light intensity of 16 W/cm
2
 (Wu et al., 2005). XPS spectra of Cu/TiO2 with different copper 

loadings showed copper on TiO2 exist in multiple oxidation states; however, Cu(I) was the 

primary species (Figure 2.5.). Cu2O serves as an electron trap to reduce the recombination rate of 
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electron hole pairs during excitation of the photocatalyst. The 2.0 wt% Cu/TiO2 achieved highest 

dispersion among different copper loading catalysts. The methanol yield for this composition 

was 118 µmol/g catalysts after 6 hours of 254 nm UV irradiation (Figure 2.6.). 

 

Figure 2.6. Time dependence on the methanol yields of various catalysts (reprinted from (Tseng 

et al., 2002)) 

The electron positive hole recombination leading to limited product formation on the 

catalyst surface lowers the photocatalysis process’s efficiencies. Product efficiency and 

selectivity depend primarily on the type of catalyst. Even though copper based titanium oxide 

has been known to be the best catalyst for methanol production in the photoelectrochemical 

process, in order to upgrade to an industrial scale, methanol yields need to be improved 

significantly. In addition, with an extremely low light intensity, a large surface area would be 

needed to provide enough energy for the reaction to occur efficiently (Wu et al., 2005). 

Therefore, another alternative solution for carbon dioxide reduction is necessary.  
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2.4 Electrochemical Reduction of CO2 

The foundations of electrochemistry in the late 18
th

 century were marked by the 

investigation of Galvani and Volta. They established the relationship between chemical reactions 

and electricity. Electrochemistry studies chemical reactions occurring at the interface of an 

electron conductor (the working electrode) and an ionic conductor (the electrolyte). Electrons are 

transferred between the electrode and the electrolyte in the solution. It is called an 

electrochemical reaction when an external voltage drives the reaction or a voltage is created by a 

chemical reaction. Since electrons are transferred between molecules, this reaction is also called 

an oxidation - reduction (redox) reaction. An electrochemical reaction mechanism is a step by 

step sequence of electron transfer. An electrocatalytic process involves oxidation and reduction 

through direct transfer of electrons. Researches and applications in this area have attracted many 

scientists from all over the world during the past century.  

 One of the most practical recent electrocatalytic applications is the electrochemical 

reduction of carbon dioxide to hydrocarbons and alcohols. This method uses electricity produced 

from renewable energy source including hydro, solar, wind, geothermal, wave and tides for 

generation of electrons. The direct electrochemical reduction of CO2 to CH3OH presents an 

attractive method to produce liquid fuels such as dimethyl ether (DME), synthetic gasoline, and 

feedstock for several organic compounds (Lee et al., 1995; Jayamurthy et al., 1996). Although 

CH3OH is typically produced in hydrogenation reactions using syngas and CO2 feeds (400-800 

K, 2-12 MPa) (Chinchen et al., 1986; Chinchen et al., 1987; Joo et al., 1999; Wu et al., 2001; 

Saito et al., 2004),
 
the aqueous electrochemical process operates at room temperature and offers a 

convenient means for storing electrical energy without increasing CO2 emissions. Similar to 

photocatalysis, electrocatalysis is an electron transfer sequence procedure. Theoretically, water is 
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oxidized at the anode and releases electrons followed by reduction of carbon dioxide at the 

cathode to hydrocarbons and alcohols. Unfortunately, the reduction potential of carbon dioxide is 

very closed to water reduction. We would like to utilize all the potential to achieve the highest 

yield; however, increasing the reduction rate of carbon dioxide may also lead to the reduction 

potential of water, which will result in hydrogen formation. The key to this process is to find a 

stable catalyst with a high overpotential for hydrogen reduction, allowing further H
+
 transfer 

steps selectively towards forming methanol.  

Studies on the electrochemical reduction of carbon dioxide began more than a century 

ago with high hydrogen overpotential metals and amalgams. In 1904, Coehn and Jahn used zinc, 

amalgamated zinc and amalgamated copper cathode to electrolytically reduce carbon dioxide in 

aqueous NaHCO3 and K2SO4 solutions, in which formic acid was the only product (Coehn et al., 

1904). Fischer and Prziza  ran electrolytic reduction reactions of carbon dioxide that had been 

dissolved under pressure (Fischer et al., 1914). Once again, formic acid was the only product and 

copper plated with amalgamated zinc electrodes were reported to be the most efficient. Finally, 

minimal amounts of methanol were obtained with Pb electrodes in K2SO4 and (NH4)2SO4 

electrolyte. Truman and Pierre conducted experiments for carbon dioxide reduction on mercury 

cathodes and yielded only formic acid at 100 % current efficiency (Teeter et al., 1954). In 1969, 

Paik et al. reduced carbon dioxide on the mercury electrode in buffered neutral and acidic 

aqueous solutions by means of steady state polarization techniques, cathodic galvanostatic 

charging techniques, and current efficiency determinations (Paik et al., 1969). The only reduction 

product in neutral solution was formic acid; while in the acid solution, both formic acid and 

hydrogen were formed. However, these early papers show that with mercury as the cathode, the 

current efficiency was high at initial stages, and then fell rapidly with time. Ultimately, Udupa et 
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al. investigated the electrolytic reduction of carbon dioxide at a rotating amalgamated cathode to 

improve and maintain high current efficiency so that formate could be built up without loss in 

current efficiency (Udupa et al., 1971). In 1977, Russell et al. attempted to electrochemically 

reduce carbon dioxide to methanol through intermediate reactions because conditions for a direct 

conversion could not be achieved (Russell et al., 1977). Formic acid was reduced from carbon 

dioxide in a neutral electrolyte on a mercury electrode; however, it could not be further reduced 

to methanol due to the limited potential region. Fortunately, formaldehyde could be reduced to 

methanol at a current density of 10 mA cm
-2

.  In 1982, Hori et al. studied the effect of electrolyte 

in carbon dioxide electrolytic reduction on a mercury electrode by investigating different 

aqueous solutions of NaHCO3, NaH2PO4-Na2HPO4, NaCl, NaClO4, Na2SO4, LiHCO3, and 

KHCO3 as well as their combination (Hori et al., 1982).  

Similar studies were continued on different metal electrodes with the hope of finding the 

optimal catalysts for the process. In 1983, as part of a program to study the conversion of 

inorganic substances into fuels, Canfield and Frese investigated the reduction of carbon dioxide 

to methanol, formaldehyde and methane on n and p-GaAs, and p-InP semiconductor electrodes 

(Canfield et al., 1983). The highest current achieved was around 400 µA cm
-2

. In 1985, Frese and 

Leach chose ruthenium electrode because ruthenium was known at that time for being active in 

the gas phase conversion of carbon dioxide to methane at low temperature (Frese et al., 1985). 

The reaction yielded carbon monoxide, methane, and a small amount of  methanol. Even though 

the reaction was stable, current density was less than 0.4 mA cm
-2

. Frese et. al. also tried 

molybdenum electrodes in 0.2 M Na2SO4 electrolyte (pH = 4.2) to convert carbon dioxide to 

methanol at good selectivity and yield under appropriate conditions (Summers et al., 1986). It 

was shown that the Faradaic efficiency depends on several factors such as chemical surface 
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pretreatment and voltage cycling pretreatment. In voltage cycled electrodes, carbon dioxide 

rapidly converted to methanol at up to 370 % Faradaic efficiency; however, cycled electrodes 

were also subject to molybdenum corrosion. During the same period, Hori et. al. succeeded in 

electrochemically reducing carbon dioxide to hydrocarbons at several metal electrodes in an 

aqueous bicarbonate solution (0.5-1.0 M KHCO3) with a high current density (5.0-5.5 mA cm
-2

) 

(Hori et al., 1985). Cd, In, Sn, and Pb electrodes mainly produced formate. Ag and Au yielded 

majority of CO. Ni and Fe exclusively produced H2, with trace amount of CO and CH4. Only Cu  

Table 2.1. Typical current efficiencies (%) for CO2 reduction products at -2.2 V vs. SCE (193˚C) 

in a CO2 saturated 0.05M KHCO3 aqueous. (reprinted from (Azuma et al., 1990)) 
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Table 2.2. Typical current efficiencies (%) for hydrogen evolution (η[H2]) and total CO2 

(η[CO2]) on various metal electrodes and the distribution (%) into CO (FCO) and HCOOH 

(FHCOOH) and hydrocarbons (FCxHy) at 0.05M KHCO3, 0˚C, -2.2 V. vs. SCE. (reprinted from 

(Azuma et al., 1990)) 

 

cathode produced significant amount of CH4. The copper electrodes were also pretreated by 

etching in 7% HNO3 aqueous solution; however, little difference in Faradaic efficiency of CH4 

formation was observed. In addition, the presence of oxygen in the electrolyte remarkably 

enhances the CH4 production. After successfully producing methane from copper electrodes, in 

1986, Hori et al. continued their studies using copper electrode in an aqueous bicarbonate 

solution at a low temperature with a current density of 5 mA cm
-2 

(Hori et al., 1986). The 

Faradaic efficiency of methane formation was about 65 % at 0 ˚C and dropped with an increase 

in temperature, whereas that of ethylene formation rose up to 20 % at 40 ˚C. By 1987, Cook et 

al. were able to improve the efficiency of methane and ethylene production using in situ 

electrodeposited copper layers on a glassy carbon electrode (Cook et al., 1987). At 8.3 mA cm
-2

, 

the carbon dioxide reduction reached almost 100 % current efficiency. At 25 mA cm
-2

, the 
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overall current efficiency for carbon dioxide reduction was 79 %. These yields were by far the 

highest Faradaic efficiency and current density yet reported for the carbon dioxide reduction 

reaction. 

 

Figure 2.7. Periodic table for CO2 reduction products at -2.2V vs. SCE in low temperature 0.05M 

KHCO3 solution reprinted from (Azuma et al., 1990)) 

A systematic rule for the electrocatalytic reduction of carbon dioxide on metal surfaces 

was suggested. Azuma and colleagues measured the reduction products on 32 types of metals in 

aqueous KHCO3 solution at low temperature (0˚C) and discussed the reduction mechanism 

(Azuma et al., 1990) (Table 2.1 and Table 2.2). Out of 32 metals (including Cd, In, Sn, Pb, Tl, 

Hg, Zn, Pd, Ti, Ni, Ag, and Au) Cu showed relatively high total current efficiencies for carbon 

dioxide reduction. Only copper was able to produce hydrocarbon efficiently, while other metals 

yield primarily formic acid. Based on this dependence of reduction products on various metals, a 
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periodic table for carbon dioxide reduction was developed which suggested a systematic rule for 

the electrochemical reduction of carbon dioxide on transition metal surfaces (Figure 2.7.). Heavy 

transition metals in the IIB, IIIB, and IVB groups reduced carbon dioxide to formate. Some of 

VIII and IB metals are effective for carbon monoxide production. Copper is located between 

these two groups and is selectively active toward carbon dioxide reduction to hydrocarbons. 

Similarly, in 1976, Broden et al. had already discovered a relationship between the metals’ 

positions in the periodic table and their ability to chemisorb carbon monoxide dissociatively, the 

initial step for hydrogenation to methanol (Broden et al., 1976). However, at present, there is no 

consensus on the molecular mechanism of the metal electrodes and their properties toward 

electrocatalytic activities and selectivities for carbon dioxide reduction. 

With the discovery of copper as an active catalyst for carbon dioxide reduction to 

hydrocarbons, electrocatalytic research has moved to an upper stage. Kaneco and coworkers 

have done a series of experiment in this field using copper in different solvents to produce formic 

acid, methane, ethylene and carbon monoxide with increasing Faradaic efficiency (Kaneco et al., 

1999; Kaneco et al., 1999; Kaneco et al., 2003; Kaneco et al., 2006; Ohya et al., 2009).  Frese et. 

al. studied the electrochemical reduction of carbon dioxide to methane on copper foil electrodes 

in 0.5 M KHCO3, pH 7.6. The highest methane formation rates at 22 ˚C and 0 ˚C were 8x10
-5

 

and 1.1x10
-4

 mol cm
-2 

h
-1

 at current densities of 17 and 23 mA cm
-2

, respectively (Kim et al., 

1988).  The results showed that the catalytic properties of copper depended on its physical form 

and method of preparation.  Polishing the copper surface helped achieve the highest methane 

formation rates. Cleaning copper with HCl was preferred over HNO3 cleaning. In this 

experiment, copper foil was oxidized by oxygen in air prior to carbon dioxide reduction to form 

a visible layer of CuO and Cu2O on copper surface. After HCl cleaning, all the oxides were 
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dissolved to form cuprous chloride complex ions. The Cu
+
 in the Cu2O was stabilized and 

prevented from disproportionating to Cu
0
 and Cu

2+
. It was concluded that HCl removed the 

oxides without precipitation of metallic copper, which was known to deactivate the catalyst 

surface.  

Understanding the characteristics of metal surfaces would be beneficial to recognizing 

the carbon dioxide reduction reaction mechanism. Even though it is known that copper is the 

vital active catalyst component, the active sites and orientation are still a topic of debate. Carbon 

dioxide was electrochemically reduced at Cu (100), Cu(110) and Cu (111) electrodes at constant 

current density of 5 mA cm
-2

 in 0.1 M KHCO3 at ambient temperature (Hori et al., 1995). 

Ethylene was favorably produced on Cu (100), while Cu (111) yielded mostly methane. Cu (110) 

showed intermediate products of both. Terunuma and colleagues studied the relationship 

between hydrocarbon production in the electrochemical reduction of carbon dioxide and the 

characteristics of the copper electrode by conducting various pretreatment methods on copper 

(Terunuma et al., 1997). A copper metal surface is easily contaminated with organic compounds 

due to its high affinity for absorbed oxygen. Surfaces with copper oxide to some extent 

demonstrated much higher activity for hydrocarbon production. The Cu2O site has a stronger 

activity for the reduction of protons than the Cu site. In the experiment, the Cu site was 

responsible for the physical adsorption of carbon dioxide to form carbon monoxide as a first step. 

The heat of adsorption of carbon monoxide on Cu2O is larger than that on metallic Cu, and the 

Cu2O site is more favorable to the adsorption of carbon monoxide than the Cu site. Therefore, 

controlling the number of Cu (I) sites is very important in enhancing the selectivity and 

productivity towards methanol formation. 

There are good reasons to expect Cu
+
 ions in the Cu2O to be the active site for methanol 
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production from electrochemical reduction of carbon dioxide.  Recently, Chang et al. (Chang et 

al., 2009) have investigated the electrochemical reduction of carbon dioxide by Cu2O – catalyzed 

carbon cloths and concluded that methanol was the only product. It was indicated that Cu
+
 is 

directly involved in the catalytic actions to promote carbon dioxide compositions. Frese et al. 

have observed the carbon dioxide reduction to methanol at several oxidized copper electrodes 

including anodized copper foil, copper foil thermally oxidized in air, and air oxidized copper 

electrodeposited on anodized or air oxidized Ti foil at 22 ˚C (Frese, 1991). The highest methanol 

rate obtained was 1x10
-4

 mol cm
-2

 h
-1

 from anodized copper foil in 0.5 M KHCO3. The current 

density was as high as 33 mA cm
-2

. While copper oxides show the greatest yields and 

efficiencies, a more fundamental question regarding oxidized Cu electrodes centers on their 

formal reduction potentials relative to CO2.  The formal potential for CO2 reduction to CH3OH 

occurs 20mV positive of the SHE, while copper oxides are reduced at more positive potentials. 

Further, several CO2 reduction studies suggest an initial step requiring CO which has a formal 

potential of –0.103 V (SHE). (Hori et al., 1989; Hori et al., 1991; Gattrell et al., 2006; Hori, 

2008). Figure 2.8 shows polarization data from carbon dioxide electrochemical reduction at 

metallic copper electrodes (Hori et al., 1989).   Copper is considered unique among metals with 

both intermediate hydrogen overpotentials and carbon monoxide adsorption allowing further 

reduction to hydrocarbons. The first pathway in the system is the formation of both formate and 

carbon monoxide. As the potentials become more negative, carbon monoxide and formate 

suppress hydrogen evolution. At potentials more negative than –1.25 V (SHE), carbon monoxide 

is further converted to ethylene at first, and methane becomes dominant after –1.35 V (SHE).  

Understanding how equilibrium potentials affect the activity and selectivity of the reaction might 

be helpful in determining the reaction mechanism.  
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Figure 2.8. Current efficiencies at different potentials (0.1 M KHCO3, CO2 bubbled) reprinted 

from (Hori et al., 1989)) 

Theoretically, copper oxides should be reduced before CO2 reduction reactions take place 

since the formal potentials for Cu
+
 and Cu

2+
 reduction occur well positive of CO2 reduction as 

shown in Figure 2.9. Furthermore, even though the reduction of Cu
+ 

to metallic Cu occurs at less 

positive potential than reduction of Cu
2+ 

to Cu (Equation 2.4 and Equation 2.5), Cu
+
 was more 

difficult to be reduced to metallic Cu than Cu
2+

 at the same operating conditions via 

Temperature-Programmed Reduction (TPR) method (Wang et al., 2004; Estrella et al., 2009).  

Cu2O + 2H
+
 + 2eˉ ⇌ 2Cu + H2O  Eo = 0.471 V vs. SHE        (2.4) 

CuO + 2H
+
 + 2eˉ ⇌ Cu + H2O  Eo = 0.570 V vs. SHE        (2.5) 

2CuO + 2H
+
 + 2eˉ ⇌ Cu2O + H2O  Eo = 0.669 V vs. SHE        (2.6) 

It is believed that the electronic properties of Cu2O, a p-type semiconductor with a band 

gap of 2.14 eV play an important role in the adsorption of carbon dioxide and carbon monoxide. 

The oxygen on copper oxides increases the number of defect electrons so that carbon dioxide can 

be adsorbed easily onto the catalyst surface (Chang et al., 2009). It is also suggested by Frese et 

al. that carbon dioxide would initially be chemisorbed on the oxidized copper surface (most 
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likely p-Cu2O sites) to form COad and Oad. Cu2O has the O2 anions in a body center and the Cu
+
 

cations in a face centered lattice. The valence band states in Cu
+
 are sources of electrons for 

chemisorption. Recently, experiments on Cu (I) halide compounds at the three phase interface 

have shown significant results on hydrocarbon production (Ogura et al., 2003; Yano et al., 2004; 

Ogura et al., 2005).  Carbon monoxide, after being reduced from carbon dioxide, adsorbs on Cu
+
 

with its p-bond perpendicular to the surface and results in the formation of methane and ethylene. 

Cu(I) halides not only adsorb CO much more strongly than Cu does but also help stabilize 

HCOO and CH2=CH intermediates; thus, enhancing C2H4 formation. Therefore, Cu
+
 species is 

promising candidate for carbon dioxide reduction reactions on its surface. 

 

Figure 2.9. The equilibrium potentials as a function of pH for copper and carbon dioxide 

reduction reaction 
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Further investigation has been focused on the role of the substrate and its surface 

orientation. Among many oxides, zinc oxide with its wurtzitic crystal structure has been chosen 

as an industrial catalyst because of its effective methanol synthesis at low temperature and 

pressure. Klier suggested that the basal (0001) ZnO planes tend to accumulate more of the solute 

copper atoms than the prism (101-0) planes (Klier, 1982). Moreover, copper solute sites on the 

zinc oxide surface are the active site for carbon monoxide adsorption. It was demonstrated by 

Ohya et al. that the  Faradaic efficiencies of methane and ethylene were much higher in copper 

oxide/zinc particle-press electrode than in metallic copper electrode (Ohya et al., 2009). 

Maximum efficiencies were achieved from the electrode consisting of Cu2O/Zn. Therefore, ZnO 

does more than just provide a surface for the copper. It probably helps stabilize Cu
+
 atoms or 

promotes Cu
2+

 to behave like Cu
+
.  In the hydrogenation case, ZnO has shown its significant role 

as a support for the copper-zinc catalyst not only by stabilizing the Cu
+ 

species but also forming 

a copper-zinc active site and removing impurities which can deactivate the catalyst in the long 

run. Similar effects are believed to take place in the electrochemical reduction case.  

The ideal composition of copper/zinc oxide for effective methanol production is still not 

clear. Klier has done several experiments on catalytic hydrogenation of carbon monoxide and 

carbon dioxide by varying the copper/zinc oxide composition from 0/100 to 100/0 (Klier, 1982). 

Of those compositions, the 67/33 Cu/ZnO on the (0001) basal ZnO planes and the 30/70 Cu/ZnO 

on the (101-0) prism ZnO planes demonstrated an effective irreversible adsorption of carbon 

monoxide and achieved the highest activity among the catalysts studied. On the other hand, 

Wayne Goodman’s group has investigated the carbon monoxide oxidation over Au/TiO2 

prepared from metal-organic gold complexes (Yan et al., 2006). Even though gold has been 

known to be an inefficient catalyst, a monolayer of gold on an oxide surface led to strong 
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performance of carbon monoxide oxidation. The oxygen in the oxide may utilize some of the 

electrons from gold and change its chemistry to make it behave like an active catalyst. As a 

result, whether the copper physical state should be a monolayer, bilayer, atom, bulk or cluster 

and how the oxide takes role in the reaction mechanism are still under investigation. 

Because of all the advantages methanol offers: a convenient and safe means of storing 

energy, excellent fuels for combustion engines, electricity generator, intermediate substances for 

a diverse array of chemical products and materials, methanol formation has become a very 

attractive research route. In particular, methanol conversion from carbon dioxide can 

simultaneously solve the energy and environmental crisis by recycling carbon dioxide to fuels. 

Catalytic hydrogenation with hydrogen, photoelectrochemical reduction and electrochemical 

reduction in an aqueous solution are the most common pathways to convert carbon dioxide into 

methanol. The goal is to maximize methanol yield and efficiency with minimal energy input. The 

most promising approach is to convert carbon dioxide electrochemically, which shows higher 

production rate and conversion at mild reaction conditions. However, methanol is preferred in 

the photoelectrochemical reduction and hydrogenation to the electrochemical reaction as seen in 

previous papers. Therefore, an optimal electrocatalyst needs to be designed which must have 

high selectivity toward methanol instead of other hydrocarbons such as methane, and ethylene. 

The material properties and catalyst behavior such as the active sites, the geometries, the 

compositions, the substrate effects as well as the electron transfer step mechanism have to be 

thoroughly understood. A cycle of learning should be developed to incorporate computational 

work with synthesis, and characterization work. Once computational work is done, the results 

can be compared to experimental work to develop theoretical models. Synthesis will well design 

the catalysts, and with the help of characterization, the results can be analyzed, evaluated and 
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improved. Even though the effort to put everything together is still tremendous and requires 

substantial time commitment, with human intelligence, electrochemical reduction of carbon 

dioxide at industrial scale will no longer be an unrealistic dream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

CHAPTER 3. REDUCTION OF CO2 AT COPPER OXIDE SURFACES
* 

3.1 Introduction 

As described by Hori, electrochemical product selectivity and efficiency of CO2 

reduction reactions are highly dependent on the electrocatalysts and operating conditions (Hori, 

2008). Direct CO2 to CH3OH electrochemical reduction reactions in aqueous electrolytes were 

first reported by Frese et al. using III-V semiconductor electrodes (GaAs and InP); however, 

maximum current densities were lower than 1 mA cm
-2 

(Canfield et al., 1983).  Similar works 

have also demonstrated CH3OH as a direct product of electrochemical CO2 reduction reactions 

on Mo (Summers et al., 1986), and several types of Ru electrodes (Frese et al., 1985; Bandi, 

1990; Popic et al., 1997; Spataru et al., 2003; Qu et al., 2005) at current densities less than 2 mA 

cm
-2

 with Faradaic efficiencies
 
up to 60%.  At present, the greatest reported current densities and 

Faradaic efficiencies towards CH3OH production are associated with oxidized Cu electrodes 

with current densities up to 33 mA cm
-2 

and Faradaic efficiencies greater than 100% (Frese, 

1991).  It is important to note Faradaic efficiencies are based on a six-electron reduction reaction 

and efficiencies greater than unity indicate electrochemical-chemical (EC or CE) mechanisms 

(Frese, 1991; Gattrell et al., 2006; Hori, 2008).  

Although the oxidation states and electrode stability were not explicitly considered in 

previous electrocatalytic reduction studies, copper oxide catalysts are known to favor CH3OH in 

both photoelectrochemical and hydrogenation systems. Photoelectrochemical CO2 reduction 

reactions are typically performed on Cu-loaded titania surfaces; however, quantum efficiencies 

for CO2 reduction under UV or solar radiation conditions are typically very low (Tseng et al., 

2002; Wu et al., 2005). As with Cu-based electrodes, CH3OH formation at photoelectrodes is 

associated with oxidized Cu species, particularly Cu/Cu(I) interfaces (Nakatsuji et al., 2000; 

*
Reprinted by permission of ―Electrochemical Reduction of CO2 to Methanol at Copper Oxide Surfaces‖ 
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Slamet et al., 2009). Likewise, several works suggest copper oxides, Cu cations, or oxide 

interfaces provide active reduction sites and ZnO stabilizes oxidized Cu in hydrogenation 

reactions (Fujitani et al., 2000; Wu et al., 2001; Yang et al., 2010). In this work, we examine the 

surface chemistry and CH3OH formation behavior of several electrocatalysts with Cu(I) surface 

sites and consider the possible pathways for the direct electrochemical reduction of CO2 to 

CH3OH.  

3.2 Experimental 

3.2.1 Fabrication of Electrodes 

Electrodes for CO2 reduction were fabricated via oxidization of Cu foils (99.99%, ESPI 

Metals) or thin film electrodeposition.  Air-oxidized electrodes were prepared by first cleaning 

the foil in 0.1 M hydrochloric acid (HCl) (36.5-38.0%, Sigma-Aldrich) for 20 seconds followed 

by oxidation in an air furnace at 403 K for 17 hours. Anodized electrodes were created by 

electrochemically oxidizing Cu foil in 0.5 M potassium bicarbonate (KHCO3) (99.7%, Sigma-

Aldrich) at a constant potential of 1.25 V (SCE) for 3 minutes. Cuprous oxide thin films (Cu2O) 

were electrodeposited on stainless steel substrates at –0.555 V (SCE) and 333 K for 30 minutes 

in a lactate solution including 0.4 M copper sulfate (CuSO4) (> 99%, Sigma-Aldrich) and 3 M 

lactic acid (Sigma-Aldrich) at pH  9.0 with Cu foil as the anode (Golden et al., 1996; 

Mahalingam et al., 2002). All electrodes were rinsed with deionized water and dried under N2 

before use as cathodes.  An Ag/AgCl electrode saturated with NaCl was selected as the reference 

electrode along with a Pt wire as the counter electrode. A Princeton Applied Research Model 

263A potentiostat was used in all electrochemical experiments. 

3.2.2 Electrochemical Reduction Reaction and Electrode Characterization 

 The CO2 reduction experiments were performed in a typical three - electrode cell (30 mL  
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volume) at potentials ranging from –1.0 V to –1.9 V (SCE). Typical cathode areas ranged from 

1.0 to 2.0 cm
2
.   An aqueous electrolyte (0.5 M KHCO3) was saturated with ultrapure CO2 

(99.9999%, Airgas, USA) by bubbling for 30 minutes (298 K, pH 7.6). Faradaic efficiencies 

were calculated assuming six electrons are required per CH3OH molecule. Liquid phase samples 

were taken from the sealed reactor via a syringe septum and reaction products were analyzed by 

Gas Chromatography-Flame Ionization Detector (GC-FID) (Agilent, GC5890). Electrolytes were 

purified prior to the reaction by pre-electrolysis at 0.025 mA cm
-2

 for 24 hours with Pt wires as 

both cathode and anode (Hori et al., 2005). Before pre-electrolysis, Zn
2+ 

concentrations were 

approximately 0.2 ppm and Fe
2+ 

concentrations were less than 0.02 ppm as determined by 

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). After pre-electrolysis, ion 

contamination levels were below detectable limits (0.02 ppm).   

The electrochemical behavior of copper oxide electrodes were evaluated using cyclic 

voltammetry at a scan rate of 10 mV s
-1

 in the same CO2 saturated 0.5 M KHCO3 electrolyte used 

in reduction studies. Microstructure and morphology were analyzed using Hitachi S-3600N 

Variable Pressure Scanning Electron Microscope (VP-SEM). Near-Edge X-ray absorption fine 

structure (NEXAFS) measurements were performed at the LSU Center for Advanced 

Microstructures and Devices (CAMD) synchrotron’s varied-line-space plane-grating-

monochromator (VLSPGM) beamline. The photon energy scale was calibrated with Cu standard 

samples (CuO, Cu and Cu2O). The incident beam intensity was concurrently monitored by an Au 

mesh placed in the incident beam before sample. The measured sample spectrum I0 (total 

electron yield mode) was normalized by the total electron yield of the Au mesh. Reproducibility 

of the spectra was carefully monitored and verified by multiple scanning (typically four times). 

NEXAFS spectra were acquired at room temperature at both the O K-edge and the Cu L-edge 
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regions. Auger electron spectra were obtained using an Ultra-high Vacuum X-ray photoelectron 

spectroscopy (UHV XPS), a Perkin-Elmer PHI 5100 system using Al Kα X-ray source, at the 

Major Analytical Instrumentation Center (MAIC) at University of Florida including sputter 

depth profiling.  Crystal orientations of copper oxides were analyzed by X-ray Diffraction 

(XRD) using a Cr-Kα (λ = 2.291 Å) source at a scanning rate of 3˚ min
-1

. 

3.3 Results  

3.3.1 Electrochemical Reduction Reaction 

 

Figure 3.1. CH3OH formation rate versus potential of ▼, air-oxidized Cu; ○, anodized Cu; ●, 

electrodeposited cuprous oxide film. 

 

As shown in Figure 3.1, CH3OH formation rates at electrodeposited cuprous oxide 

electrodes are quite high ranging from 10 to 43 µmol cm
-2 

hr
-1

; yields from anodized Cu 

electrodes ranged from 0.9 to 1.5 µmol cm
-2

 hr
-1

; and yields from air-oxidized Cu electrodes 

ranged from 0.08 to 0.9 µmol cm
-2

 hr
-1

 (all based on geometric electrode areas). Formation rates 

typically increase with potential from –1.1 V (SCE) and reach a maxima near -1.55 V (SCE), 

then decrease dramatically at potentials more cathodic than -1.55 V (SCE) accompanied with 
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significant hydrogen evolution. Figure 3.2 shows electrodeposited cuprous oxide electrodes 

allow significantly higher Faradaic effeciencies relative to anodized Cu and air-oxidized Cu 

electrodes.  The greatest Faradaic efficiency (38%) was also observed using electrodeposited 

cuprous oxide electrodes at -1.1 V (SCE).   No liquid phase products other than CH3OH were 

detected and gas phase analysis showed predominantly H2 and trace amounts of CO. 

 

Figure 3.2. Faradaic efficiencies versus potential of ▼, air-oxidized Cu; ○, anodized Cu; ●, 

electrodeposited cuprous oxide film. 

Initial experiments also showed product distribution is dynamic at all oxidized Cu 

electrodes; CH3OH formation rates tend to diminish at longer reaction times (>30 minutes) and 

are accompanied with CH4 generation. As described by Hori, CH4 is the primary reduction 

product at Cu electrodes which suggests these oxides are reduced during the reaction. In this 

case, a potential of -1.5V (SCE) was used with a batch reaction time of 10 minutes to maximize 

product detectability without significant loss in activity.  While the primary loss of activity may 

be associated with reduction of the active copper oxides, losses may also be affectd by 

contamination from the impurities in the electrolyte or CH3OH oxidation at counter electrode 

(Hori, 2008). 
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3.3.2 Scanning Electron Microscope (SEM) 

In efforts to understand the dynamic reaction behavior at copper oxide electrodes, we 

examined the surface morphology, composition and structure of the electrodes before and after 

10 minute reduction reactions.  Figure 3.3 shows SEM images of the electrodes before and after 

the 10 minute CO2 reduction reaction at –1.5 V (SCE). Dispersed crystallites approximately 1 

µm in size with 2 µm spacing are seen on the air-oxidized Cu electrode in Figure 3.3(a). The 

microcrystals are absent after the 10 minute reaction at –1.5 V (SCE)  as shown in Figure 3.3(b).  

As seen in Figure 3.3(c), anodized Cu electrodes show a porous layer (approximately 200 nm 

thick) with copper oxide nodules approximately 2 µm in diameter before the reaction and smaller 

nodules after the reaction as seen in Figure 3.3(d).  Figure 3.3(e) reveals electrodeposited 

cuprous oxide crystals with well-defined four-sided pyramid geometry with a strong (100) 

orientation; crystal dimensions are approximately 2 µm on edge and the film is approximately 2 

µm thick.  As with the anodized electrode, average crystal dimensions are reduced to less than 1 

µm after the reaction as shown in Figure 3.3(f).  

 

Figure 3.3. SEM images of (a), air-oxidized Cu before reaction; (b), after reaction; (c), anodized 

Cu before reaction; (d), after reaction; (e), electrodeposited cuprous oxide film before reaction; 

(f), after reaction. 
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CH3OH yields from the cuprous oxide thin film electrodes are remarkable, at least one order of 

magnitude greater than the anodized electrode and two orders of magnitude greater than the air-

oxidized electrode based on apparent (geometric) electrode area. Actual areas of the electrodes 

relative to the apparent areas were estimated as 1.3x greater for the air-oxidized sample, 3.0x 

greater for the anodized sample and 1.7x greater for the cuprous oxide film based on SEM 

analysis.  If yields are normalized to actual (estimated) surface areas, the anodized Cu yield 

results are comparable to the air-oxidized electrode while yields from the cuprous oxide film 

remain approximately two orders of magnitude greater than either the air-oxidized or anodized 

electrodes.  The dramatic increase in CH3OH yields associated with the cuprous oxide thin film 

suggests Cu(I) species may play a key role in reducing CO2 to CH3OH. 

3.3.3 X-Ray Diffraction (XRD) 

 

Figure 3.4. XRD spectra of (a), air-oxidized Cu; (b), anodized Cu; (c), electrodeposited cuprous 

oxide film before reaction. 
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An XRD pattern from the electrodeposited cuprous oxide film prior to the reduction 

reaction is presented in Figure 3.4. A strong signal at 2θ = 42.2˚ associated with Cu2O (200) 

orientation.  This is consistent with Golden et al. and Wang et al. work using similar 

electrodeposition techniques (Golden et al., 1996; Mahalingam et al., 2002). XRD patterns of air-

oxidized Cu and anodized Cu samples show spectra typical of polycrystalline Cu substrates 

(Chow et al., 1997).  

3.3.4 Near Edge X-Ray Absorption Fine Structure (NEXAFS) 

 

Figure 3.5. NEXAFS spectra of Cu L-edge regions of (a), air-oxidized Cu before reaction; (b), 

after reaction; (c) anodized Cu before reaction; (d), after reaction; (e), electrodeposited cuprous 

oxide film before reaction; (f), after reaction. 
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Figure 3.6. NEXAFS spectra of O K-edge regions of (a), air-oxidized Cu before reaction; (b), 

after reaction; (c) anodized Cu before reaction; (d), after reaction; (e), electrodeposited cuprous 

oxide film before reaction; (f), after reaction. 

Cu L-edge NEXAFS spectra of the air-oxidized, the anodized, and electrodeposited 

samples, before and after the 10 minute reaction at -1.5V (SCE) are shown in Figure 3.5, along 

with three standards: Cu(0), Cu(I), and Cu(II). The CuO standard is characterized by two 

relatively intense features at 930.5 eV and 950.5 eV. They arise from the dipole transitions of the 

Cu 2p3/2 (LIII) and Cu 2p1/2 (LII) into the empty d-states. The smaller peak at ~938 eV is a shake-

up (multielectron excitation) satellite. Similarly, the Cu and Cu2O standards show intense 

features at ~933 eV and ~953.5 eV, indicating Cu(0) and/or Cu(I) with differing satellite 
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structure. As seen in Figure 5, the air-oxidized Cu and electrodeposited cuprous oxide film 

shows a Cu(I) peak at 933.3 eV, with a similar satellite structure as compared with the Cu2O 

standard. This peak decreases intensity after the CO2 reduction reaction. Oxide reduction is also 

confirmed by the O-K edge of air-oxidized Cu and electrodeposited cuprous oxide films with a 

peak at 533.5 eV and similar satellite structure as Cu2O standard as shown in Figure 3.6. As for 

anodized Cu, the LIII peak at 930.3 eV attenuates upon reaction and the Cu(I) at 933.3 eV 

decreases as metallic Cu(0) appears at 933 eV. The O-K edge of the anodized Cu shows a small 

shoulder at ~530.8 eV and extends to a peak at ~534.5 eV suggesting the anodized Cu electrode 

surface includes a mixture of CuO, Cu2O and Cu4O3 (Schedel-Niedrig et al., 2000). 

3.3.5 X-Ray Photoelectron Spectroscopy (Auger) 

Auger spectra are shown in Figure 3.7 before and after the 10 minute reduction reaction 

at –1.5 V (SCE).  The electrodes were sputter cleaned using Ar
+
 to remove organic 

contamination prior to analysis.   Results for the air-oxidized electrode show a Cu(I) peak at 

917.5 eV prior to the reduction reaction and a well defined Cu(0) peak at 919 eV after the 

reaction. Likewise, the anodized Cu sample shows a broad peak at 918 eV before the reaction 

and a Cu(0) peak at 919 eV after the reaction. The electrodeposited cuprous oxide film shows a 

dominant Cu(I) peak at 917.5 eV before the reaction with a small Cu(0) shoulder at 919 eV. 

Auger spectra of the electrodeposited cuprous oxide sample after the reaction was inconclusive 

due to delamination from the support. 

Qualitatively, CH3OH yield trends follow Cu(I) intensities prior to the reaction as 

determined by NEXAFS and Auger analysis. Electrodeposited cuprous oxide films showed 

CH3OH formation rates up to 43 µmol cm
-2

 hr
-1

 and Faradaic efficiencies up to 38%, while air-

oxidized and anodized electrodes showed rates at least one order of magnitude lower. Both 
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Auger and NEXAFS data indicate all oxides electrodes are partially reduced during the 10 

minute reaction at –1.5 V (SCE), which is consistent with the observation of decreased CH3OH 

yields and the simultaneous increase in CH4 production in longer experiments (>30 minutes). 

The results suggest CH3OH production may be primarily associated with Cu(I) surface species 

which appear to be reduced in a simultaneous process. 

 

Figure 3.7. Auger spectra (a), air-oxidized Cu before reaction, and (b), after reaction; (c) 

anodized Cu before reaction, and (d), after reaction; (e), electrodeposited cuprous oxide film 

before reaction. 

3.3.6 Cyclic Voltammetry 

Cyclic voltammetry shows oxide reduction behavior depends on the method of 

preparation.  As seen in Figure 7, the anodized Cu electrode shows a significant increase in 
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cathodic current at near –0.7 V (SCE) which diminishes on the reverse scan. Several large 

reduction peaks from –1.0 V to –2.0 V (SCE) overlapping in the anodized Cu scan suggest 

copper oxides created in this method are relatively easy to reduce at potentials positive of CO2 

reduction. Voltammetric behavior of the air-oxidized Cu and electrodeposited cuprous oxide film 

shows relatively little hysteresis with an onset reduction potential near –1.2 V (SCE) and –1.0 V 

(SCE) respectively.  This behavior indicates the air-oxidized and cuprous oxide film may be 

relatively more stable in these electrolytes.   Further, while both cuprous and cupric oxides are p-

type semiconductors (Eg = 2.1, 1.2 eV respectively) voltammetric analysis did not show any 

measurable photocurrents under UV or laboratory lighting. The lack of any appreciable 

photocurrents suggests surfaces are non-homogeneous (including metallic Cu) or include high 

levels of defects which cause degenerate/metallic behavior. 

 

Figure 3.8. Cyclic voltammetry of – –, air-oxidized Cu; –∙–∙–, anodized Cu; ─, electrodeposited 

cuprous oxide film. 
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3.4 Discussions 

Cu(I) active sites have been proposed in several electrochemical, photoelectrochemical 

and chemical routes (Chinchen et al., 1986; Chinchen et al., 1987; Frese, 1991; Joo et al., 1999; 

Nakatsuji et al., 2000; Wu et al., 2001; Tseng et al., 2002; Liu et al., 2003; Saito et al., 2004; Wu 

et al., 2005; Slamet et al., 2009). Frese suggests the oxides at the surfaces of GaAs, InP, and Mo 

in aqueous solutions act in a similar fashion as the Cu(I) species allowing improved CO 

adsorption and may also affect selectivity to CH3OH. Based on the voltage independence of 

CH3OH rates and Faradaic efficiencies greater than unity, the author also suggests an initial 

chemical (nonfaradaic) step involving the formation of adsorbed CO and Oˉ species. Cu(I) sites 

were considered to allow the valance band electrons to participate in CO adsorption and formyl 

(HCO) species are presumably formed by the dissociation of water followed by hydrogenation 

via adsorbed hydrogen.  Unfortunately, the nature of the selectivity to CH3OH rather than CH4 at 

copper oxides was not explicitly considered and hydrogen dissociation at metallic Cu is known 

to be relatively slow (Sheffer et al., 1989; Szanyi et al., 1991; Yang et al., 2010).  

Although there is no general consensus on the mechanism for hydrogenation at Cu/ZnO 

catalysts, Cu(I) sites are thought to promote catalytic activity and selectivity toward CH3OH 

(Herman et al., 1979; Chinchen et al., 1986; Chinchen et al., 1987; Sheffer et al., 1989; Szanyi et 

al., 1991; Bailey et al., 1995; Sahibzada et al., 1998; Liu et al., 2003; Nakamura et al., 2003; 

Ozawa et al., 2007).  While Cu-Zn alloys are considered active sites for CO2 reduction,  Cu(I) 

sites are considered key species for CO adsorption in hydrogenation reactions (Herman et al., 

1979).
 
Further, Cu(I) sites are believed to stabilize reaction intermediates such as carbonates 

(CO3
2
ˉ-), formates (HCOOˉ-) and methoxy adsorbates (H3COˉ-) due to their higher heats of 

adsorption (Bailey et al., 1995).  Further, Cu / ZnO hydrogenation catalysts rely on the addition 
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of oxidizers (H2O, O2, and CO2) to retain Cu(I) sites and promote CO adsorption by decreasing 

the reduction potential of the CO/H2 feed (Herman et al., 1979; Sahibzada et al., 1998; 

Nakamura et al., 2003; Ozawa et al., 2007).
 
 Sheffer et al. showed alkali metals help stabilize 

Cu(I) active sites and increase Cu(I) concentrations which significantly improve CH3OH yield 

(Sheffer et al., 1989). Similarly, Cu(I) species are considered as the active sites in CH3OH 

oxidation reactions at copper oxide surfaces. Oxidation studies at single crystal Cu(I) shows 

H3CO adsorbed at (111) surfaces (with Cu(I) atoms at the second atomic layer) allows 

coordinately unsaturated oxygen anions to act as hydrogen abstraction sites for dehydrogenation 

(Cox et al., 1990).  In this case, it is possible the unsaturated oxygen atoms at the (111) surfaces 

of the cuprous oxide film (Figure 3.3) act as a hydrogen donors sites in the reduction reaction. 

 

Figure 3.9. Hydrogenation of methoxy adsorbates at Cu2O (111) surfaces. 

A recent theoretical report by Peterson et al. describes a pathway for the electrochemical 

reduction of CO2 to CH4 at Cu electrodes based on Density Functional Theory (DFT) and 

Computational Hydrogen Electrode (CHE) models applied to Hori’s experimental data (Peterson 

et al., 2010). In that work, the authors indicate that the carbon atom of CO adsorbates may be 

hydrogenated via proton transfer to form HCO at -0.74 V (RHE). Hydrogenation of an adsorbed 

CO species is proposed to occur directly via proton addition from solution since their availability 

is significantly greater than hydrogenation from adsorbed hydrogen. Accordingly, once the HCO 

species is formed, the carbon atom continues proton and electron transfer reactions to form 
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H3CO adsorbates. Following this pathway, the last proton transfer to the H3CO species (on Cu 

(211) surfaces) favors CH4 formation by 0.27 eV.  In the case of cuprous oxide electrodes as 

described here, the reduction reaction may benefit from both improved intermediate stability and 

the ability of H
+
 species coordinated with surface bound oxygen. This surface would allow 

hydrogen addition to the oxygen atom of the H3CO adsorbate rather than the carbon atom as 

shown in Figure 3.9. 

While these results show copper oxides are reduced along with CO2, it is interesting to 

consider Cu(I) stability relative to photoelectrochemical or hydrogenation conditions.   In 

contrast with CH3OH generation via electrochemical reduction processes where oxidation and 

reduction reactions are spatially separated, photoelectrochemical and hydrogenation reactions 

may benefit from relatively stable Cu(I) species. In fact, the photoelectrochemical process with 

Cu-loaded titania may follow a similar mechanism as the electrochemical case; however, there is 

no net charge difference at the electrode and the titania may help maintain Cu in the Cu(I) state.  

Likewise, the water and zinc oxides used in hydrogenation reactions may help promote stable 

Cu(I) species and reaction intermediates while allowing hydrogenation of oxygen atoms by 

adsorbed hydrogen as described in the model by Peterson. 

3.5 Conclusions 

This chapter successfully proves the direct relationship between methanol formation rate 

and Cu(I) intensity on the catalysts’ surface. CH3OH formation rates increase with increasing 

Cu(I) intensity as determined by NEXAFS and Auger analysis.   Electrodeposited cuprous films 

with a strong crystal orientation in the (100) orientation showed the greatest CH3OH formation 

rate (up to 43 µmol cm
-2

 hr
-1

) and Faradaic efficiencies up to 38%. Faradaic efficiencies diminish 

significantly at potentials more cathodic of –1.5 V (SCE) due to the hydrogen evolution reaction.  
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While Cu electrodes yield CH4 as the primary product, Cu(I) species may show 

selectivity toward CH3OH formation by enabling hydrogenation of oxygen atoms from H3CO 

adsorbates. All SEM, NEXAFS, and Auger data suggests CH3OH yields are dynamic and copper 

oxide (Cu2O, Cu4O3 and CuO) are reduced to metallic Cu in a simultaneous process at potential 

required for CO2 reduction. These results indicate the loss in selectivity towards CH3OH is 

associated with reduction of copper oxide species rather than contamination. Chapter 4 will 

continue this study by introducing a new designed catalyst (Cu, CuxO supported on ZnO 

substrates) with the hope of forming a more stable electrocatalyst for the direct CO2 reduction. 
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CHAPTER 4. REDUCTION OF CO2 AT CU/ZNO AND CUXO/ZNO SURFACES 

4.1 Introduction 

As Cu(I) species have demonstrated greater activity and selectivity toward CH3OH 

formation as shown in Chapter 3, copper oxides are reduced in a simultaneous process during the 

CO2 reduction reaction. A more stable catalyst in terms of activity, selectivity, and stability is 

essential. Since the active sites appear to be associated with Cu(I), a first approach would focus 

on stabilizing copper oxide surface sites. While ZnO and TiO2 have been demonstrated as 

essential support for Cu catalyst in both hydrogenation and photoelectrochemical reduction 

process for methanol formation (Tseng et al., 2002; Liu et al., 2003; Wu et al., 2005), these 

oxides have not been used as electrocatalysts in purely electrochemical reduction process. Since 

only specific sites on ZnO faces are active in methanol formation (Wilmer et al., 2003), and CO2 

electrochemical reduction is a highly surface sensitive reaction, using polycrystalline ZnO 

samples with mixed crystal planes would be difficult to fully understand the catalytic active sites. 

In this work, we examine the surface chemistry and CO2 reduction reaction behavior of Cu and 

CuxO nanoclusters supported on ZnO (10-10) single crystals.  

 

Figure 4.1. The (a), top; and (b), bottom views of ZnO (10-10) surface (reprinted from (Dulub et 

al., 2002)) 
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The ZnO (10-10) surface is the most stable face with the lowest surface cleavage energies 

(2.32 J m
-2

) compared to others ((0001)-Zn: 4 J m
-2

, (000-1)-O: 4 J m
-2

, (11-20): 4.1 J m
-2

) 

(Wander et al., 2001).  This surface does not exhibit any reconstruction and is autocompensated 

since it consists of equal number of Zn and O atoms per unit area and the same number of Zn and 

O bonds are broken when the surface is formed. The ZnO (10-10) surface has a perfect flat 

structure with rectangular terraces separated by single step edges along the (1-210) and (0001) 

directions as shown in Figure 4.1 (Dulub et al., 2002). With such a stable and well-defined 

structure, the ZnO (10-10) face may provide an electrostatically stable support for the Cu(I) 

surface in the CO2 reduction reaction. Besides, using a single crystal platform allows improved 

collaboration between simulation, materials characterization, and catalyst evaluation. Therefore, 

a better understanding of how surface chemistry affects catalyst performance at an atomic level 

and possible reaction mechanism can be established to achieve the ultimate goal: 

―electrocatalysts by design‖ for CO2 reduction. 

4.2 Experimental 

4.2.1 Fabrication of Electrodes  

Electrodes for CO2 reduction are fabricated via non polar ZnO (10-10) single crystals 

(MTI Corporation). After cleaning in a sequence of de-ionized H2O, acetone, methanol, de-

ionized H2O, ZnO substrates are ready to be transferred into an ultra high vacuum (UHV) 

chamber for the sputter – anneal and copper deposition processes. The chamber’s pressure is 

kept below 1E-9 Torr. For the sputtering process, the chamber is filled with Ar
+
 as inert gas up to 

5E-5 Torr and surface atoms are bombarded with ionized Ar
+
. Typical beam voltage and 

emission current for the sputtering process are 1.0 kV and 15-20 mA, respectively. The samples 

are heat treated by annealing up to 700 ˚C and 5E-9 Torr for surface recovery from the sputtering 
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process. In this chamber, each ZnO crystal goes through at least five sputter – anneal cycles to 

eliminate any adsorbed substances, as well as to obtain a smooth surface. Auger Electron 

Spectroscopy (AES) or low-energy electron diffraction (LEED) is used to analyze the surface 

cleanliness by bombardment with a collimated beam of low energy electrons (20-200eV), and 

diffracted electrons were observed as spots on a fluorescent screen. After obtaining a clean, 

purified ZnO single crystal, the sample’s surface is evaporated with copper (Alfa Ltd) via an E-

beam evaporator. In this physical vapor deposition process, copper is bombarded with an 

electron beam from a charged tungsten filament (20 – 40 V) to precipitate onto the ZnO 

substrates.  Then, the samples are either annealed up to 150 → 200 ˚C to form Cu clusters 

(Cu/ZnO) or exposed to O2 at 400 → 450 ˚C and 1E-7 Torr to form copper oxide nanoclusters on 

ZnO (CuxO/ZnO).    

4.2.2 Electrochemical Reduction Reactions and Electrode Characterization 

The CO2 reduction experiments are performed in a typical three electrode cell (30 mL 

volume) at potentials of –1.4 V, –1.5 V, –1.6 V (Ag/AgCl) for 10 to 35 minutes. Typical cathode 

areas range from 0.4 to 0.8 cm
2
. An aqueous electrolyte (0.5 M KHCO3) is saturated with 

ultrapure CO2 (99.9999%, Airgas, USA) by bubbling for 30 minutes (298 K, pH 7.6). An 

Ag/AgCl electrode saturated with NaCl is selected as the reference electrode along with a Pt wire 

as the counter electrode. A Princeton Applied Research Model 263A potentiostat is used in all 

electrochemical experiments. Liquid and gas phase samples are taken from the sealed reactor via 

a syringe septum, and reaction products are analyzed by Gas Chromatography-Flame Ionization 

and Thermal Conductivity Detector (GC-FID&TCD) (Shimadzu, GC 2014).  

A UHV Scanning Tunneling Microscope (STM) is used to image electrodes’ surfaces at 

the atomic level. The electrodes’ microstructure and morphology are analyzed using an Agilent 
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5500 Atomic Force Microscopy (AFM) equipped with a Picoscan software. Non-conductive 

silicon nitride probes (Model: MSCT-AUNM) (Veeco Probes) with spring constant of 0.5 N m
-1

 

are used for imaging experiments. The tip speed for approaching to or withdrawing from the 

surface is 10 nm s
-1

, and the scan rate is 3 nm s
-1

. A Nicolet 6700 In-situ Fourier Transform 

Infrared Spectroscopy (FTIR) is used to identify possible intermediates and predict mechanism 

model. The IR experiment is conducted with  64 scans, 4 cm
-1

 resolution, and a MCTA detector. 

A full integration OMNIC software is used for analysis. A reactor is specifically designed to be 

used in this in-situ FTIR experiment with a CaF2 IR transparent window between the electrode 

surface and the beam contacting area. This window allows IR beam to pass through a thin layer 

of electrolyte to reach the electrode’s surface and be reflected with an incidence angle of 65˚.  

4.3 Results 

4.3.1 Scanning Tunneling Microscope (STM)  

 

Figure 4.2. (a), STM image of ZnO (10-10); (b), STM depth profile of ZnO (10-10) (Zhang et al. 

to be published) . 

The geometric model and electronic structure of Cu based ZnO (10-10) is studied with 

Scanning Tunneling Microscope (STM). The STM images reveal a smooth and well defined 

structure of the pure non polar ZnO(10-10) substrate as seen in Figure 4.2(a). The defect free 

(a) (b) 
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surface allows high quality copper film growth and represents a good model system for surface 

chemistry experiment. Figure 4.2(b) shows a depth profile of the ZnO substrate with three layers 

approximately 200 pm in height per layer creating numerous step edges on the surface. These 

step edges may provide active sites for copper and copper oxide nanoclusters deposition and 

increase Cu-O-Zn interactions.  

4.3.2 Electrochemical Reduction Reaction 

Initial CO2 electrochemical reduction experiments at Cu/ZnO and CuxO/ZnO electrodes 

show CH3OH formation rates ranging from 1.11 µmol cm
-2

 hr
-1 

to 86.7 µmol cm
-2

 hr
-1

. For each 

sample, CO2 reduction reactions are attempted at least two times and repeatability for CH3OH 

yields is difficult. Table 4.1 lists reaction conditions and results for four Cu/ZnO and CuxO/ZnO 

samples which yield CH3OH. The experimental potential ranges from –1.4 V to –1.6 V 

(Ag/AgCl), and reaction time ranges from 10 to 35 minutes. The greatest CH3OH yield (86.7 

µmol cm
-2

 hr
-1

)
 
is obtained from Sample 1, a copper oxide nanoclusters on ZnO single crystal 

sample. This remarkably high CH3OH yield of Sample 1 leads to a Faradaic efficiency greater 

than 100 % suggesting both electrochemical and chemical steps are involved in the CH3OH 

production. No liquid phase products other than CH3OH are detected, and gas phase analysis 

shows only H2 with formation rate at 0.22 µmol cm
-2

 hr
-1

. The four samples are prepared from 

the same method introduced in section 4.2; however, their copper evaporating time and 

annealing temperature are different, which results in different surface structures (Figure 4.3). It is 

observed that as the potential becomes more cathodic to –1.6 V (Ag/AgCl), the electrodes 

change to a darker, smoky black color, which may lead to deactivation, while a potential anodic 

to –1.4 V (Ag/AgCl) have not yet shown any CH3OH activity. Therefore, CH3OH formation may 

only occur in a small window from –1.4 V to –1.6 V (Ag/AgCl).  
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Table 4.1. Experiment parameters and results for CO2 reduction experiments at Cu/ZnO and 

CuxO/ZnO experiments. 

 

Sample 1 

(CuOx/ZnO) 

Sample 2 

(Cu/ZnO) 

Sample 3 

(CuOx/ZnO) 

Sample 4 

(CuOx/ZnO) 

Potential (V vs. Ag/AgCl) –1.4 to –1.5  –1.5 to –1.6 –1.6 –1.5 

Current density (mA cm
-2

) 2.7 1.3 4.6 0.36 

Reaction time (minutes) 10 - 15 10 - 35 35 10 

CH3OH yield (µmol cm
-2

 hr
-1

)* 4.19 - 86.7 1.11 - 15.2 9.64 1.84 

FCH3OH (%) 33.8 - 516 10.0 - 188 40.4 65.7 

H2 yield (µmol cm
-2

 hr
-1

) 0.22 0.29 11.83 NR 

FH2 (%) 0.43 1.20 13.78 NR 

NR: not recorded 

* These are ranges of CH3OH yields observed at Sample 1 – 4. CO2 reduction at each sample is 

performed at least two times and CH3OH yield reproducibility is difficult. 

4.3.3 Atomic Force Microscopy (AFM) 

In order to correlate the surface chemistry of Cu/ZnO and CuxO/ZnO electrodes with 

their dynamic reaction behavior, AFM images are used to examine the surface morphology, and 

structure of each sample after the CO2 reduction reaction (Figure 4.3). Dispersed nanoclusters 

with 50-100 nm diameter and 20 nm in height are observed on Sample 1 as seen in Figure 4.3(a). 

Figure 4.3(b) and 4.3(c) show similar surface morphology of Cu/ZnO and CuxO/ZnO with larger 

clusters: ~500-1000 nm in diameter, except the clusters’s height in Figure 4.3(c) (CuxO/ZnO) are 

taller than those in Figure 4.3(b) (Cu/ZnO): 30 nm versus 15 nm. Figure 4.3(d) reveals islands 

and elongated clusters of copper oxide on ZnO surface with ~2.5 nm in height and 300-800 nm 

in diameter. 
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CH3OH yields from Sample 1 are an order of magnitude greater than Sample 2 and 3, and 

two orders of magnitude greater than Sample 4 based on apparent (geometric) electrode area. 

Unlike others, sample 1 has completely different surface structure with approximately ~20-40 

times smaller clusters than other samples which may increase more ZnO surface exposure and 

Cu-ZnO interfaces. If yields are normalized based on Cu-ZnO interfaces, CH3OH yields can be 

thousands of times higher. CH3OH yields from Sample 2 and Sample 3 are in the same order of 

magnitude even though sample 2 is metallic Cu/ZnO and sample 3 is CuxO/ZnO. Since the 

electrodes are exposed to atmosphere before the CO2 reaction, all sample surfaces are expected 

to be oxidized to some degree. 

 

 

Figure 4.3. AFM images of (a), sample 1 (CuOx/ZnO); (b), sample 2 (Cu/ZnO); (c), sample 3 

(CuxO/ZnO); (d), sample 4 (CuxO/ZnO) after reaction. 

Figure 4.4 compares surface structure and morphology of single crystal ZnO (Figure 

(a) (b) 

(c) (d) 
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Figure 4.4. AFM images of (a), ZnO (10-10); (b), cuprous oxide thin flim; (c), CuOx/ZnO 

electrode 

4.4(a)), cuprous oxide thin film (Figure 4.4(b)), and nanocluster CuxO/ZnO (Figure 4.4(c)) 

surfaces. While ZnO shows no CH3OH activity, CuxO/ZnO shows CH3OH yields up to 86.7 

µmol cm
-2

 hr
-1

 at –1.4 V (Ag/AgCl) indicates the presence of copper oxide and Cu-ZnO interface 

enhances methanol formation in the CO2 reduction reaction. Compared with cuprous oxide thin 

films from Chapter 3, CH3OH yield from nanocluster CuOx/ZnO electrode is much higher (86.7 

µmol cm
-2

 hr
-1

 versus 43 µmol cm
-2

 hr
-1

), noted yields are calculated based on apparent (planar) 

2D surface areas in each case. Although the actual active sites on nanocluster CuOx/ZnO samples 

are still unknown, oxidized Cu nanoclusters always show improvement in CH3OH yield 

compared to metallic Cu/ZnO. Enhancement mechanism may be related to cluster Cu(I) surfaces, 

interfaces,  charge, or stained surfaces. Yields normalized to Cu(I) surfaces or Cu-O-Zn 

interfaces would be significantly higher. Understanding the effects of surface structure and 

morphology on CH3OH yields and the active sites activity in the molecular mechanism will 

allow us to form a basis for catalyst by design. 

4.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 

In-situ reaction is performed to monitor the reduction reaction behavior over time and 

detect intermediates via a Nicolet 6700 FTIR spectroscopy. The reaction is performed using 

(a) (b) (c) 
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CuxO nanoclusters on ZnO (10-10) electrode at -1.5 V vs. Ag/AgCl for 10 minutes. Figure 4.5 

reveals the AFM image of the CuxO/ZnO electrode before reaction with larger clusters (~100 nm 

in height, and ~200-600 nm in diameter) compared to the four samples shown in section 4.3.3. 

In-situ FTIR spectra for the CO2 reduction at 1.22 and 9.77 reaction minutes are shown in Figure 

4.6. 

 

Figure 4.5. AFM of CuOx/ZnO sample (Sample 5) 

The background used in this FTIR experiment is a KHCO3 saturated with CO2 solution. 

The peak for adsorption of CO2 on the sample surface at 2350 cm
-1

 which is clearly shown in the 

background fully disappears in the IR spectra. This observation confirms the IR spectra are 

completely subtracted from the background. The intermediate from the first hydrogenation 

(O=C–OH) doesn’t show up in the spectra because its adsorption is similar to that of HCO3‾ 

which is a major species in the electrolyte background. Although the C≡O band is not detected as 

adsorbate, the C=O stretching band is shown at 1750 cm
-1 

(Millar et al., 1995; Fisher et al., 1997; 

Slamet et al., 2009). This C=O stretching band indicates the presence of either formyl (HC=O) or 

formaldehyde (H2C=O) intermediate or both. Since the 1750 cm
-1 

peak has a considerably broad 

shape and the signal is relatively strong, C=O stretching band for both formyl and formaldehyde 

can overlap. 
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Figure 4.6. In-situ FTIR spectra of CO2 reduction at CuxO/ZnO electrode (Sample 5) after (a), 

1.22 reaction minutes; (b), 9.77 reaction minutes. 

The peak observing at 1380 cm
-1 

represents the C–H stretching band for formic acid 

(HCOOH). Similarly, an FTIR study of formic acid adsorption on potassium – promoted 

Cu/SiO2 catalyst show infrared band positions of formic acid adsorbing on K/ SiO2, reduced 

K/Cu/ SiO2 and oxidized K/Cu/ SiO2 
 
surfaces have C–H stretching band positioning at 1376, 

1380, and 1377 cm
-1

, respectively (Millar et al., 1995; Fisher et al., 1997; Slamet et al., 2009). 

While Peterson et al. reports HCOOH is the dead-end product in the electrochemical reduction of 

CO2 to CH4 at Cu surfaces since experiments starting with HCOOH showed no detectable 
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products (Hori et al., 1989), Yang et al. claims the main pathway for methanol synthesis from 

CO2 hydrogenation is via HCOOH intermediate (Peterson et al., 2010; Yang et al., 2010). 

Although it is not clear at this point whether HCOOH would involve in the mechanism for CO2 

electrochemical reduction to methanol at copper oxide surfaces, IR data suggests the presence of 

HCOOH species. 

The C–O stretching band at 1016 cm
-1

 suggests the adsorption of methoxy (H3CO) 

species on the CuxO/ZnO electrode surface. Compared to the C–O stretching band in CH3OH 

(1030 cm
-1

), the C–O stretching band from our electrode shows an 11 cm
-1

 red shift. As seen in 

Figure 4.7, our C–O stretching band exhibits a red shift similar to the behavior of methoxy 

adsorption on Cu (100), Ru (001), Ni (100) and Ni (111) surfaces (Zenobi et al., 1993; Huberty 

et al., 1996; Andersson et al., 2002; de Barros et al., 2003). A larger anharmonic shift for C–O 

dissociation energies in methanol compared to that of methoxy chemisorbed (12.5 cm
-1

 versus 

8.5 cm
-1

) indicates C–O dissociation energy of methanol is higher (Zenobi et al., 1993).  

Likewise, a strong interaction between the O atom of H3CO and electrode surfaces can also 

weaken the C–O bond and increase its wavelength. This information would lead to a lower 

stretching frequency for H3CO adsorbate compared to that of CH3OH. Further, an ab initio 

calculation on Ni (100) surface show the presence of a coadsorbed hydrogen can raise the 

vibrational frequency of the neighboring C–O bond; therefore, the addition hydrogen bond in 

methanol contributes to a higher C–O stretching frequency (Huberty et al., 1996; Yang et al., 

1997). The CH3 stretching band at 3000 cm
-1

 also supports the existence of the H3CO adsorbates. 

The increase of C=O, C–O and CH3 adsorption bands with increasing reaction time confirms the 

CO2 reduction activity toward CH3OH at the CuxO/ZnO surface. While methoxy is predicted as 

the last intermediate for CO2 reduction to CH4 at Cu surface by a computational model, this is 
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the first time methoxy is shown as intermediate for CO2 electrochemical reduction to CH3OH 

from an experimental perspective. Table 4.2 lists known adsorption bands observed in this in-situ 

FTIR assignment. 

 

Figure 4.7. IR spectra for C–O stretching band of — methanol standard, — methoxy 

adsorbed on CuxO/ZnO (our results), --- methoxy adsorbed on Ru (001), --- methoxy 

adsorbed on Cu (100), --- methoxy adsorbed on Ni (100), --- methoxy adsorbed on Ni 

(111) (reproduced from (Zenobi et al., 1993; Huberty et al., 1996; Andersson et al., 2002; de 

Barros et al., 2003)). 

The 3D plot in Figure 4.6 illustrates the IR adsorption peak’s intensities as a function of 

time. All peaks appear after the reaction has proceeded for about 5 minutes and remains 

throughout the 10 minute reaction verifying CO2 reduction activity. Although H3COˉ adsorbate 

is detected in the IR spectra, CH3OH is not detected from the GC since the reaction may be 
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desorption limited. Similar to a photoelectrochemical reduction study at TiO2 surface, CH3OH 

once formed can possibly absorb on the electrode’s surface and cover the active sites (Wu et al., 

2010). This phenomenon may result in high CH3OH concentration on the electrode’s surface, 

while the amount of CH3OH concentration in the bulk electrolyte solution is limited. In addition, 

the surface morphology of Sample 5 as seen in Figure 4.5 shows bulk copper on ZnO, while 

other samples with reported CH3OH yields discussed in the previous section have much smaller 

copper clusters on the surfaces. Likewise, CH3OH formation may center on nanocluster of Cu 

supported on ZnO, and Cu-O-Zn interface may be associated with active sites. 

Table 4.2. FTIR adsorption bands observed in the CO2 reduction reaction at CuxO/ZnO electrode 

Wavenumber (cm
-1

) Assignment References 

2991 CH3 asymmetric stretching (Andersson et al., 2002) 

1750 C=O stretching of HCO or H2CO 

(Millar et al., 1995; 

Williams et al., 2004) 

1490 CH3 asymmetric deformation (Andersson et al., 2002) 

1380 

CH3 symmetric deformation or CH stretching 

for HCOOH 

(Millar et al., 1995; 

Fisher et al., 1997) 

1016 C–O stretching of H3CO (Andersson et al., 2002) 

 

4.3.5 Near Edge X-Ray Absorption Fine Structure (NEXAFS) 

The O K-edge NEXAFS spectra of the CuxO/ZnO electrode before and after the CO2 

reduction reaction is shown in Figure 4.7. The O-K edge for Cu2O and CuO standards are 

characterized by relatively intense features at 533.5 eV and 530.8 eV, respectively. As seen in 

the spectra, Cu(II) peak is not observed on any sample. The peak at ~533.5 eV occur at both 

before and after reaction indicates the presence of Cu(I) nanoclusters on the ZnO surfaces. The 
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sample after reaction has been through several runs at -1.4 V to -1.6 V (Ag/AgCl) for over 2 

hours. Although the Cu(I) peak intensity decrease after reaction, CuxO/ZnO surfaces are still 

considerably more stable than the copper oxide surfaces discussed in Chapter 3. 

 

Figure 4.8. NEXAFS spectra of O-K edge regions of CuxO/ZnO electrode before and after the 

CO2 reduction. 

4.4 Discussion 

Generally, a clean ZnO (10-10) surface is autocompensated which makes it easier to 

predict the step edges’ stability (Diebold et al., 1998). As shown in Figure 4.1, the (10-10) 

surface is relatively flatter and has rectangular terraces separated with step edges along the non 

polar (1-210) and polar (0001) planes. An STM study of Cu deposition on ZnO (10-10) surfaces 

shows Cu clusters preferentially grow three-dimensionally along the (1-210) direction instead of 
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on the terraces or (0001) direction (Dulub et al., 2002). However, on slightly contaminated 

surface with residual gas (CO, CO2, H2O, H2) from the UHV chamber, these 3D Cu clusters can 

be distributed on the entire surface. Numerous researches have reported ZnO–CO bond is much 

weaker than Cu–CO bond and Cu(I) is the active site for CO adsorption and methanol synthesis 

(Waugh, 1992; Harikumar et al., 1998; Casarin et al., 1999).  

Studies have shown transition metals with high pseudocapacity or the ability of weakly 

adsorbed CO2 such as Cu, Zn, Au and Ag would have good electrocatalytic activity towards CO2 

reduction (Bandi et al., 1993). The d-orbitals in these metals may be responsible for a covalent 

bond with CO2 in which the first electron transfer may serve as the rate determining step to form 

a CO
2
ˉ• anion radical. Cu is unique among others with the ability to break the C–O bond and 

proceed further though the hydrogen addition process. While a metal such as Cu may act as a 

Lewis base adsorbing hydrogen to form C-H bond for CH4 and C2H4 formation, an oxide may 

behave as a Lewis acid attracting hydroxide for CH3OH formation. Adsorption of OH groups on 

ZnO has demonstrated significant roles throughout methanol synthesis process from synthetic 

gas (Kurtz et al., 2005). In particular, formyl adsorbate may attract the proton of the neighboring 

OH group to become formaldehyde intermediate followed by hydrogen addition to form 

methoxy species. The final step for methanol formation would be the proton transfer from 

another neighboring OH group to methoxy adsorbate. Vibrational data from High Resolution 

Electron Energy Loss Spectroscopy (HREELS) and Thermal Desorption Spectroscopy (TDS) 

technique have identified the presence of O–H stretching mode on various ZnO surface 

indicating the formation of OH species when ZnO is exposed to H2O at room temperature (Wang 

et al., 2005; Wang et al., 2006). Since adsorption of OH groups on electrode’s surface may be the 

key to methanol selectivity, increasing binding sites for OH species would be essential. By using 
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Cu/ZnO electrodes for CO2 reduction, both metal and oxide properties toward methanol 

formation can be utilized. While Cu increases the electrode’s conductivity, ZnO may provide the 

preferred sites for OH adsorption and create Cu–O–Zn active interface to promote stable Cu(I) 

species or make Cu(0) behave as Cu(I) for the CO2 reduction to methanol.  

  

 

Figure 4.9. Pourbaix diagram for ZnO at 25˚C 

Although Cu/ZnO and CuxO/ZnO electrodes have shown remarkable CH3OH yields, 

reproducibility remains a challenge. The equilibrium potential for ZnO as a function of pH is 

given in Figure 4.8. ZnO is easily reduced to Zn either in an acidic environment or in negative 

cathodic potential: ZnO + 2eˉ ⇌ Zn (Eo = -0.76 V vs. SHE). With hydrogen overpotentials, ZnO 

is expected to be reduced at lower potential, which is consistent with our experimental results 
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that Cu/ZnO and CuxO/ZnO electrodes start losing activity at potential cathodic to -1.6 V 

(Ag/AgCl). Besides, Zn
+
 concentration in the electrolyte solution is analyzed using an 

Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). ZnO crystal is immersed in 0.5 M 

KHCO3 solution for 20 hours and this solution is compared with the original solution. The test 

finds higher Zn
+
 concentration in the ZnO-immersed electrolyte compared to the original 

solution (16.4 ± 2.7 ppm versus 12.7 ± 2.4 ppm) indicating Zn
+
 can dissolve in an neutral-acidic 

solution environment. 

 Futhermore, it is important to consider the effect of local pH at the electrode surface on 

the CO2 reduction. Athough CO2 can serve as a buffer for the bicarbonate system, the generation 

of OHˉ species or consumption of H
+

 on the electrode surface can lead to an increase in local 

electrolyte’s pH by one order of magnitude near the electrode surface (Gupta et al., 2006). Since 

potential of CO2 reduction occurs in proximity with water reduction, a change in local pH on the 

electrode surface can quickly drive the electrolyte more alkaline leading to hydrogen revolution 

as shown in the CO2 Pourbaix diagram (Figure 1.1).  

4.5 Conclusions 

Electrochemical reduction of CO2 at copper and copper oxide nanosclusters on ZnO 

electrodes (up to 87 µmol cm
-2 

hr
-1

) yields higher CH3OH rates than cuprous oxide thin films (up 

to 43 µmol cm
-2 

hr
-1

) from Chapter 3. Because yields are normalized to apparent (planar) 2D 

surface areas in each case, yields normalized to actual Cu(I) surface areas would be significantly 

higher. Oxidized Cu nanoclusters on ZnO show a 4-6 times improvement in CH3OH yield 

compared to metallic Cu on ZnO indicating the importance of an oxide surface in CH3OH 

formation. An in-situ FTIR reactor is designed to verify CO2 reduction activity, as well as 
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evaluate possible intermediate and predict model from a theoretical perspective. Formyl or 

formaldehyde and methoxy adsorbates are detected after 5 minute reaction via IR spectra.   

Experimental results show Cu/ZnO and CuxO/ZnO electrodes are reusable, and their 

surfaces are relatively more stable than cuprous oxide thin films during reaction. Benefiting from 

both metal and oxide properties, Cu/ZnO and CuxO/ZnO electrodes may inherit full functional 

aspects toward methanol selectivity such as the ability of breaking C–O bond of Cu followed by 

hydrogen addition and the ability of attracting OH group of ZnO.  While the direct reduction of 

CO2 to CH3OH at Cu/ZnO, CuxO/ZnO surfaces has shown very appealing results, the 

reproducibility puzzle needs to be solved. More experiments are required to overcome this 

critical problem, and hopefully with collaboration between experiment and simulation, a 

molecular pathway for direct CO2 reduction to methanol at the atomic level can be developed.   
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CHAPTER 5. MECHANISM PATHWAYS 

5.1 Proposed Mechanism Pathways 

As seen in the IR spectra (Figure 4.6), C=O and C–O stretching bands are observed on 

CuxO/ZnO (10-10) electrode’s surface. While the presence of H3COˉ adsorbate is clearly 

confirmed by the C–O and CH3 stretching bands, it is difficult to distinguish the HCOˉ and 

H2COˉ adsorbates since their C=O stretching bands are in the same regions. Since the formation 

of HCOˉ intermediate has been reported as rate determining step in CO2 reduction to CH4, and 

H2COˉ intermediate is detected in both hydrogenation and photoelectrocatalytic process for 

CH3OH formation (Slamet et al., 2009; Peterson et al., 2010; Yang et al., 2010), this C=O 

stretching is likely to represent both intermediates.   Two possible mechanism pathways (A and 

B) for the direct electrochemical reduction of CO2 to CH3OH are proposed in Figure 4.9. While 

mechanism A proceeds through CO pathway, mechanism B undergoes formate (HCOOˉ) 

intermediate. The last four steps in both A and B mechanism pathways are the same with HCO 

adsorbate formation, H2CO adsorbate formation, H3CO adsorbate formation and hydrogenation 

of H3CO adsorbate to CH3OH.  

Similar to Peterson and Gattrell’s mechanisms for CO2 reduction at Cu surfaces, pathway 

A proceeds via CO intermediate (Gattrell et al., 2006; Peterson et al., 2010). The first electron 

and proton transfer may be associated with the formation of dioxymethylene (HOCOˉ). When 

another electron and proton are added to the OH group of the HOCOˉ adsorbate, the C–OH2 

bond is broken to desorb a H2O molecule and leave CO adsorbate on the surface. The reaction is 

continued with the formation of HCO species by H addition to the C atom. Once the HCO 

species are formed, the carbon atom continues proton and electron transfer reactions to form 

H2CO and H3CO adsorbates. Although it is not clear whether these adsorbates would attach to 
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the Cu, Zn, or O bond, ZnO (10-10) surface would promote CH3OH formation by drawing OH 

adsorption and allowing the H atom to attach to the O atom of the H3CO species. 

 

 

Figure 4.10. Proposed mechanism pathways for electrochemical reduction of CO2 to CH3OH 

Since the C≡O band is not observed in the IR spectra (Figure 4.6), it is possible that the 

mechanism proceeds through formate (HCOOˉ) intermediate as shown via pathway B. 

Numerous papers on CO2 hydrogenation at Cu/ZnO catalyst have reported HCOOˉ as the main 

pathway to methanol synthesis (Bailey et al., 1995; Nakamura et al., 2003; Yang et al., 2010). 

The H attaches to the C atom instead of the O atom on CO2 adsorbate; hence, HCOOˉ is formed 

rather than HOCOˉ. This formate pathway may be verified by the presence of the CH stretching 

(A) 

(B) 
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band at 1380 cm
-1

 from the IR spectra. Although this is in conflict with Peterson work as formate 

is reported to be the dead-end product (Peterson et al., 2010), it could explain the formation of 

CH3OH instead of CH4 at copper oxide surfaces.  The mechanism proceeds with H additions to 

the O atom of the formate (HCOO) species first to form HCO after a H2O molecule dissociates 

from the surface. Similar to mechanism A, once HCO species are formed, the reaction continues 

electron and proton transfer until CH3OH is desorbed from the surface. These two mechanism 

pathways are proposed based on our FTIR results and comparison with other scientists’ work. 

Future Density Functional Theory work will help confirm these results. 

5.2 Summary/Conclusions  

This study successfully explores the relationship between surface chemistry and reaction 

behavior of several types of copper oxide in CO2 electrochemical reduction to methanol. Direct 

reduction of CO2 to CH3OH at electrodeposited cuprous oxide thin films is demonstrated at rates 

up to 43 µmol cm
-2 

hr
-1 

and Faradaic efficiencies up to 38%. These rates and efficiencies are 

remarkably higher than either air-oxidized or anodized Cu electrodes prepared in this study and 

suggests Cu(I) species may play a critical role in electrode activity and selectivity to CH3OH. 

Surface analysis of the oxides before and after the reaction show mixed oxidation states (Cu2O, 

Cu4O3, and CuO) depending on the method of preparation and CH3OH yields qualitatively 

follow Cu(I) concentrations. Experimental results also indicate CH3OH yields are dynamic, and 

copper oxides are reduced to metallic Cu in a simultaneous process at the potentials required for 

CO2 reduction.   In order to improve methanol activity and electrode surface’s stability, we 

continue this study by examining the conversion of CO2 to methanol at Cu/ZnO(10-10) and 

CuxO/ZnO(10-10) electrodes from a unified theoretical and experimental perspective. CH3OH 

rates observed at these copper based surfaces were up to 87 µmol cm
-2 

hr
-1

,
 
and Faradaic 
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efficiencies greater than 100 % suggesting both electrochemical and chemical steps are involved 

in the mechanism. Focusing on simple molecules (CO2, H2O and CH3OH) and using single 

crystal metal oxide such as ZnO(10-10) gives the potential to unify simulation and experiment to 

guide the design of new highly efficient electrocatalysts. 

In contrast with Cu electrodes, where CH4 is the preferred reduction product, Cu(I) 

species may improve the stability of intermediates and alter selectivity towards CH3OH by 

enabling hydrogenation of oxygen atoms from H3CO adsorbates.  While more experimental and 

computational work is needed, these results suggest Cu(I) species may play a critical role in 

selectivity towards CH3OH and their stability may be a key factor for maintaining catalytic 

activity in other (photoelectrochemical or hydrogenation) methanol generation reactions. 

5.3 Recommendations 

Experimental data at different conditions are necessary to correlate surface properties 

with yields and selectivity. A new designed reactor allowing high pressure reaction conditions 

could be built in order to increase CO2 solubility in the electrolyte. High pressure would allow 

higher current density, and high CO2 concentration would guarantee to provide abundant sources 

for methanol conversion. An electrochemical synthesis of methanol from CO2 was succeeded by 

using Cu electrode in the high pressure ethanol – water system (Li et al., 1997). Li et al. reported 

current density for methanol formation up to 40% after 8 hours of electrolysis at 70 atm, and 80 

˚C. 

In general, ZnO (10-10) surface is autocompensated and has the lowest energy plane. The 

(10-10) face is expected to provide an energetically favorable surface for Cu, CuxO clusters 

growth to be used as electrocatalyst in CO2 reduction to methanol. Although other ZnO faces 

((0001), (1-210), (000-1)) are known to be less stable and more complicated surfaces, their 
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stability mechanism are strongly influenced by the Cu clusters’ geometric and electronic 

structure. Therefore, it is worthwhile to consider these surfaces as potential supports for CO2 

electrocatalytic reduction. 

Since ZnO surface can be reduced to Zn in neutral-acid solution, TiO2 surface may be the 

answer for a more stable support because of its larger window for reduction potential and its well 

known effect as a support in photoelectrochemical reaction. Experiment on CO2 adsorption 

behavior and vibrational frequencies such as UPS, EELS, or TDS technique can be used to 

evaluate the band gap energy, binding energy and adsorption energy. Recognizing how surface 

chemistry affects reaction behavior helps explore potential routes for improving selectivity and 

yield based on theoretical predictions. More experimental and computational work is needed to 

leverage a fundamental understanding of electrocatalytic mechanisms and create 

―electrocatalysts by design‖. 
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