

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago Hydrogen Production Options for Water-Cooled Nuclear Power Plants

Mark C. Petri, Alton E. Klickman, Masao Hori

International Conference on Non-Electric Applications of Nuclear Power Oarai, Japan April 16-19, 2007

Acknowledgments

- David Carter
- Michele Lewis
- Deborah Myers
- Bilge Yıldız
- Dan Blake (NREL)

Hydrogen Production Options

- Almost all H₂ today comes from steam reforming of CH₄. - Costs rising with natural gas prices. — >750°C. — CO_2 emissions.
- Low-temperature water electrolysis.
 - Energy intensive (i.e., costly).
 - Precious-metal catalysts.
- Thermochemical cycles.
 - Most require high temperatures (800°C 2000°C) and aggressive chemicals.
- High-temperature steam electrolysis.
 - Solid-oxide fuel cell technology. Durability?
- Solar hydrogen.
 - Direct solar production: photo-electrochemical cells; artificial photosynthesis.
 - Biomass as feedstock.
- Other options under investigation: Biological/biomimetic hydrogen production.

 - Coal gasification.
 - Direct ceramic-membrane separation of water.

Steam Methane Reforming

• Reforming:

 $-CH_4 + H_2O \rightarrow CO + 3H_2$, Endothermic (750 – 800°C)

• Shift:

 $- CO + H_2O \longrightarrow CO_2 + H_2$, Exothermic (350°C)

- Cost: 1.00 3.50/kg, depending on CH₄ cost.
- Nuclear reactor heat has been proposed, but water-cooled reactors can't reach conventional reforming temperatures.
- But an integrated *catalytic membrane reformer system* could perform both reactions simultaneously at 500 600°C.
 Tokyo Gas Company has demonstrated such a system.

Low-Temperature Water Electrolysis

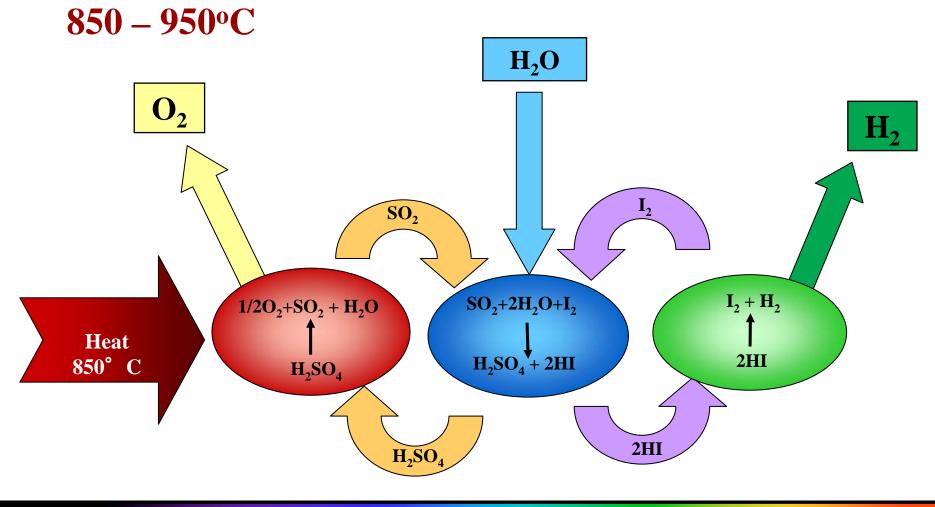
- Commercially available.
 - Solid-polymer / proton exchange membrane (PEM) cells.
 - Liquid-electrolyte (e.g., KOH) cells. High-temperature

reactors can reach

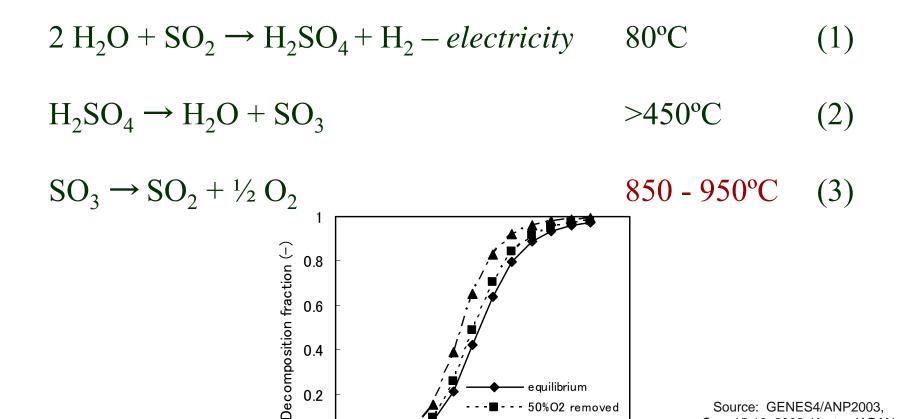
44 - 48%

- Energy intensive.
 - Cell efficiency: 65 90%.
 - Light water reactor electrical generation efficiency: 32%.
 - Total water electrolysis efficiency: 21 30%.
- Noble metal catalysts (e.g., Pt).
 - A strong U.S. program to find alternative catalysts.
- Higher-pressure PEM systems (35 MPa?) can reduce hydrogen compression costs.

Low-Temperature Water Electrolysis


- DOE research goals:
 - Capital cost: \$300/kW for a 250 kg/day plant with 73% efficiency.
 - \$2.00/kg hydrogen.
- Implications:
 - No process heat needed, in general.
 - Hydrogen production can be decoupled from electricity generation.
 - Hydrogen/electricity co-generation and off-peak production is possible.

Lower-Temperature Hybrid Thermochemical Cycles


- Hundreds of thermochemical and thermo-electrochemical hydrogen production cycles have been identified.
 Net reaction: H₂O + energy → H₂ + ½O₂.
- A recent review found 11 with maximum reaction temperatures below 550°C compatible with supercritical water reactor temperatures.
- Five cycles have recently been explored.
 - Hybrid sulfur with SO₃ electrolysis (500 600° C).
 - Copper-chloride (530 550°C).
 - Active-metal alloy cycle (475 675°C)
 - Magnesium-chloride (500 600°C).
 - Heavy-element halide (300°C).

The Sulfur–Iodine Thermochemical Cycle

Sulfur-Based Hybrid Cycle Eliminates Iodine, but Still Requires High Temperatures for O₂ Production

Source: GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN

Paper 1020

Argonne

April 16-19, 2007

Hydrogen Production Options for Water-Cooled Nuclear Power Plants

Temperature (°C)

500

0.2

0

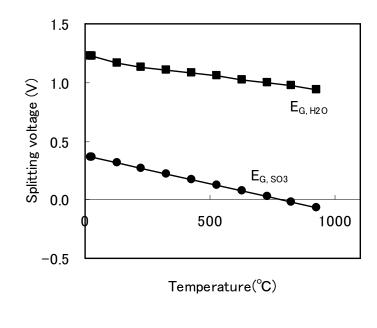
Ω

equilibrium

1000

50%O2 removed

90%O2 removed

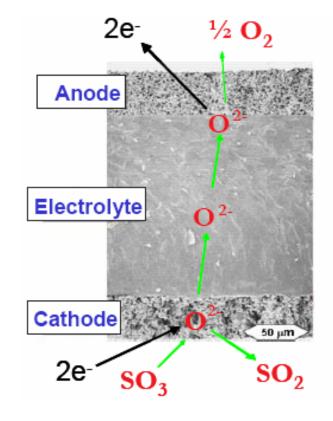

1500

Presenter: Mark C. Petri 9 Slide:

Alternative: Electrolysis of SO₃

 $SO_3 \rightarrow SO_2 + 1/2 O_2 - electricity$ **500-600°C**

- Lowers maximum operating temperature of cycle to <600°C.
- Low electricity requirement compared to steam electrolysis.
- Simple process flow.
 - Does not require decomposition and separation processes.
 - Does not require separation of O₂ from a gas mixture.
- Decreased corrosion of structural materials.


Source: GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN

Paper 1020

SO₃ Electrolysis Cell Component Requirements

Oxygen Electrode

- Compatible with electrolyte.
- Electronic and ionic conductor.
- Catalytically active for oxygen evolution.
- Electrolyte
 - Stability in electrolyzer environment:
 Cathode: SO₃, SO₂, steam.
 Anode: oxygen.
 - High oxygen ion conductivity.
 - Workable, low-cost material.
- SO₃ Electrode
 - Stability in corrosive SO₃ and steam.
 - Tolerant of impurities (e.g., HI).
 - Electronic and ionic conductor.
 - Catalytically active for SO₃ reduction.

Copper-Chloride Cycle

- The most mature of the lower-temperature cycles.
- Four primary steps:
 - $\begin{array}{ll} -2\mathrm{Cu}+2\mathrm{HCl}(\mathrm{g}) & \longrightarrow \mathrm{H}_2(\mathrm{g}) + 2\mathrm{Cu}\mathrm{Cl}, & \mathrm{T}=430-450^{\mathrm{o}}\mathrm{C} \\ -4\mathrm{Cu}\mathrm{Cl} & \longrightarrow 2\mathrm{Cu}+2\mathrm{Cu}\mathrm{Cl}_2, & \mathrm{Electrolytic} \end{array}$
 - $-2\mathrm{CuCl}_2 + \mathrm{H}_2\mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CuO*CuCl}_2 + 2\mathrm{HCl}(\mathrm{g}), \mathrm{T} = 325 375^{\circ}\mathrm{C}$
 - $-\operatorname{CuO*CuCl}_2 \longrightarrow 2\operatorname{CuCl} + \frac{1}{2}\operatorname{O}_2(g), \qquad \mathbf{T} = 530 550^{\circ}\mathrm{C}$
- Estimated efficiency: 40% (lower heating value).

Copper-Chloride Cycle

- An alternative, 3-step approach:
 - $-2CuCl + 2HCl \rightarrow 2CuCl_2 + H_2(g)$, Electrolytic
 - $-2\mathrm{CuCl}_2 + \mathrm{H}_2\mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CuO*CuCl}_2 + 2\mathrm{HCl}(\mathrm{g}), \mathrm{T} = 325 375^{\circ}\mathrm{C}$
 - $-\operatorname{CuO*CuCl}_2 \longrightarrow 2\operatorname{CuCl} + \frac{1}{2}\operatorname{O}_2(g), \qquad \mathbf{T} = 530 550^{\circ}\mathrm{C}$
- Hydrogen can be produced directly without the need for copper metal.
- The efficiencies and the capital costs of the two alternatives need to be further evaluated.

Copper-Chloride Cycle

- Proof of principle has been demonstrated.
 Copper production and hydrogen production have been demonstrated.
 - Work is ongoing on both types of electrochemical cell.
- Hydrolysis reaction is currently being studied.
 - Excess water is required, but how much is not known yet.
 - Potential competing reaction: decomposition of $CuCl_2$.
 - Conditions to minimize this competing reaction are being identified.
- Other reactions are straightforward.

Hybrid Active Metal Alloy Cycle

- Representative cycle consists of two reactions:
 - ¹/₃ K₃Bi(l) + H₂O(g) → KOH(l) + ¹/₂ H₂(g), **T** = **475 675**^o**C**
 - KOH(l) + $\frac{1}{3}$ Bi(l) $\rightarrow \frac{1}{2}$ H₂(g) + $\frac{1}{2}$ O₂(g) + $\frac{1}{3}$ K₃Bi(l) Electrolytic
- Single-vessel reactor?
- Little thermodynamics/chemistry known; no experimental data.
- LHV Efficiency = 29 46%?
- Alternative: Na-Sn cycle.

Magnesium-Chloride Cycle

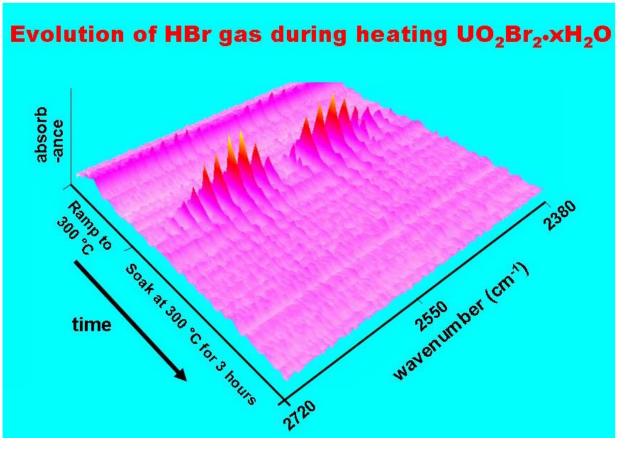
- Three primary steps:
 - $-MgCl_2 + H_2O \rightarrow 2HCl + MgO, T = 450°C$
 - $-\operatorname{MgO} + \operatorname{Cl}_2 \longrightarrow \operatorname{MgCl}_2 + \frac{1}{2}\operatorname{O}_2, \ \mathbf{T} = \mathbf{500^{o}C}$
 - $-2HCl \rightarrow H_2 + Cl_2$, Electrolytic
- Zeolite support structure for MgCl₂ reactions.
- Limited testing.
- Side products may require higher reaction temperatures.
- Research effort shifted to MgI cycle (600°C).

U-Eu-Br Heavy-Element Halide Cycle

• Four steps:

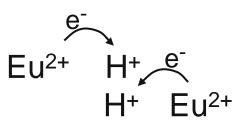
 $-2(UO_2Br_2*3H_2O) \rightarrow 2(UO_3*H_2O) + 4HBr + 2H_2O, T = 300^{\circ}C$ $-4EuBr_2 + 4HBr \rightarrow 4EuBr_3 + 2H_2, Exothermic$

 $-4EuBr_3 \rightarrow 4EuBr_2 + 2Br_2, \qquad T = 300^{\circ}C$

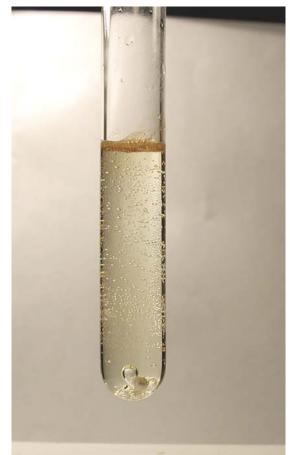

$$-2(UO_3^*H_2O) + 2Br_2 + 4H_2O$$

$$\rightarrow 2(UO_2Br_2^*3H_2O) + O_2, \quad \text{Exothermic}$$

- Purely thermochemical no electrolysis.
- Maximum temperature = $300^{\circ}C$.

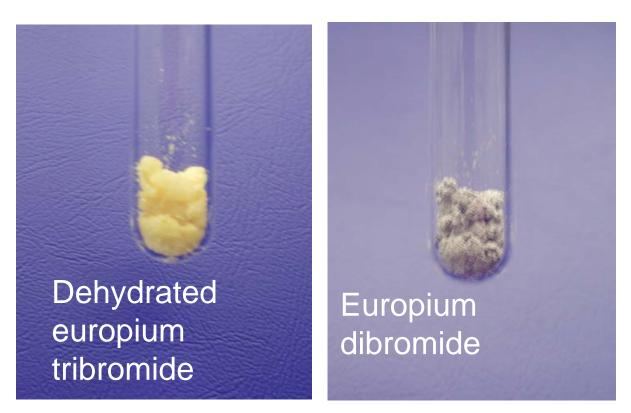

 $UO_2Br_2 \cdot 3H_2O(s) \xrightarrow{\Delta} UO_3 \cdot H_2O(s) + 2HBr(g) + H_2O(g)$

 Fourier Transform Infrared Analysis confirms that the reaction goes to completion at 300°C.



 4EuBr_2 + $4\text{HBr} \rightarrow 4\text{EuBr}_3$ + $2\text{H}_2(g)$

- H₂ generation has been demonstrated, but the reaction rate is slow.
- Evidence for a simultaneous, concerted four-center reaction:


• Catalysis is being considered to improve the kinetics.

H₂ gas bubble evolution from the heavy metal halide reaction.

$$2EuBr_{3} \xrightarrow[300]{\Delta} C 2EuBr_{2}(s) + Br_{2}(g)$$

• Vacuum pyrolysis allows the reaction to proceed without the complications that can arise from entrained water.

 $2UO_3 \cdot H_2O(s) + 2Br_2 + 4H_2O \rightarrow 2(UO_2Br_2 \cdot 3H_2O)(s) + O_2$

• Br₂ and water can react to form HBr and HOBr ("bromine water"):

 $Br_2 + H_2O \rightarrow HBr + HOBr$

• HOBr can interfere with the desired reaction.

Summary

- Many hydrogen production options exist, but none have demonstrated economic competitiveness with steam methane reforming.
 - Nuclear power could support steam methane reforming to reduce CO_2 emissions.
- Low-temperature water electrolysis is a currently available technology for hydrogen production through nuclear power.
 - Reductions in electricity and system costs would be needed (or a carbon tax) for low-temperature water electrolysis to compete with today's costs for steam methane reformation.
- A limited number of thermo-electrochemical cycles have heat requirements consistent with water-cooled reactor technology.
 - Only a small number are seeing active research.
 - All are at an early stage of research; significant technical issues still exist.