Interaction between the Active Components and Support in the Co–Mo–Al₂O₃ System

III. Magnetic and Electron Spin Resonance Spectroscopic Study of the Influence of Sodium on the Nature of Cobalt

A. V. RAMASWAMY, S. SIVASANKER, AND P. RATNASAMY

Indian Institute of Petroleum, Dehradun 248 005, India

Received July 10, 1975

The influence of sodium on the magnetic and electron spin resonance properties of Co-Mo- Al_2O_3 catalysts both in the fresh state and after reduction at various temperatures in hydrogen, hydrogen-isooctene and hydrogen-isooctene-thiophene atmospheres has been investigated. In samples containing sodium, metallic cobalt is formed on reduction in hydrogen or hydrogen-isooctene at 500°C. In the presence of sulfur as well as in samples not containing sodium, reduction to the metal is suppressed. In addition to this influence on cobalt, sodium also enhances the reducibility of molybdenum ions in the support. These results lend additional support to the model of the catalyst surface proposed in part II of this series and highlight the importance of the alumina support in determining the structural characteristics of "cobalt-moly" catalysts.

INTRODUCTION

The influence of sodium on the valence and coordinative environment of cobalt in Co-Mo-Al₂O₃ hydrodesulfurization catalysts continues to be an intriguing problem. During an investigation of the reducibility of Co-Mo-Al₂O₃ in hydrogen using isothermal thermogravimetry (1), we had found that sodium ions present in alumina enhance the reducibility markedly. To account for this and other results, we had postulated that in the presence of sodium part of cobalt occurs in a form like CoO or Co_3O_4 which on reduction forms the metal. Once formed, cobalt metal, facilitating the surface mobility of hydrogen, accelerates the reduction of supported MoO₃. In the absence of sodium, cobalt, now occurring mostly as well dispersed Co²⁺ ions which are not reduced during the reduction, strongly retains the water evolved during the process and thereby suppresses the reduction of MoO_3 . It is the objective of the present study to test this postulate that metallic cobalt is present in Co-Mo-Al₂O₃ catalysts under reduction conditions only in the presence of sodium. For this purpose, magnetic susceptibility and ESR spectroscopic techniques have been used. Samples of Co-Mo-Al₂O₃ catalysts with and without sodium have been reduced at various temperatures in H₂, H₂-isooctene, and H₂-isooctenethiophene atmospheres and their magnetic and ESR properties were measured. The results have enabled us to confirm the presence of metallic cobalt in samples containing sodium and reduced in H_2 at elevated temperatures. The nature of the oxide precursor that gives rise to cobalt metal is also discussed.

EXPERIMENTAL METHODS

The preparation of MoAl (12.5% MoO₃ by wt impregnated on γ -alumina), CoMoAl

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. (containing 12.5% MoO₃ and 2.5% Co₃O₄ by wt impregnated simultaneously on γ and CoMoAlNa (containing alumina) 12.5% MoO3, 2.5% Co3O4, and 200 ppm sodium on γ -alumina) has been detailed in part II of this series (1). MoAl was prepared by impregnation of pure alumina (obtained from boehmite at 550°C; surface area, 240 m^2/g) with an aqueous solution of ammonium paramolybdate, drving 110°C and further calcining at 550°C for 24 hr. CoMoAl was prepared by simultaneously impregnating the pure alumina support with an aqueous solution containing a mixture of ammonium paramolybdate and cobalt nitrate. Drying and calcination were done at 110 and 550°C, respectively. The alumina support used for preparing CoMoAlNa was obtained from pure alumina (used for MoAl and CoMoAl) by impregnation with a solution of NaOH (0.02% of Na by wt). The cobalt and molybdenum salts were then impregnated on this support in a manner similar to that used for preparing the CoMoAl sample.

The magnetic susceptibility of the samples was measured by the Gouy method using an electromagnet (Andhra Scientific, India). NiCl₂ was used for calibration purposes (2). Since our electromagnet did not have a variable temperature attachment, all the measurements were carried out at 25°C. Gram susceptibilities of different packings of the same sample were reproducible to about 3%. Electron spin resonance spectra of the samples were recorded at 22°C by a Varian E 400 EPR spectrometer at 9.41 GHz. DPPH was used as the internal calibrant. Samples contained in quartz tubes (6 mm o.d.) were attached to a conventional adsorption system, given various pretreatments (like evacuation, reduction, etc.), sealed in situ and then transferred to the spectrometer for recording the spectra.

RESULTS AND DISCUSSION

Magnetic Measurements

In the Co-Mo-Al₂O₃ system, the paramagnetic susceptibility is due mainly to cobalt. Both supported molybdenum oxide and alumina are diamagnetic (3). The magnetic moment of cobalt depends on its valence state (di- or trivalent) and its coordination number (tetrahedral or octahedral) in the oxide lattice. There is no evidence from ESCA studies for the presence of Co^{3+} in our samples (4) and hence all the cobalt is present in the divalent state. In a tetrahedral environment of oxide ions, Co^{2+} has a ground term ${}^{4}A_{2}$ which is mixed with the higher levels ${}^{4}T_{1}$ and ${}^{4}T_{2}$ through spin-orbit coupling giving rise to observed magnetic moments μ_{eff} in the range 4.2–4.7 BM. The orbital contribution is higher in the case of Co^{2+} octahedrally surrounded by oxide ions (high spin). Values in the range $\mu_{eff} = 4.7-5.3$ BM are observed. Among the various compounds of cobalt identified or postulated to exist in Co-Mo-Al₂O₃ catalysts, the oxides of cobalt (like CoO), wherein cobalt occurs in an octahedral environment have the largest μ_{eff} while CoAl₂O₄ (tetrahedral coordination of O^{2-} around Co^{2+}) has the lowest value (3). Co^{2+} occurs in an octahedral position in $CoMoO_4$ also (5).

The observed gram magnetic susceptibility values, $\chi_{g''}$, of the catalyst were corrected for the diamagnetic contribution of the Pyrex container, the alumina support and the molybdenum ions. For CoMoAl and CoMoAlNa the total diamagnetic contribution was -0.3×10^{-6} cgs units. The corrected values, $\chi_{g'}$, were then plotted against the reciprocal magnetic field strength, H (four values in the range, 4-9kG) and extrapolated to 1/H = 0 to eliminate the influence of ferromagnetism (6). The extrapolated value χ_{g} was used to calculate the effective magnetic moment, μ_{eff} , of cobalt in the sample using the

Changes in the Magnetic moments of CoMoAl and CoMoAlNa under Various Pretreatments

No	o. Pretreatment	$\mu_{ m eff}{ m BM}^a$		
		CoMoAl	CoMoAlNa	
1.	Fresh	4.8	5.7	
2.	Reduction in H ₂ flow at 380°C for 3 hr	4.9 ^b	6.4	
3.	Reduction in H ₂ flow at 500°C for 3 hr	5.0	7.2	
4.	Reduction in H_2 + iso- octene flow (10:1, atm press., LHSV = 3) at 380°C for 3 hr	4.8	6.0	
5.	As in (4) above, but 1% S as thiophene was added to the feed		5.7	
6.	As in (4) above, but carried out at 500°C		7.0	
7.	As in (6) above, but 1% S as thiophene was added to the feed		4.9	

^a The values of μ_{eff} are reproducible to ± 0.1 .

^b The reduction was carried out at 250°C.

equation (6).

$$\mu_{\rm eff} = 2.84 (\chi_A T)^{\frac{1}{2}} \, {\rm BM}, \qquad (1)$$

where T is the absolute temperature and

$$\chi_A = \frac{58.94\chi_q}{f_{C_0}}.$$
 (2)

Here, f_{Co} is the fraction (by wt) of cobalt in the sample. Equation (1) is an approximation of Eq. (3).

$$\mu_{\rm eff} = 2.84 [(X_A - a)(T - \theta)]^{\frac{1}{2}}, \quad (3)$$

where *a* is the temperature independent paramagnetism and θ is the Weiss constant. The amount of error involved in using Eq. (1) was estimated by measuring the magnetic moment of a sample of Ketjenfine 124 for which Lipsch and Schuit (5) had reported a value of 4.2 BM. Using our procedure we measured a value of 4.1 BM. The fairly satisfactory agreement is probably due to the small value of the Curie-Weiss constant, $\theta = 22^{\circ}$ (5).

The magnetic moments μ_{eff} of both CoMoAl and CoMoAlNa under various conditions of pretreatment are shown in Table 1. The pretreatments were carried out in a conventional down-flow integral type of reactor. After the pretreatments the catalysts were transferred to a Gouy tube (2) and their magnetic susceptibility was measured. Samples of MoAl, both in the fresh state and after the pretreatments shown in Table 1 had negligible values of $x_{g''}$ and hence are not discussed further. Plots of χ_{g}' against 1/H are shown in Fig. 1. Except for samples of CoMoAlNa subjected to pretreatment nos. 3 and 6, there was no evidence of ferromagnetism in the samples.

For the fresh catalysts, the higher value of μ_{eff} for CoMoAlNa (5.7 BM) compared to CoMoAl (4.8 BM) indicates that in the presence of preimpregnated Na⁺ ions on the alumina surface more of cobalt occupies

FIG. 1. Variation of magnetic susceptibility, χ_a' , with the reciprocal of the magnetic field for various samples: (1) CoMoAlNa, fresh, oxide state; (2) CoMoAlNa reduced in a flow of H₂ at 380°C for 3 hr; (3) CoMoAlNa reduced in a flow of H₂ at 500°C for 3 hr; (4) CoMoAlNa reduced in a flow of H₂ + isooctene at 380°C for 3 hr; (5) CoMoAlNa reduced in a flow of H₂ + isooctene + thiophene at 380°C for 3 hr; (6) CoMoAlNa reduced in a flow of H₂ + isooctene at 500°C for 3 hr; (7) CoMoAlNa reduced in a flow of H₂ + isooctene + thiophene at 500°C for 3 hr; (8) CoMoAl, fresh, oxide state; (9) CoMoAl reduced in a flow of H₂ at 500°C for 3 hr.

positions in which they are octahedrally surrounded by oxide ions. Such positions are (a) Co²⁺ ions in octahedral Al³⁺ vacancies in the alumina support, (b) Co^{2+} ions in CoO and Co_3O_4 and (c) Co^{2+} ions in CoMoO₄. The various possibilities are discussed below in more detail. On reduction in H₂ (at 250 or 500°C) or in hydrogenisooctene at 380°C, the value of μ_{eff} for CoMoAl is not changed. On the other hand, for CoMoAlNa the value increases from 5.7 for the fresh catalyst to 6.4 BM on reduction in H₂ at 380°C and increases further to 7.2 BM at 500°C. Moreover, the sample reduced at 500°C exhibits ferromagnetism (Fig. 1, curve 3) revealing the presence of metallic cobalt. The increase in μ_{eff} observed for CoMoAlNa reduced at 380°C is also undoubtedly due to the reduction of Co^{2+} ions, but the absence of ferromagnetism (Fig. 1, curve 2) in the sample implies that the reduction is not complete and that the reduced species (Co⁰, for example) is sufficiently well dispersed in the diamagnetic molybdenaalumina, thereby not constituting a condensed ferromagnetic phase.

Interesting changes in μ_{eff} occur for CoMoAlNa when it is reduced in a mixture of hydrogen and isooctene (Table 1). At 380°C, the value (6.0 BM) is intermediate between those of the fresh (5.7) and H_2 reduced (6.4) samples. The same trend is observed at 500°C also. When, however, 1% sulfur (as thiophene) is present in the feed, it affects profoundly the reducibility of cobalt (Table 1, pretreatment nos. 5 and 7). At 380°C, the value of μ_{eff} (5.7 BM) is not different from that of the fresh catalyst. At 500°C, there is actually a decrease in the μ_{eff} value (4.9 BM). We attribute this decrease to the formation of the sulfides of cobalt in the presence of $H_{2}S$ at 500°C (7). These sulfides have a low value of magnetic susceptibility. For example, the molar magnetic susceptibility of CoS at 20°C is only 225.0×10^{-6} cgs units while those of CoO, Co₂O₃ and Co₃O₄

are 4900, 4560 and 7380 $\times 10^{-6}$ cgs units, respectively (8). The formation of sulfides by Co²⁺ ions which were originally in an oxide environment should thus lead to a lowering of the μ_{eff} values, as indeed observed experimentally.

An intriguing but interesting feature of Table 1 is the identical value of μ_{eff} for the fresh CoMoAlNa and for the same sample reduced at 380°C in a flow of H_2 and isooctene containing 1% sulfur as thiophene (pretreatments 1 and 5). This identity of values may arise from two possible alternatives: (a) the Co^{2+} ions in the fresh catalysts are neither reduced to lower valent state nor sulfided to CoS, or (b) the increase in μ_{eff} caused by reduction of part of the Co^{2+} ions to Co^{0} is exactly compensated by the decrease due to formation of the sulfide. In this context, it may be mentioned that LoJacono *et al.* (9)found no evidence for the presence of metallic cobalt on reduction of Co-Mo- Al_2O_3 catalyst in H_2-H_2S at 400°C. They further held that under the above conditions, the Co^{2+} ions are not affected by sulfidation or reduction. Our result, namely, the identity of μ_{eff} values for both the fresh and sulfided samples of CoMoAlNa, supports this conclusion and extends its validity to the H₂-hydrocarbon-thiophene system also, at least at atmospheric pressure. Preliminary results at high pressures (20 kg) also reveal a similar picture (14). At 500°C, however, the Co^{2+} ions react with sulfur compounds to form the sulfide responsible for the observed lower value of μ_{eff} . Identification of metallic cobalt in CoMoAlNa under reduction conditions in H_2 at 500°C (Fig. 1, curve 3) and its absence in CoMoAl under similar conditions (Fig. 1, curve 9) lends excellent support to our earlier hypothesis (see Introduction).

ESR Measurements

The samples of MoAl, CoMoAl, and CoMoAlNa, both after evacuation to 10^{-4}

No.	o. Pretreatment	Sample		
		MoAl	CoMoAl	CoMoAlNa
1. Evacua	tion to 10 ⁻⁴ cm at 25°C	$\begin{array}{r} 1.96 \ (1.0) \\ (g_1 = 1.98, \\ g_1 = 1.92) \end{array}$	$\begin{array}{c} 1.95 \ (0.1) \\ (g_1 = 1.97, \\ g_{11} = 1.92) \end{array}$	2.04
2. Reducti	on in a static atm of H ₂ at 250°C	1.92(7.5)	1.93 (3.5)	1.92 (0.2)
3. Reducti	on in flowing H ₂ at 250°C	1.93 (3.8)		1.93(0.5)
4. Reducti	on in a static atm of H2 at 350°C		1.93 (15.6)	1.93 (8.4)
5. Reducti	on in flowing H ₂ at 350°C	1.93(1.9)	·	1.92(5.0)
6. Reducti	on in a static atm of H ₂ at 500°C		1.93(26.3)	1.93 (3.5)
7. Reducti	on in flowing H ₂ at 500°C	1.93 (0.2)	. ,	1.94(0.9)
8. Sulfidat H ₂ + C	ion at 250°C with a mixture of S2(10:1)	1.92 (2.0)	1.92 (3.3)	1.92 (2.0)

TABLE 2

g Values and Relative Concentrations of Mo⁵⁺ Ions^a

^a The g values are reproducible to ± 0.01 . The duration of the reduction as well as the reduction-cumsulfidation runs was 3 hr. The values in parentheses refer to the relative concentration of Mo⁵⁺ ions in arbitrary units.

cm at 25° C and after the pretreatments mentioned in Table 2, were subjected to ESR analysis. Particular mention should be made that the samples were not exposed to air after the various pretreatments. All the spectra were recorded as the first derivative of the absorption curve at 22°C. The formula,

$$I = KW^2H, \qquad (4)$$

was used to calculate the intensity I of the resonance (10). In the above formula, W

FIG. 2. ESR spectra of CoMoAlNa: (a) fresh, oxide state; (b) after reduction in H_2 (760 Torr) at 350°C.

is the peak-to-peak separation and H, the peak-to-peak height of the derivative curve. The constant K was fixed by letting the resonance intensity of a standard sample of MoAl equal unity. The I values were normalized using the appropriate values of the receiver gain. The g values were calculated using DPPH as a g-calibrant.

Representative ESR spectra of Mo^{5+} ions are shown in Figs. 2-4. The *g* values together with the relative intensities (in

FIG. 3. ESR spectra of CoMoAl: (a) fresh, oxide state; (b) after reduction in H₂ (760 Torr) at 350°C.

FIG. 4. ESR spectra of CoMoAl and CoMoAlNa after reduction in H_2 (760 Torr) at 500°C.

arbitrary units) are compiled in Table 2. In Figs. 2–4, the sharp line-peak is due to DPPH (g = 2.0036). All the g values reported in Table 2 correspond well with those reported in the literature (1.92-1.96)for Mo⁵⁺ ions in a tetragonal square arrangement on alumina (9, 11). For CoMoAlNa, in addition to the sharp peak with q = 2.04 there is a broad resonance (peak-to-peak width, 960 G) centered around q = 2.5 (Fig. 2, curve a). The latter peak is present in CoMoAl also (g = 2.9)but is much broader (peak width, $\simeq 2280$ G). The species responsible for these peaks are cobalt ions, probably in an oxidic environment, in the alumina lattice. This broad peak is not affected by the various reduction treatments indicating that the cobalt ions in this environment are not affected by reduction or reduction-sulfidation. The signal at q = 2.04 is similar to that observed by Galiasso and Menguy (12) $(g_1 = 2.026, g_2 = 2.035, g_3 = 2.051)$ and attributed by them to oxygen ionradicals chemisorbed on Mo⁶⁺. Its disappearance in H₂ atmosphere is commensurate with the above assignment (Fig. 2, curve b).

On reduction in H_2 , the resolution of the g_1 and g_{11} components observed for the fresh catalysts disappears due to the in-

creased formation of Mo⁵⁺ from Mo⁶⁺ ions and the resultant dipole-dipole broadening of the resonance lines. The constant value of q (1.93 \pm 0.01) observed for MoAl, CoMoAl, and CoMoAlNa under all the reduction and reduction-cum-sulfidation conditions mentioned in Table 2 means that the coordinative environment of Mo⁵⁺ ions is very similar in all these samples. The relative variation of the concentration of Mo⁵⁺ ions after different pretreatments is shown in Fig. 5. Now, during any reduction process Mo⁵⁺ ions are formed from Mo⁶⁺ and are in turn further reduced to lower oxidation states. The relative rates of these two consecutive processes determine the signal intensity of Mo⁵⁺ (12). At moderate conditions of reduction (for example, reduction at 250°C in a static atmosphere of H_2) the former will predominate while the reduction of Mo⁵⁺ to Mo⁴⁺ is expected to be more rapid at more severe conditions (like reduction at 500°C in flowing H_2). The ESR signal intensity is thus expected to pass through a maximum at conditions of intermediate severity. Both MoAl and CoMoAlNa exhibit this maximum, though at different conditions of severity (Fig. 5). For CoMoAl, however, the concentration of Mo⁵⁺ continues to increase even after reduction in flowing H₂ at 500°C indicating

FIG. 5. Variation of Mo^{5+} concentration in MoAl, CoMoAl, and CoMoAlNa after the pretreatments given in Table 2.

that the conversion of Mo^{5+} to Mo^{4+} is relatively small even at 500°C. The relative reducibilities (Mo^{6+} to Mo^{4+}) of the three samples are thus, MoAl > CoMoAlNa> CoMoAl. An identical conclusion was derived by us earlier (1) from the rates of reduction of these samples in H₂ at 490°C using isothermal gravimetry. ESR spectroscopy, thus, confirms our earlier findings that the presence of sodium ions increases the reducibility of Co-Mo-Al₂O₃ catalysts.

Additional information from the ESR spectra of Fig. 4 is the presence of the broad and asymmetric band due to ferromagnetic resonance observed for CoMoAlNa after reduction in H_2 at 500°C and its absence in the spectra of CoMoAl under the same conditions. LoJacono et al. (9) had also observed this band for Co-Al₂O₃ samples reduced in $H_2 + H_2S$ at 400°C and attributed it to metallic cobalt. We also ascribe this band to cobalt metal. Its presence in CoMoAlNa and absence in CoMoAl agrees very well with the magnetic data presented earlier, wherein, on reduction at 500 °C in flowing H_2 , ferromagnetic cobalt was formed only in the case of samples containing sodium.

The following salient features emerge from the present studies: In the Co-Mo-Al₂O₃ catalyst system, sodium ions in the support influence strongly the structural nature of cobalt. For samples containing sodium (CoMoAlNa) reduction at elevated temperatures in H_2 or a mixture of H_2 and isooctene leads to the formation of Co⁰. In the presence of sulfur this reduction is suppressed. For catalysts without sodium (CoMoAl), however, reduction to Co^o does not occur to a significant extent at 500°C even in a flow of H_2 . Obviously cobalt in the fresh CoMoAlNa is present in a form which is different from that in fresh CoMoAl, and which, in addition, is more susceptible to reduction by H_2 to the metallic state but which, at the same time, does not undergo this reduction if thiophene is present. Now, what is the cobalt species

which is the precursor of Co⁰? It is unlikely to be Co^{2+} in tetrahedral positions in the alumina lattice because CoAl₂O₄ (where Co^{2+} occurs in such a position) is not reduced in H_2 (1, 3a). It is most probably either Co²⁺ in a condensed oxide phase like Co_3O_4 , CoO, or CoMoO₄ [the β phase (13)] or Co²⁺ dispersed among the surface octahedral Al³⁺ vacancies (the δ phase). (Of course, since the X-ray diffraction patterns of all these samples do not contain any line due to cobalt or molybdenum, the dimensions of even the condensed phase cannot exceed, say, 40 Å). There is no evidence for the presence of CoMoO₄ in Co-Mo-Al₂O₃ catalysts either from the studies of Ashley and Mitchell (3b) (spectroscopic and magnetic study) or from our ESCA measurements (4). The ESCA spectrum had revealed the presence of a peak at a binding energy value of 780.5 eV which was assigned to Co^{2+} in an oxide phase, most probably CoO. The presence of such small patches (of dimension, 10–20 Å) of cobalt oxide on the surface of alumina can account for the observed changes in magnetic moments in Table 1. At 380°C in H_2 , the absence of ferromagnetism is due to the fact that the oxide patches are only partly reduced and the Co^o atoms formed are not sufficiently mobile. At 500°C, the reduction being more complete, the cobalt atoms agglomerate to form larger crystallites which exhibit ferromagnetism. The larger observed value of μ_{eff} for CoMoAlNa compared to CoMoAl (5.7 vs 4.8 BM, Table 1) revealing the preponderance of octahedral cobalt in the former also supports our conclusion that sodium ions on the surface of the alumina support favor the distribution of cobalt in the condensed β phase rather than in the dispersed δ phase. Sulfur compounds are either strongly adsorbed (380°C) or react to form the sulfide with the β phase cobalt (500°C) with the result that reduction to the metal is suppressed.

ACKNOWLEDGMENT

We thank Professor P. T. Manoharan (IIT, Madras) for recording the ESR spectra. We also thank Dr. P. K. Sinhamahapatra for calibration of the electromagnet and for measuring the magnetic susceptibility of the Ketjenfine 124 sample. We are grateful to Drs. I. B. Gulati and K. K. Bhattacharyya for encouragement and support.

REFERENCES

- Ratnasamy, P., Ramaswamy, A. V., Banerjee, K., Sharma, D. K., and Ray, N., J. Catal. 38, 19 (1975).
- Schoemaker, D. P., and Garland, C. W., "Experiments in Physical Chemistry," p. 289. McGraw-Hill, New York, 1962.
- (a) Richardson, J. T., Ind. Eng. Chem. Fundam.
 3, 154 (1964); (b) Ashley, J. H., and Mitchell, P. C. H., J. Chem. Soc. A, 2821 (1968).
- 4. Ratnasamy, P., J. Catal. 40, 137 (1975).
- Lipsch, J. M. J. G., and Schuit, G. C. A., J. Catal. 15, 163, 174, 179 (1969).

- Anderson, R. B., "Experimental Methods in Catalytic Research." Academic Press, New York, 1968.
- Mellor, J. W., "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. 14, p. 750. Longmans, New York, 1961.
- "Handbook of Chemistry and Physics," p. 129. Chemical Rubber Co., Cleveland, 1970.
- LoJacono, M., Verbeek, J. L., and Schuit, G. C. A., J. Catal. 29, 463 (1973).
- "EPR Operational Techniques" Pub. No. 87-114-402, Varian Associates, Palo Alto, Calif.
- Seshadri, K. S., Massoth, E. E., and Petrakis, L., J. Catal. 19, 95 (1970).
- Galiasso, R. W., and Menguy, P., Bull. Soc. Chim. Fr. 1331 (1972).
- Tomlinson, J. R., Keeling, R. O., Rymer, G. T., and Bridges, J. M., Proc. Int. Congr. Catal., 2nd, 1960, pap. no. 90.
- 14. Ramaswamy, A. V., Sivasanker, S., and Ratnasamy, P., unpublished data.