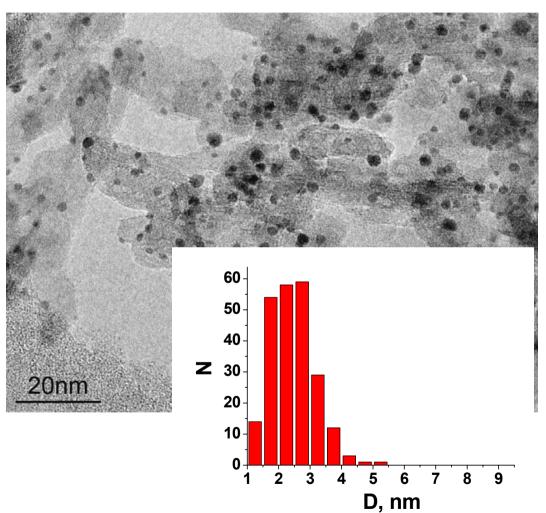
NANOSIZED EFFECTS IN CATALYTIC PROCESSES FOR ECOLOGY AND POWER SUPPLY SYSTEM

Valerii I. Bukhtiyarov

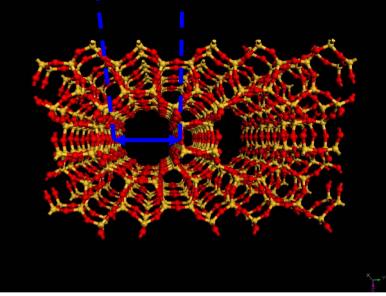
Boreskov Institute of Catalysis 630090 Novosibirsk, Russia tel./fax: +7-(383)-330-67-71/3308-056 e-mail: vib@catalysis.ru

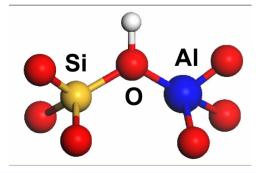
Reduction of the size parameters of a substance to nanometer scale causes appearance of unique properties which can be used in practice for development of novel materials and technologies

Not only physical properties, but also reactivity of a substance in nanometer scale will be changed. As consequence, we can create new chemical sensors, CATALYSTS, adsorbents etc.


OUTLINE OF THE TALK

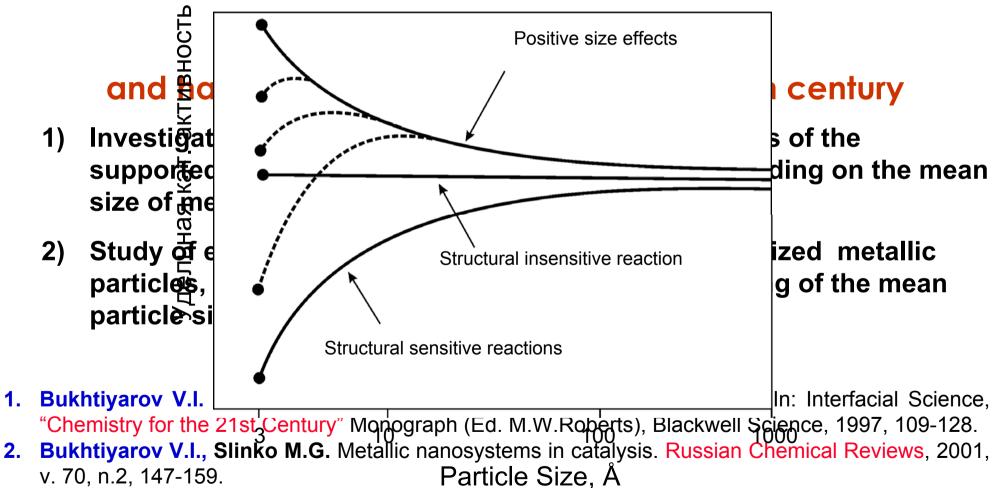
- NANOTECHNOLOGY, NANOMATERIALS and CATALYSIS (hundred years in collaboration)
- SIZE EFFECTS IN CATALYSIS BY METALS (BIC experience):
 - \checkmark methane oxidation over Pt/Al₂O₃;
 - Iow-temperature CO oxidation over gold nanoparticles;
 - ✓ hydrodesulfurization of gasoline over bimetallic sulfide catalysts.
- SUMMARY


NANOTECHNOLOGY, NANOMATERIALS and CATALYSIS


Pt/Al_2O_3

Zeolites

6-12 Å



Boreskov Institute of Catalysis

ИК СО РА

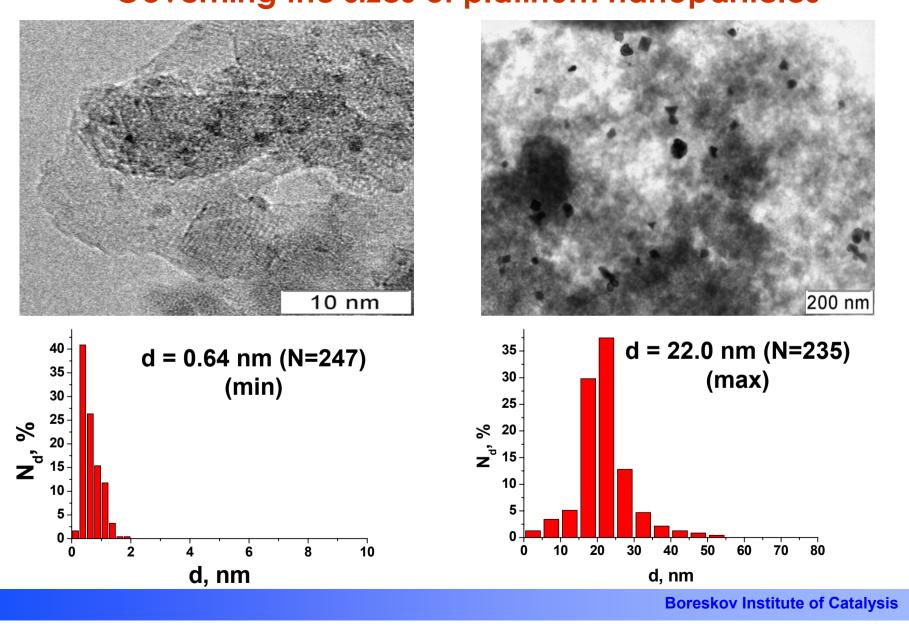
NANOTECHNOLOGY, NANOMATERIALS and CATALYSIS

Nanosized effects in catalysis by metals are known for a long time since the Boudart's discovery of structural sensitive and structural insensitive reactions

OUTLINE OF THE TALK

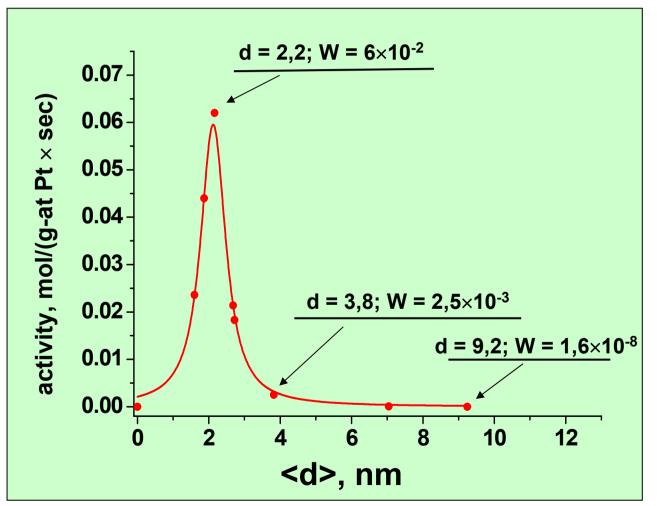
- NANOTECHNOLOGY, NANOMATERIALS and CATALYSIS (hundred years in collaboration)
- SIZE EFFECTS IN CATALYSIS BY METALS (BIC experience):
 - \checkmark methane oxidation over Pt/Al₂O₃;
 - Iow-temperature CO oxidation over gold nanoparticles;
 - ✓ hydrodesulfurization of gasoline over bimetallic sulfide catalysts.
- SUMMARY

Natural gas has a great perspectives for different applications (energy production, fuel for cars, etc)


But we have to provide complete oxidation of methane at relatively low temperatures:

 $CH_4 + O_2 \longrightarrow CO_2 + H_2O + Q$

 Pt/Al_2O_3 catalysts can be used for this purposes, but optimization of platinum loading should be provided


Methane Oxidation over Pt/Al₂O₃ Governing the sizes of platinum nanoparticles

Methane Oxidation over Pt/Al_2O_3

Nanosized effects in methane oxidation over Pt/Al_2O_3

 $\mathbf{CH}_4 + \mathbf{O}_2 \rightarrow \mathbf{CO}_2 + \mathbf{2H}_2\mathbf{O} + \mathbf{Q}$

UK CO PAI

Low temperature CO oxidation: the main applications

- ✓ Indoor air quality control
- Automobile exhaust gas treatment (especially, during the period of engine "cold start")
- ✓ CO removal from hydrogen for PEFC
- \checkmark Catalytic regeneration of CO₂ in sealed CO₂ lasers

 $Au(OH)_{3} \cdot [AuCI_{4-n}(OH)_{n}]^{-}/MO_{x}$

GOALS:

[AuCl₄]

- > Preparation of nanosized gold particles $\mu_a \gamma$ $\mu_a \theta$ Al₂O₃
- Study of activity of Au/Al₂O₃ catalysts in CO oxidation
- Improvement of the stability of gold nanoparticles on alumina

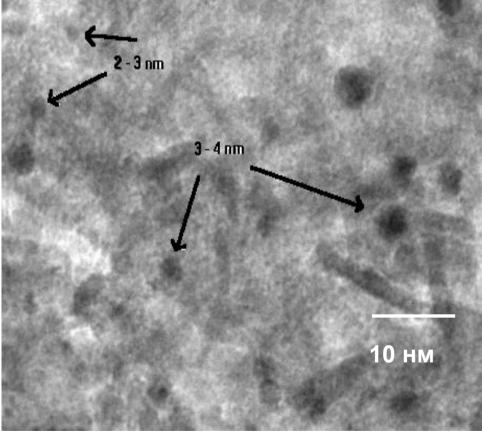
Catalyst preparation techniques:

✓ Impregnation (IMP); precursor – HAuCl₄

+ NaOH

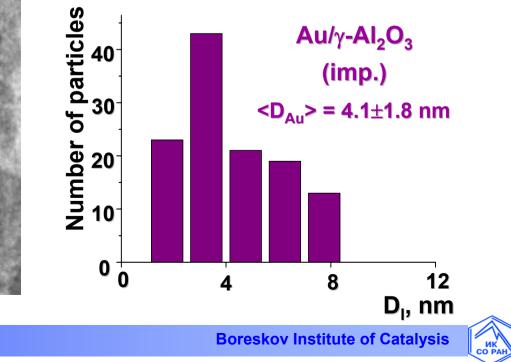
+ MO_x

✓ Deposition-precipitation (DP); HAuCl₄:


 $MO_x = TiO_2$, Fe_2O_3 , AI_2O_3 etc.

- ✓ Chemical liquid phase grafting (CLPG); Me₂Au(acac)
- ✓ Chemical vapor infiltration (CVI); Me₂Au(acac)

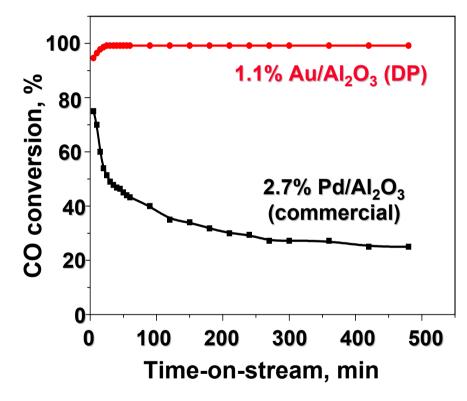
0,


Au_{metal}

TEM images and size distribution of gold particles in Au/Al₂O₃ catalyst prepared by impregnation technique

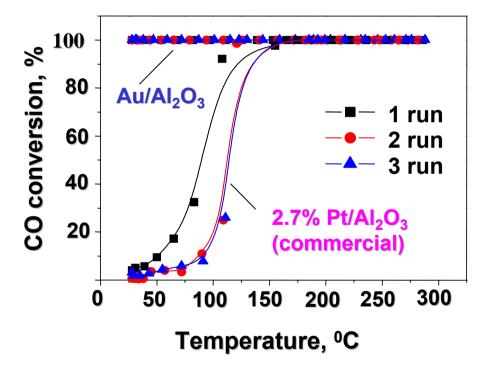
Key steps of catalyst preparation:

- Incipient wetness impregnation of γ-Al₂O₃ with HAuCl₄ solution
- ✓ Reduction by H_2 at 400°C



Activity in CO oxidation (313 K) of Au/Al₂O₃ catalysts prepared with various methods

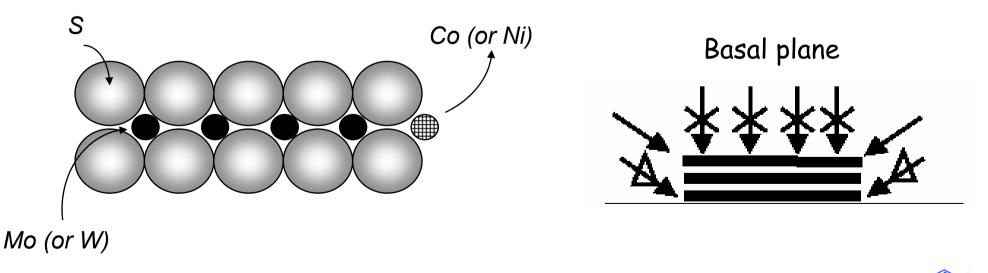
Preparation method		<d<sub>au>, nm</d<sub>	Rate, mol CO ₂ × (g Au) ⁻¹ ·s ⁻¹	TON, s ⁻¹ ×10 ⁴
DP		3.7	240	21
CLPG		13.3	<1	_
CVD	(T _d =600°C)	3.8	95	6.7
	(T _d =20°C)	25-35	<1	_
Impregnation	H ₂ reduction	4.1	<1	_
	after treatment with ((CH ₃) ₄ N)OH		14	1.3


Comparison between Au и Pd catalysts for CO oxidation in ambient conditions

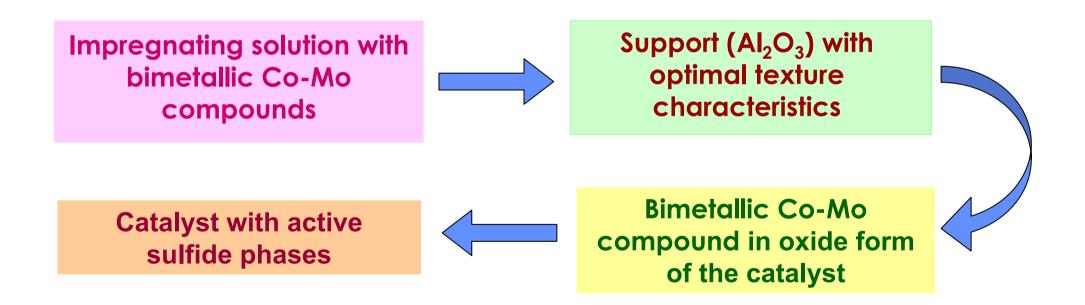
Flow reactor

T = 293 K; 0.05%CO, 2% of H_2O , air for balance

Comparison between Au и Pt catalysts for abatement of exhaust gases from car engine



Flow reactor; $0.1\%CO + 14\%O_2 + 10\%$ of H₂O (N₂ for balance); Heating rate of 10 K/min; SV = 50 l/h

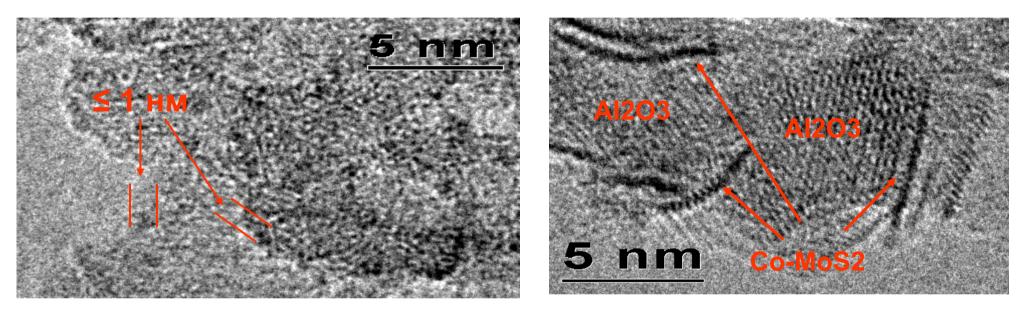

Diesel oil should contain less than < 50 ppm of sulfur-containing compounds

Active Catalysts for Hydrodesulfurization:

✓ High dispersion of Mo sulfide phase over the support surface;
✓ Formation of the mixed CoMoS phase with layered structure;
✓ Absence of oxygen atoms directly bonded with Mo atoms.

The steps of the guided formation (molecular design) of the nanocomposite, completely sulfided bimetallic active phase (BIC apprach)

Formation of bimetallic Co-Mo compounds in impregnating solution was fixed: with NMR: intensity of Mo⁹⁵ signal is reduced when Co²⁺ compounds is introduced in solution

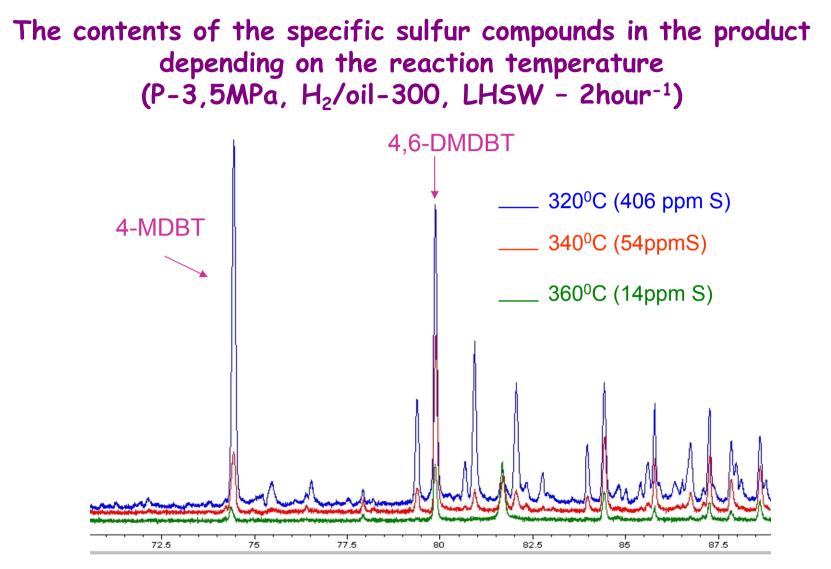

with EXAFS: appearance of Co-Mo distance in the spectra

Formation of bimetallic Co-Mo compounds in the catalyst was fixed: with EXAFS: Mo-Mo, Co-Mo distances were the same in solution and in the catalysts

with IR: 9 main signals were the same in solution and in oxide form of the catalyst

Bimetallic Co-Mo sulfide phases: Transmission electron microscopy (TEM)

Α


Б

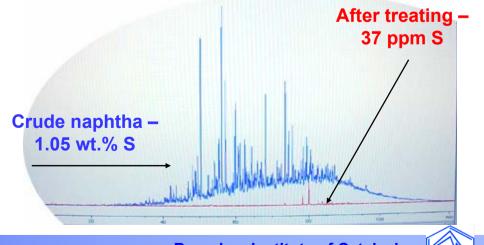
HRTEM images of Co-Mo/Al₂O₃ catalysts

A - before reaction. «single» Co-Mo -clusters (size less than 1 nm) on alumina surface.

 $\rm B$ - after reaction. Flat clusters of Co-MoS_2 on alumina surface. Atomic structure can be seen

The catalyst remove the sterically hindered alkyl-dibenzothiophenes

In the framework of National Innovative Project


«Development and manufacturing application of novel catalysts and catalytic technologies for production of motor fuels» (2003–2006),

BIC SB RAS has developed the catalysts for deep hydrodesulfurization of the diesel naphtha allowing production of the fuel with very low sulfur content (< 50 ppm)</p>

- Technology of the catalyst production will be applied in JSC «Industrial Catalysts», Ryazan.
- Pilot set of the catalysts (25 т) will be produced in first half of 2007

Application of the catalysts on hydrodesulfurization plants allows production Euro-3 diesel fuel

OUTLINE OF THE TALK

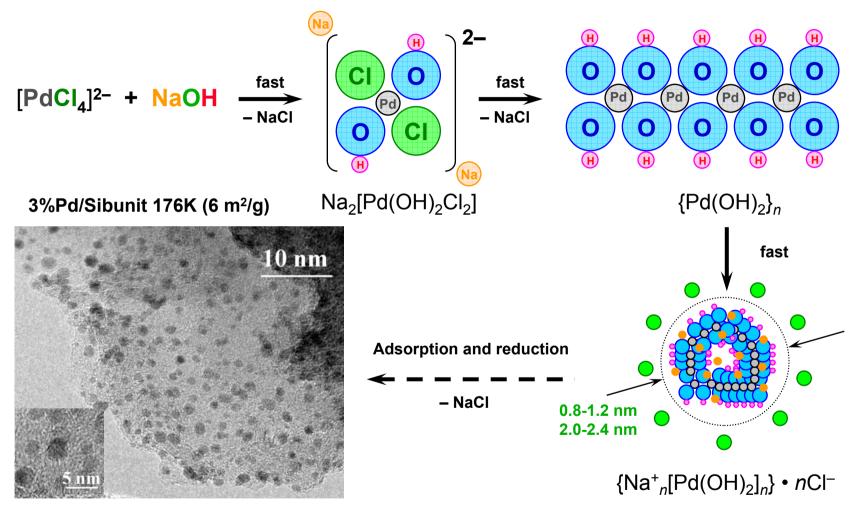
- NANOTECHNOLOGY, NANOMATERIALS and CATALYSIS (hundred years in collaboration)
- SIZE EFFECTS IN CATALYSIS BY METALS (BIC experience):
 - \checkmark methane oxidation over Pt/Al₂O₃;
 - Iow-temperature CO oxidation over gold nanoparticles;
 - ✓ hydrodesulfurization of gasoline over bimetallic sulfide catalysts.
- SUMMARY and ROADMAP for the FUTURE

Industrial catalysis has involved nanoparticles since beginning of the 20-th century

CATALYSIS

Addition of the "nano" prefix to many technical terms is not simple replacement of the unit of Ångstroms

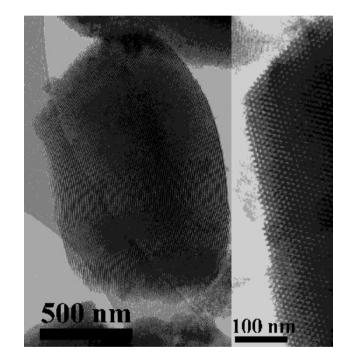
Nanoscience gives a great contribution to a fundamental approach for optimization of the catalyst performance



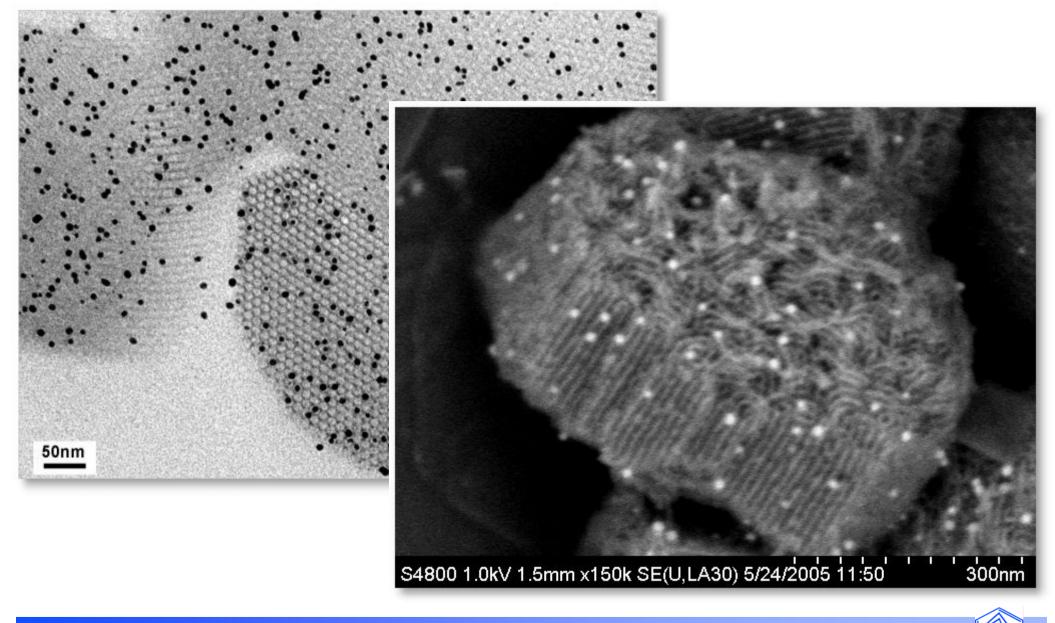
Definition of catalytic «nanoscience» as a separate scientific topic is connected with:

- 1) Development of the preparation procedure of stable nanosized metallic particles with homogeneous and variable size particle distribution (epitaxial growing, formation of polynuclear complexes or colloids in precursor solution, application of mesophase materials as supports of a catalyst);
- 2) Development of the methods for physical-chemical characterization of the nanosized metallic particles and determination of their size distribution (HR TEM, STM/AFM, EXAFS, XANES, XPS, UV-Vis);
- 3) Understanding the reasons of unique properties of the nanostructures and search of their practical applications.

Adsorption of heteronuclear hydrocomplexes


IPHE-GENIE (International Partnership for a Hydrogen Economy for GENeration of New Ionomer membranEs) interrelations

No.	Participant name	Short name	Country
1	Energy research Centre of the Netherlands	ECN	NL
3	FuMA-Tech GmbH	FUMATECH	D
4	CNRS Montpellier	CNRS	F
5	Dongyue Shenzhou New Materials Company	DSNM	PRC
6	Shanghai Jiao Tong University	SJTU	PRC
7	Boreskov Institute of Catalysis	BIC	RU


Application of mesophase mesoporous materials (MMM) as supports for the metallic supported catalysts

- ✓ Possibility to regulate (govern) by pore distribution for preparation of mesophase and nanoturbular materials (silicon dioxides, carbon)
- ✓ Limitation of the sizes of nanosized metallic particles by diameter of the support pores

We prepared the collaborative projects "Carbon-based challenging nanostructured materials for catalytic applications" between Fritz-Haber-Institute (Germany), Institute of Chemical Physics (China) and Boreskov Institute of Catalysis (Novosibirsk)

Acknowledgement

1) I.E. Beck, V.I. Zaikovskii, V.N. Parmon

2) B.L. Moroz, P.A. Pyrjaev, P.P. Semyannikov, G.N. Zharkova (IIC SB RAS) B.E. Niewenhuys (Leiden University, the Netherlands)

3) O.V. Klimov, A.S. Ivanova, G.A. Bukhtiyarova, A.S. Noskov G.M. Shragina, Ya.M. Polunkin (JSC "Industrial Catalysts")

Financial Support from:

- **1. Russian Ministry of the Education and Sciences**
- 2. The Netherlands Scientific Foundation (NWO)
- 3. Russian Ministry of the Industry and Energetics

