Chapter 27

Catalysis and some industrial processes

Homogeneous catalysis: alkene (olefin) and alkyne metathesis

Homogeneous catalytic reduction of N₂ to NH₃

Homogeneous catalysts: industrial applications, development.

Heterogeneous catalysts: surfaces, interactions with adsorbates, commercial applications, and organometallic cluster models

Catalyst – a substance that alters the rate of a reaction without appearing in any of the products of that reaction; it may speed up or slow down a reaction. For a reversible reaction, a catalyst alters the rate at which equilibrium is attained; it does not alter the position of equilibrium.

Autocatalytic reaction – one of the products is able to catalyze the reaction.

Homogeneous catalyst – in the same phase as the components of the reaction that it is catalyzing.

Homogeneous catalyst – in a different phase from the components of the reaction for which it is catalyzing.

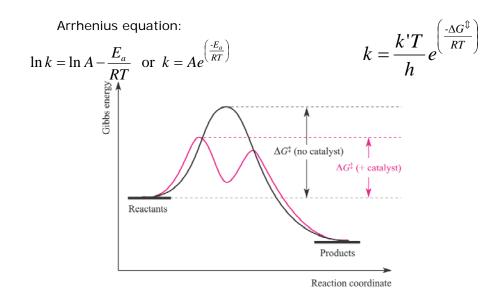
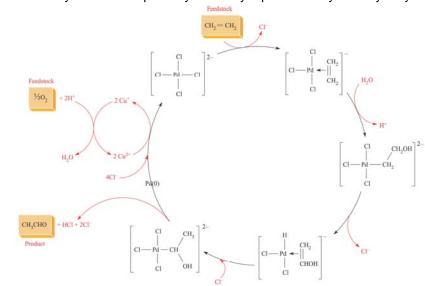
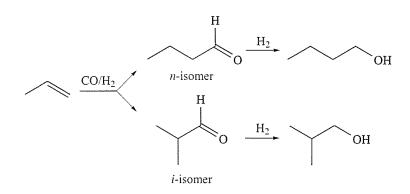



Fig. 27.1 A schematic representation of the reaction profile of a reaction without and with a catalyst. The pathway for the catalysed reaction has two steps, and the first step is rate determining.

A catalyzed reaction pathway is usually represented by a catalytic cycle.

Fig. 27.2 Catalytic cycle for the Wacker process; for simplicity, we have ignored the role of coordinated H_2O , which replaces CI^- *trans* to the alkene.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008


Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

Choosing a catalyst one considers:

- •Concentration of catalyst required
- Catalytic turnover
- •selectivity of the catalyst to the desired product
- •how often the catalyst needs renewing

Catalytic turnover number (TON) is the number of moles of product per mole of catalyst. Indicates the number of catalytic cycles for a given process, (e.g. after 1h the TON was 2500). Typically applied to batch processes.

Catalytic turnover frequency (TOF) is the catalytic turnover per unit time. Indicates the number of moles of product per mole of catalyst per unit time, (e.g. TOF 20 min⁻¹). Typically applied to continuous processes (flow reactors).

Selectivity:

the n:i ratio of aldehydes (regioselectivity of the reaction)

aldehyde: alcohol ratio for a given chain (chemoselectivity of the reaction)

Alkene (olefin) metathesis

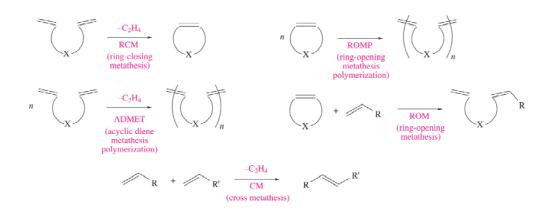
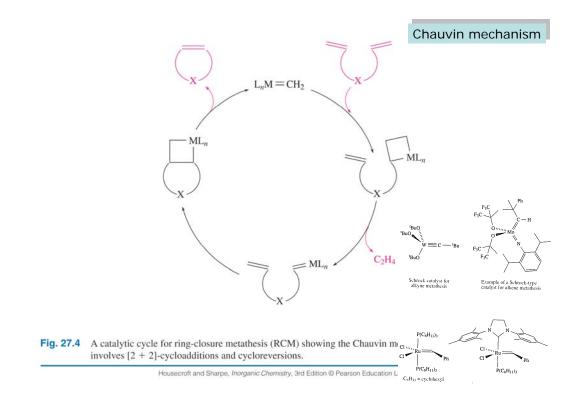



Fig. 27.3 Examples of alkene (olefin) metathesis reactions with their usual abbreviations.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

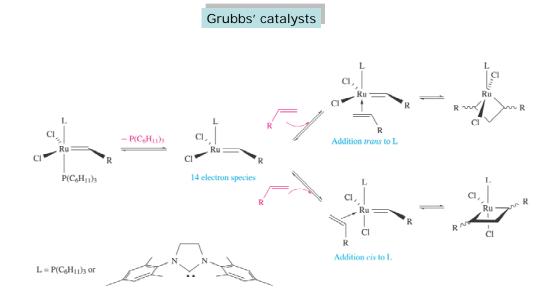


Fig. 27.5 Initial steps in the mechanism of alkene metathesis involving first and second generation Grubbs' catalysts. Two possibilities for the formation of the metallocyclobutane intermediates are shown.

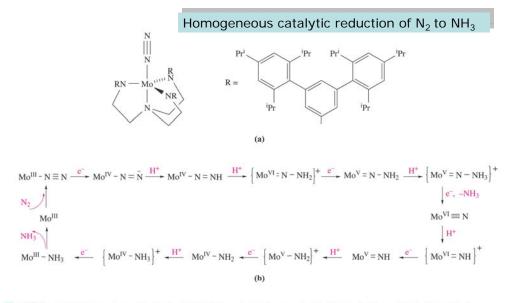
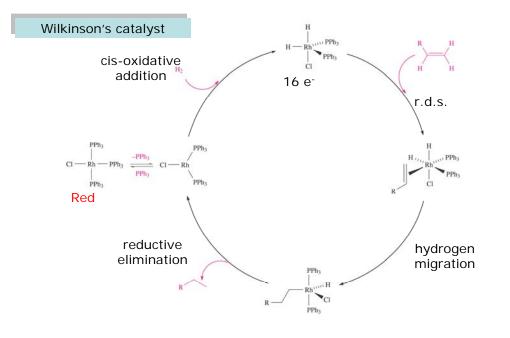
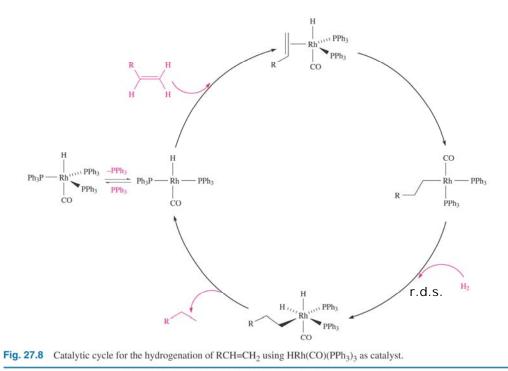
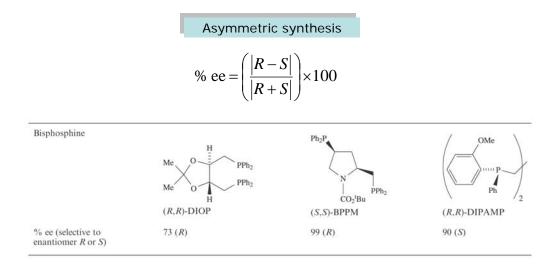



Fig. 27.6 (a) Dinitrogen bound to the single Mo(III) centre in the complex that is the starting point for the catalytic conversion of N_2 in NH_3 at room temperature and pressure. (b) The proposed scheme in which six protons and six electrons generate two equivalents of NH_3 from one equivalent of N_2 . The complex shown in part (a) is abbreviated to $Mo^{III}N_2$, and so on.

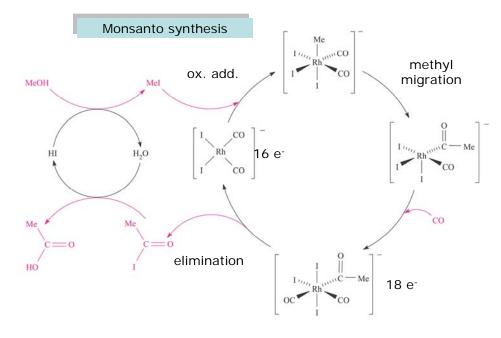
Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

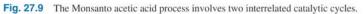


Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008


Alkene	$k/\times 10^{-2}{ m dm^3mol^{-1}s^{-1}}$
Phenylethene (styrene)	93.0
Dodec-1-ene	34.3
Cyclohexene	31.6
Hex-1-ene	29.1
2-Methylpent-1-ene	26.6
1-Methylcyclohexene	0.6

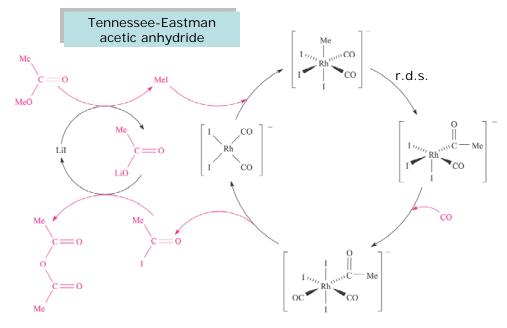
[†] For further data, see: F.H. Jardine, J.A. Osborn and G. Wilkinson (1967) *Journal of the Chemical Society A*, p. 1574.


Table 27.1Rate constants for the hydrogenation of alkenes (at 298K in C_6H_6) in the presence of Wilkinson's catalyst.[†]



Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

Table 27.2 Observed % ee of the product of the hydrogenation of $CH_2 = C(CO_2H)(NHCOMe)$ using Rh(I) catalysts containing different chiral bisphosphines.



Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

Conditions	BASF (Co-based catalyst)	Monsanto (Rh-based catalyst)
Temperature / K	500	453
Pressure / bar	500-700	35
Catalyst concentration / mol dm ⁻³	0.1	0.001
Selectivity / %	90	>99

 Table 27.3
 Major advantages of the Monsanto process over the BASF process for the manufacture of acetic acid (equation 27.15) can be seen from the summary in this table.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

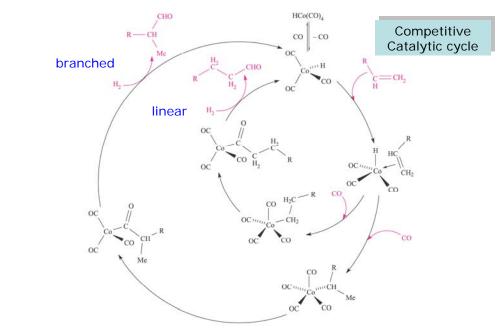


Fig. 27.11 Competitive catalytic cycles in the hydroformylation of alkenes to give linear (inner cycle) and branched (outer cycle) aldehydes.

Alkene	$k / imes 10^{-5} { m s}^{-1}$	
Hex-1-ene	110	
Hex-2-ene	30	
Cyclohexene	10	
Oct-1-ene	109	
Oct-2-ene	31	
2-Methylpent-2-ene	8	

Table 27.4 Rate constants for the hydroformylation of selected alkenes at 383K in the presence of the active catalytic species HCo(CO)₃.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

	HCo(CO) ₄	HCo(CO) ₃ (PBu ₃)	HRh(CO)(PPh ₃) ₃
Temperature / K Pressure / bar Regioselectivity <i>n</i> : <i>i</i> ratio Chemoselectivity (aldehyde predominating over alcohol)	410-450 250-300 ≈3:1 High	450 50−100 ≈9:1 Low	360-390 30 >10:1 High

 Table 27.5
 A comparison of the operating conditions for and selectivities of three commercial hydroformylation catalysts.

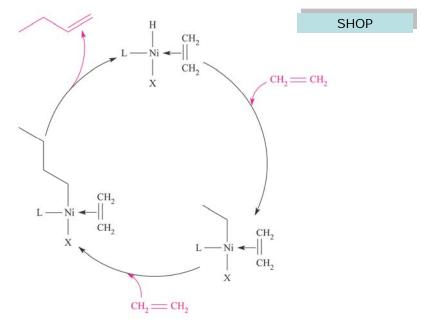


Fig. 27.12 Simplified catalytic cycle illustrating the oligomerization of ethene using a nickel-based catalyst; L = phosphine, X = electronegative group.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

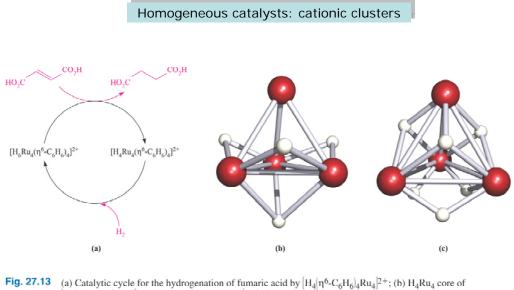


Fig. 27.13 (a) Catalytic cycle for the hydrogenation of fumaric acid by $[H_4(\eta^6-C_6H_6)_4Ru_4]^{2+}$; (b) H_4Ru_4 core of $[H_4(\eta^6-C_6H_6)_4Ru_4]^{2+}$; (b) H_4Ru_4 core of $[H_4(\eta^6-C_6H_6)_4Ru_4]^{2+}$, both determined by X-ray diffraction [G. Meister *et al.* (1994) *J. Chem. Soc., Dalton Trans.*, p. 3215]. ¹H NMR spectroscopic data suggest that $[H_6(\eta^6-C_6H_6)_4Ru_4]^{2+}$ may contain an H_2 ligand and four hydrido ligands. Colour code in (b) and (c): Ru, red; H, white.

Heterogeneous catalysts

Industrial manufacturing process	Catalyst system
NH ₃ synthesis (Haber process)	Fe on SiO ₂ and Al ₂ O ₃ support
Water-gas shift reaction	Ni, iron oxides
Catalytic cracking of heavy petroleum distillates	Zeolites
Catalytic reforming of hydrocarbons to improve octane number	Pt, Pt-Ir and other Pt-group metals on acidic alumina support
Methanation (CO \rightarrow CO ₂ \rightarrow CH ₄)	Ni on support
Ethene epoxidation	Ag on support
HNO ₃ manufacture (Haber-Bosch process)	Pt-Rh gauzes

Physisorption – involves weak van der Waals interactions between the surface and the adsorbate.

Chemisorption – involves the formation of chemical bonds between surface atoms and the adsorbed species.

Table 27.6 Examples of industrial processes that use heterogeneous catalysts.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

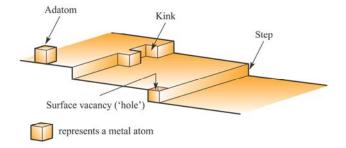
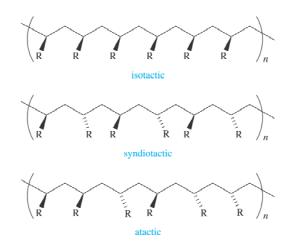
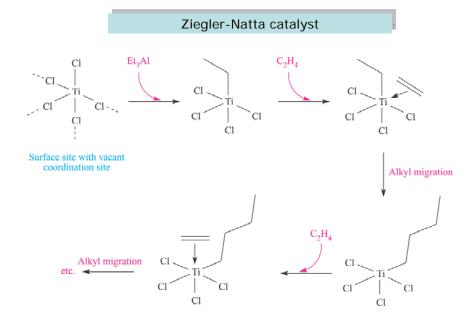
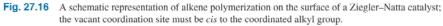
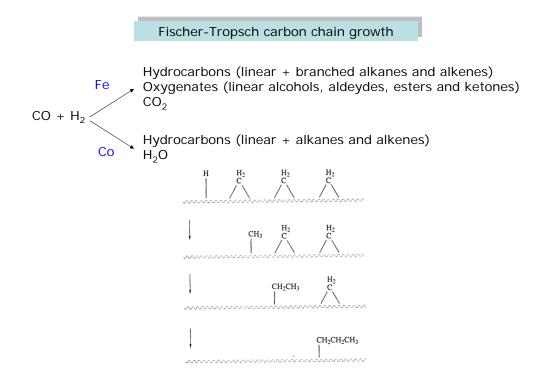
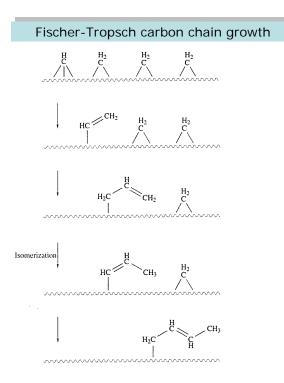
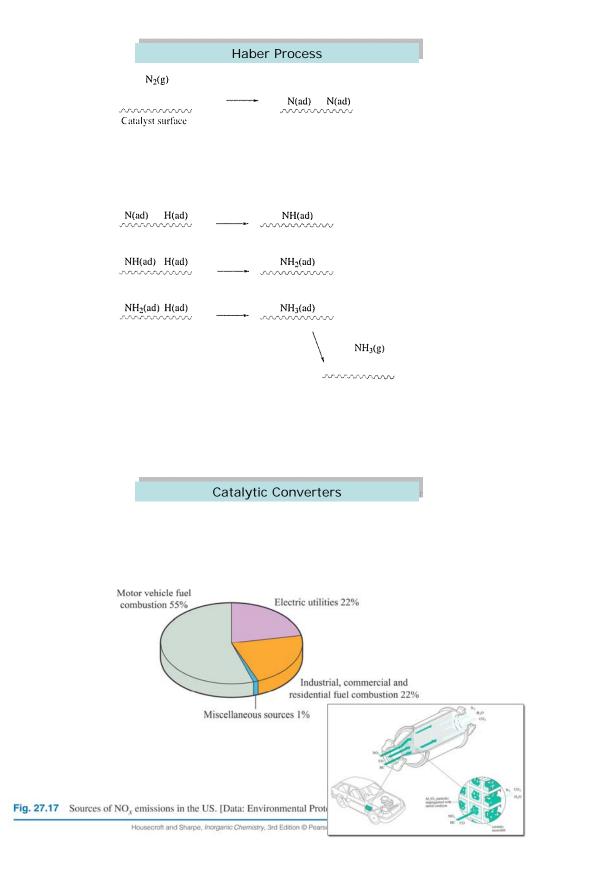


Fig. 27.14 A schematic representation of typical features of a metal surface. [Based on a figure from Encyclopedia of Inorganic Chemistry (1994), ed. R.B. King, vol. 3, p. 1359, Wiley, Chichester.]


Fig. 27.15 The arrangement of R substituents in isotactic, syndiotactic and atactic linear polymers.


Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition © Pearson Education Limited 2008



Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition © Pearson Education Limited 2008

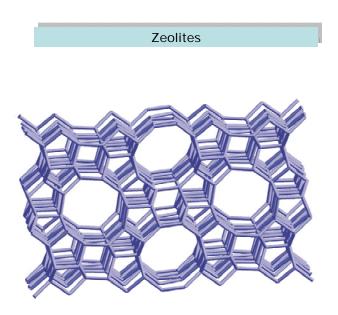
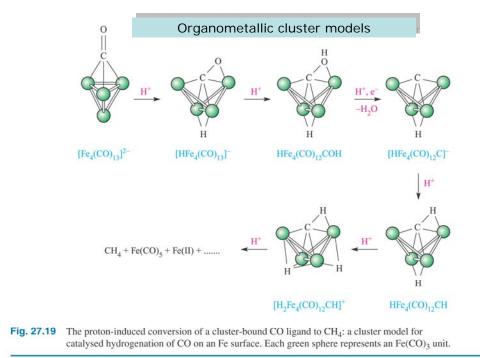



Fig. 27.18 Part of the aluminosilicate framework of synthetic zeolite ZSM-5 (structure-type MFI).

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008