Title: Methods of activation and specific applications of Carbon materials from natural sources

Ph. D. Seminar – II P.Indraneel 4th March 2009

Contents:

I. Introduction

II. Activated carbon – Calotropis Gigantea

Synthesis Characterization Catalytic Application

III. Activated Carbon – Limonea Acidissima

Synthesis Characterization Catalytic Application

IV. Activated Carbon – Borassus Flabellifera

Synthesis Characterization Catalytic Application

V. Adsorptive Desulphurization Process - Application of Carbon Materials

VI. Conclusion


I. Introduction

Activated Carbon Materials

- Highly porous structure
- High specific surface area and tunable porosity
- Hydrophobic and Hydrophilic surface coexist

Applications

- i. Catalysts
- ii. Catalyst supports
- iii. Energy storing media (Methane, Hydrogen, Batteries, Electrodes for supercapacitors)
- iv. Energy conversion (Fuel cells, Solar cells)
- v. Effective in removing pollutants (regulate SO_x and NO_x emissions from fuel combustion in automobiles)

Structure of Activated Carbon

H. Fritzst Oeckli, Carbon 28 (1990) 6 Xiaoge Chen, S. Jeyaseelan, N. Graham, Waste Management 22 (2002) 755

Activated Carbon Materials – Challenges

Production of activated carbon – Designing economic way

> Major Sources

- i. Coal based
- ii. Petroleum pitch based
- iii. Lignocellulosic materials

Exploration of new sources of carbon materials - Need of the hour

Desired physico chemical properties

- i. High specific surface area
- ii. Porosity
- iii. Surface functionality
- iv. Thermal stability
- v. Carbon content
- vi. Carbon purity and
- vii. Adsorptive capacity

Michal Kruk, Bruno Dufour, Ewa B. Celer, Tomasz Kowalewski, Mietek Jaroniec and Krzysztof Matyjaszewski, J. Phys. Chem. B, 109 (2005) 9216 An-Hui Ru and Jing-Tang Zheng, Journal of Colloid and Interface Science, 236 (2001) 369 Junichi Hayashi, Atsuo Kazehaya, Katsuhiko Muroyama, A. Paul Watkinson, Carbon 28 (2000) 1873

Activated Carbon Materials – Lignocellulosic Materials

>Thomas Alwa Edison has successfully employed carbon filament based on biomass in the invention of high-resistance incandescent lamp, where in either Pt or PtIr alloys have failed to provide an antidote

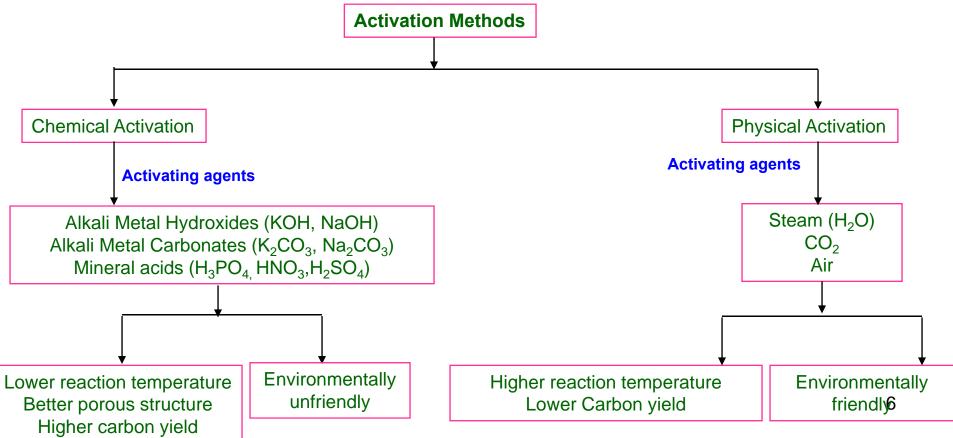
Lignocellulosic materials for Activated Carbon

- i. Renewable
- ii. Inexhaustible supply
- iii. Evenly distribution around the globe
- iv. Viable option compared to fossil fuels
- V. Retention of the structural features of the original plant tissue (biotemplating feature)
- vi. High carbon content (because of easy removal of H and O)

Approach - Rags to Riches

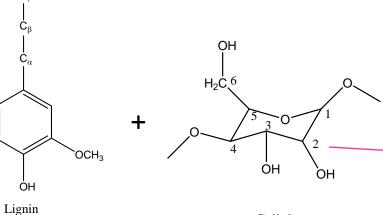
Challenge - Suitable production methods to be developed

Great Leaders of the world, Stories of Achievement, Asa Don Dickinson, Garden City Publishing Co, Inc. Garden city, New York, 1937 Wenming Qiao, Yozo Korai, Isao Mochida, Yuuichi Hori, Takeshi Maeda, Carbon 40 (2002) 351 ⁵ P. K. Malik, Journal of Hazardous Materials B113 (2004) 81


Activated Carbon Materials – Methods of Activation

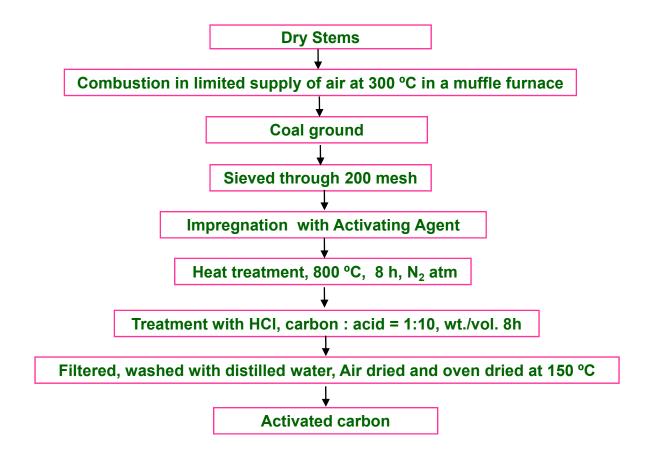
➤Carbon is the only material where surface area values can be modulated from few m²/g to few 1000 m²/g due to the microarchitecture of the pores

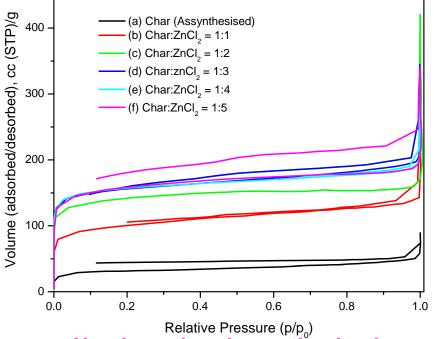
- >Variety of activating agents can be used
- >Functional groups are easily introduced and altered


Process of Activation

- i. Creates porosity
- ii. Generates desired surface functional groups

II. Activated Carbon from Calotropis Gigantea

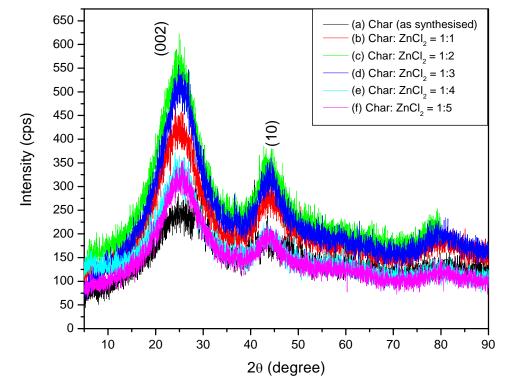



Cellulose

Synthesis i. Effect of Activating agents Characterization Application as Catalyst (HPW and W) support

Activated Carbon from Calotropis Gigantea – Method of Preparation

8



Activated Carbon from Calotropis Gigantea - Textural Properties

 N_2 adsorption-desorption isotherms of (a) as synthesized (char), activated carbon with a Char to ZnCl₂ ratio (wt./wt.%) of (b) 1:1, (c) 1:2, (d) 1:3, (e) 1:4 and (f) 1:5

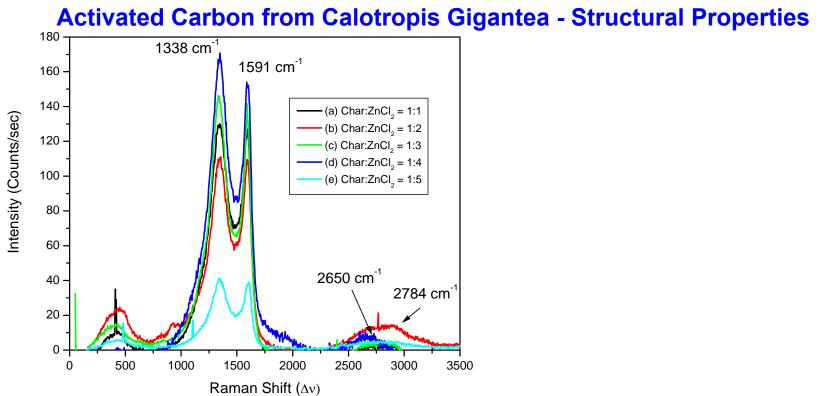
S. No.	Sample	ZnCl ₂ : C (wt./wt.%)	S _{BET} (m²/g)	V _P (cm³/g)	Mean Pore Diameter ⁱⁱ (nm)
1	Char	0	97	0.08	3.3
2	AC1	1	356	0.21	2.36
3	AC2	2	493	0.25	2.03
4	AC3	3	564	0.30	2.13
5	AC4	4	573	0.29	2.02
6	AC5	5	553	0.29	2.1 ⁹

Activated Carbon from Calotropis Gigantea - Structural Properties

> Interlayer spacing values, d_{002} , almost remained unchanged with impregnation ratio of ZnCl₂ to char

> d₀₀₂ values of AC's were greater than the d₀₀₂ value of pure graphitic carbon structure (0.335 nm)

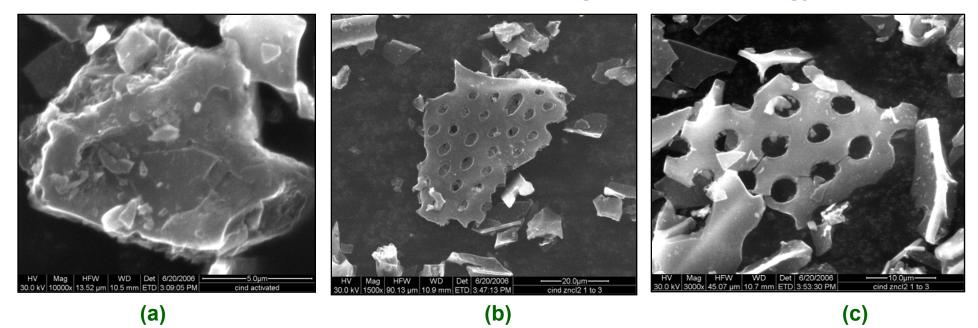
- > L_c values of AC's are of the order of 1 nm
- L_c values decreased with an increase in the amount of the activating agent


 \succ c and a values are 0.06708 nm and 0.2461 nm respectively for typical graphitic carbon structure

The AC's contained roughly about
 2 cell length along the c-direction and about
 14 – 16 cell lengths along the a - direction

XRD pattern of (a) as synthesized (char), activated carbon with a Char to ZnCl₂ ratio (wt./wt.%) of (b) 1:1, (c) 1:2, (d) 1:3, (e) 1:4 and (f) 1:5

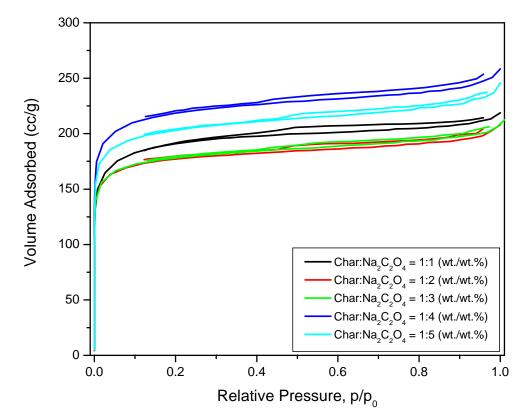
S. No.	Sample	$ZnCl_2 : C (wt./wt.%)$	d ₀₀₂ (nm)	L _c (nm)	L _a (nm)
1	iAC1	1	0.356	1.04	3.94
2	AC2	2	0.356	1.02	3.50
3	AC3	3	0.353	1.03	3.96
4	AC4	4	0.356	0.91	3.72
5	AC5	5	0.350	0.94	3.80 10


i. AC

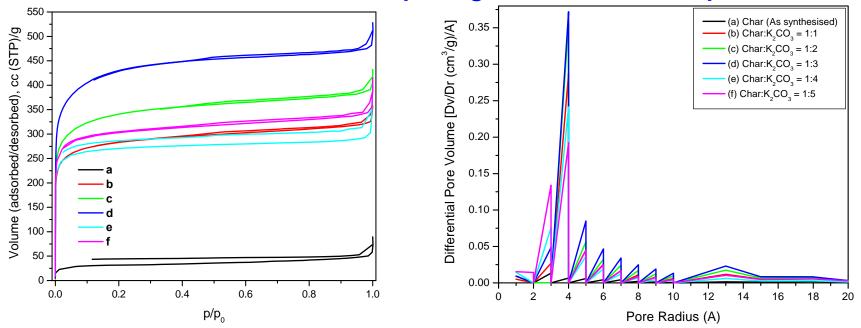
Confocal Raman spectra of activated carbon materials with a Char to ZnCl₂ ratio (wt./wt.%) of (a) 1:1, (b) 1:2, (c) 1:3, (d) 1:4 and (e) 1:5

S. No.	Sample	ZnCl ₂ : C (wt./wt.%)	Peak Intensity Frequency, v _{x,} cm ⁻¹		$\mathbf{R} = \mathbf{I}_{\mathbf{D}} / \mathbf{I}_{\mathbf{G}}$	$L_a(nm) = 4.4/R$ (From Raman)	L _a (nm) (from XRD)
			G band	D band			
1	ⁱ AC1	1	1591	1348	1.40	3.14	3.94
2	AC2	2	1591	1355	1.42	3.09	3.50
3	AC3	3	1591	1331	1.33	3.30	3.96
4	AC4	4	1587	1348	1.48	2.97	3.72
5	AC5	5	1606	1348	1.53	2.87	3.80

Activated Carbon from Calotropis Gigantea - Morphology


SEM images of Activated Carbon from Calotropis Gigantia (a) thermal activation alone (at 800 °C, 8 h, in N₂ atm.)(b) activated with ZnCl₂ (wt/wt. % ratio of Char:ZnCl₂ is 1:3) at 1500 x and (c) at 3000 x

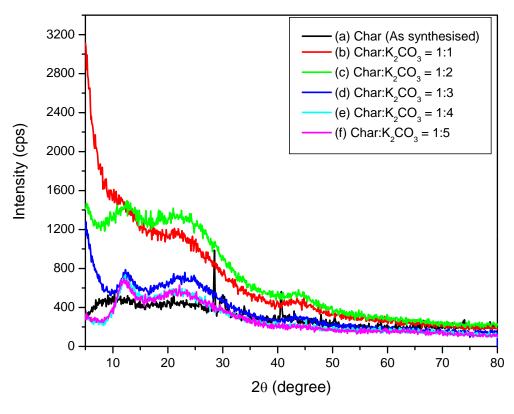
Carbon sample activated by thermal means alone is Nonporous and Heterogeneous with steps and kinks seen on the surface


Activation with ZnCl₂ transformed a non porous carbon samples in to Porous carbon with well aligned uniform cylindrical pores of diameter (size) 2.4 μm

> Activating agent is inevitable for the creation of porous carbon structure

Activated Carbon from Calotropis Gigantea – Na₂C₂O₄ as activating agent

S. No.	Carbon Material	$Na_2C_2O_4$: Char (wt./wt.%)	$S_{BET}(m^2/g)$	$V_{\rm P}$ (cm ³ /g)
1	Char	0	97	0.08
2	AC1	1	707	0.33
3	AC2	2	647	0.31
4	AC3	3	655	0.32
5	AC4	4	785	0.39
6	AC5	5	735	0.37



Activated Carbon from Calotropis Gigantea - Textural Properties

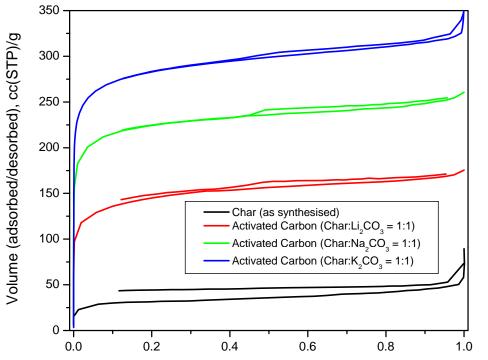
N₂ adsorption-desorption isotherms and PSD curves of carbon materials (a) as synthesized (char), activated carbon with a char to K₂CO₃ ratio (wt./wt.%) of (b) (b) 1:1, (c) 1:2, (d) 1:3, (e) 1:4 and (f) 1:5

S. No.	Sample	K ₂ CO ₃ : C (wt./wt.%)	S _{BET} (m²/g)	V_{p} (cm ³ /g)	Mean Pore Diameter ⁱⁱ (nm)
1	Char	0	97	0.08	3.3
2	ⁱ AC1	1	892	0.50	2.2
3	AC2	2	1083	0.59	2.1
4	AC3	3	1296	0.73	2.2
5	AC4	4	765	0.45	2.3 14
6	AC5	5	922	0.53	2.3

Activated Carbon from Calotropis Gigantea - Structural Properties

i. Two broad diffraction peaks centered at 2θ values of 10 and 22° observed

ii. The broad diffraction peak at a 2θ value of 22° is characteristic of the presence of lignin component


iii. Inherent plant micro structure is retained Upon activation with K_2CO_3 in inert atmosphere (biotemplating feature)

iv. Silica and mineral content removed by Treatment with NaOH and HCI

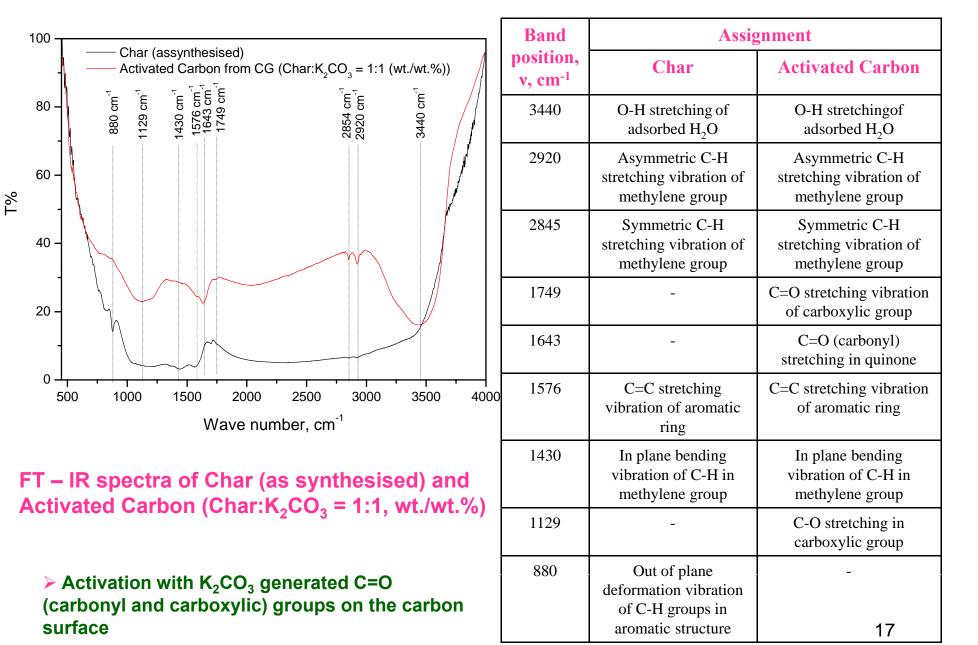
v. New diffraction peak originated at a 2 θ value of 43.5 originated upon activation

vi. The diffraction peak at the 2θ value of 43.5° is attributed to reflection from (10) plane characteristicof turbostratic carbon containing small hexagonal layer units of carbon

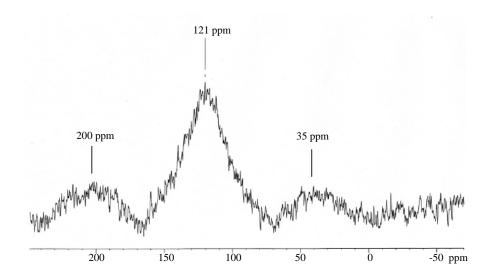
XRD pattern of carbon materials prepared from Calotropis Gigantea, (a) as synthesized (char), activated carbon with a Char to K2CO3 ratio (wt./wt.%) of (b) (b) 1:1, (c) 1:2, (d) 1:3, (e) 1:4 and (f) 1:5 15

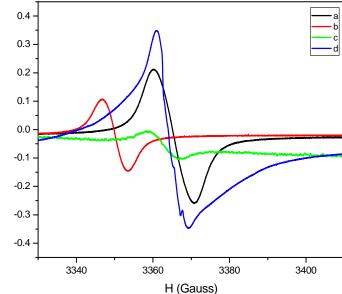
Textural properties of Carbon Materials from Calotropis Gigantea Effect of the nature of *Cation* of the Alkali Metal Carbonate

i. The specific surface area of the activated carbon is dependent on the radii of the cation of the activating agent empolyed


 N_2 adsorption-desorption isotherms (a) as synthesized (char) and activated carbon with a char to activating agent ratio (wt./wt.%) of 1:1, (b) Li_2CO_3 activation (c) Na_2CO_3 activation and (d) K_2CO_3

S. No.	Activating	Ionic radii of	E ⁰ (V) ^{a, b}	Textural properties of Carbon Material	
	agent	the cation (Å)		Specific Surface Area (m ² /g)	Specific Pore Volume (cc/g)
1	Li ₂ CO ₃	0.60	-3.0	480	0.263
2	Na ₂ CO ₃	0.96	-2.7	811	0.395
3	K ₂ CO ₃	1.33	-2.9	892	0.497


a. $M+(aq) + e \longrightarrow M(s)$


b. The standard redox potential of activated carbon is + 0.24 V

Carbon Materials from Calotropis Gigantea – Surface Functionality

Carbon Materials from Calotropis Gigantea – ¹³C MAS NMR and EPR studies

¹³C MAS NMR spectrum of the Char

EPR spectra of (a) char (b) char treated with NaOH followed by HCI, (c) char activated with K_2CO_3 (char: K_2CO_3 (wt./wt.%) =1:3) and (d) DPPH

> Strong resonance line near 121 ppm - carbon nuclei in the aromatic planes

> Broad resonance signal at 35 ppm - aliphatic chains of polymethylene type

> Broad resonance signal at 200 ppm attributable to ketonic carbon groups

S. No.	Carbon Material	g-factor value	ΔH (in Gauss) Peak to peak separation	Spin Concentration per gram of carbon material
1	Char (as synthesized)	2.00092	11.0	0.73 x 10 ¹⁹
2	Char (base and acid treated)	1.99980	6.0	0.33 x 10 ¹⁹
3	Char activated with K_2CO_3 (char: $K_2CO_3 = 1:3$, wt./wt.%)	2.00058	9.5	0.15 x 10 ¹⁶ 18

Activated Carbon from Calotropis Gigantea – Necessity of Activating Agent

Carbon Material	S _{BET} (m²/g)	V _P (cc/g)	Density (g/cc)
Char (As synthesized)	97	0.08	0.31
Base and Acid treated sample	202	0.12	0.36
Thermal activated sample (800 °C, 8 h, N ₂ atm)	381	0.12	0.37

 No significant improvement in S_{BET} with out activating agent

Activated Carbon from Calotropis Gigantea – Optimization of Activation Time

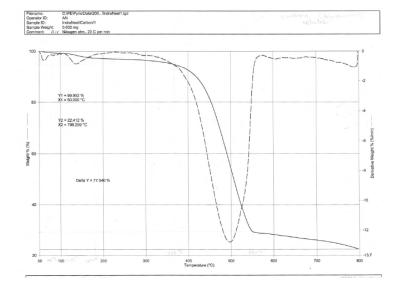
Duration of Activation (h)	S _{BET} (m²/g)	V _P (cc/g)	Density (g/cc)
2	1236	0.59	0.28
4	1161	0.54	0.28
6	1086	0.52	0.28
8	1296	0.73	0.28

The optimum period of activation only is 2 h

Activated Carbon from Calotropis Gigantea – Comparison with Commercial Activated Carbon Samples

Carbon Material	S_{BET} (m ² /g)	V _P (cc/g)	Density (g/cc)
CDX 975	215	0.28	0.23
Vulcan XC 72 R	224	0.46	0.33
Black Pearl 2000	1012	1.15	0.15
Nuchar	1271	0.33	1.05
Activated Carbon from Calotropis Gigantea	1291	0.73	0.28

 Activated Carbon produced from Calotropis
 Gigantea showed higher
 S_{BET} and V_p than commercial activated
 carbon materials


S. No.	Activating agent	S _{BET} (m²/g)	V _p cm³/g	Type of isotherm/porosity
1	Li ₂ CO ₃	478	0.26	Type I (Microporous)
2	Na ₂ CO ₃	811	0.40	Type I (Microporous)
3	K ₂ CO ₃	892	0.50	Type I (Microporous)
4	Ca(CO ₃) ₂	524	0.33	Type I (Microporous)
5	Ba(CO ₃) ₂	170	0.10	Type I (Microporous)
6	Zn(CO ₃) ₂	626	0.30	Type I (Microporous)
7	NaCl	400	0.20	Type I (Microporous)
8	NaBr	319	0.16	Type I (Microporous)
9	KBr	275	0.10	Type I (Microporous)
10	Nal	58	0.04	Type I (Microporous)
11	CaO	521	0.25	Type I (Microporous)
12	Ca(OH) ₂	189	0.11	Type I (Microporous)
13	CaCl ₂	156	0.09	Type I (Microporous)
14	Ba(OH) ₂	152	0.08	Type I (Microporous)
15	Al ₂ O ₃	174	0.17	Type IV (Mesoporous)
16	AI(NO) ₃	253	0.19	Type I (Microporous)
17	Urea	439	0.21	Type I (Microporous)
18	Sodium acetate	548	0.26	Type I (Microporous)
19	Sodium oxalate	707	0.33	Type I (Microporous)
20	Sodium potassium tartarate	394	0.20	Type I (Microporous)
21	Sodium citrate	419	0.20	Type I (Microporous)
22	Sodium tartarate	394	0.20	Type I (Microporous)
23	Citric acid	127	0.07	Type I (Microporous)
24	Tartaric acid	42	0.04	Type I (Microporous)
25	Oxalic acid	317	0.14	Type I (Microporous)


Activated Carbon from Calotropis Gigantea – Different Activating Agents

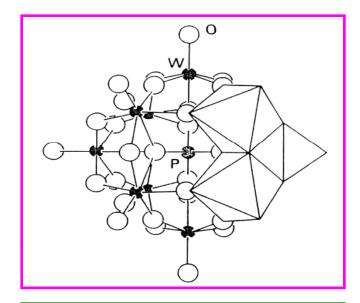
Element	Carbon Materials from Calogropis Gigantea				
(wt. %)	Char (As synthesized)	Base and Acid treated (NaOH and HCl) treated	Activated with K_2CO_3 (Char: $K_2CO_3 = 1:3$)		
Carbon	73.13	77.62	80.04		
Hydrogen	2.61	2.63	3.50		
Nitrogen	0.81	0.82	0.67		
Sulphur	0.36	0.33	0.36		
Total	76.91	81.40	84.57		
Ash content	12.7	4.0	1.8		
Oxygen*	10.39	14.6	13.63		

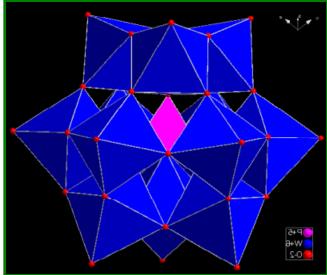
Carbon Materials from Calotropis Gigantea – Chemical composition

Carbon Materials from Calotropis Gigantea – Thermal Stability

TG-DTG curves for (a) Char and (b) activated carbon from Calotropis Gigantea in air at a heating rate of 20 °C/min → Thermal stability improved upon activation with K₂CO₃

Heteropoly acids – Unique features

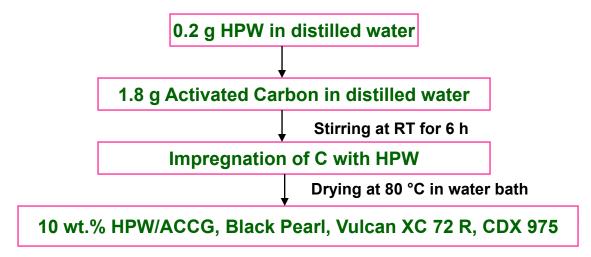

- Multifunctional
- Structural mobility
- Strong Bronsted acidity
- Homogeneous as well as heterogeneous
- Efficient oxidants
- Easy alteration of chemical composition
- Structure preserved upon substitution
- High solubility in polar solvents
- Environmentally friendly


Draw backs :

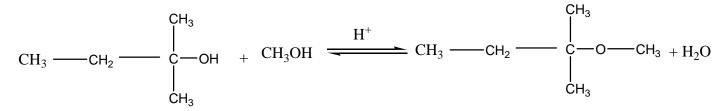
- ***** Low specific surface area (1-10 m²/g)
- ***** Thermally stable only up to 773 K

Solution :

✓ Search for suitable carrier



Keggin ion structure₂₂


Activated Carbon from Calotropis Gigantea (ACCG) – Support for H₃PW₁₂O₄₀ (HPW)

Catalyst Preparation: Dry impregnation

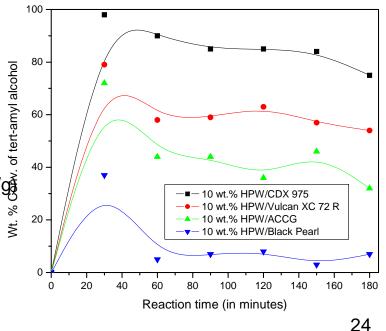
Evaluation of Catalytic Activity of HPW/C catalysts:

Reaction: Vapour phase synthesis of tert – amyl methyl ether (TAME) from tert – amyl alcohol and MeOH

- Conventional gasoline 0 to 3.7 % oxygen content TAME Useful gasoline additive
- Incomplete fuel combustion
- Emission of noxious gases
- Oxygenates facilitates efficient combustion
- Fuel oxygenate (Octane enhancer)
- Replacment for Tetraethyl lead (TEL)

IE – Useful gasoline additive Improve burning characteristics of Fuels Reduces CO emissions in automobiles High Octane No. 106 Low volatility 23

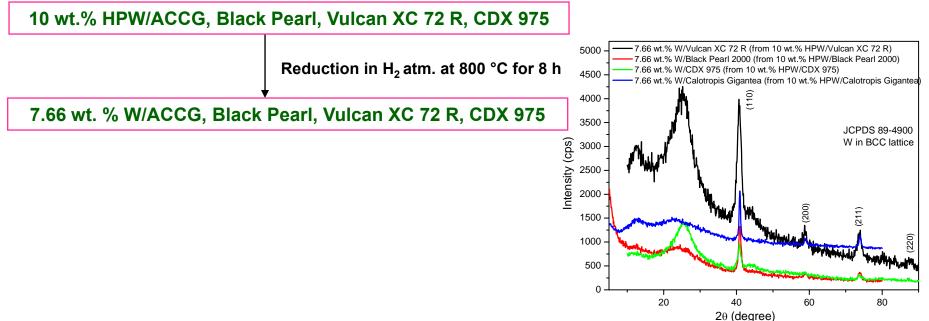
HPW/C for the Synthesis of TAME (t-amyl methyl ether)


Catalyst	10 wt% HPW/CDX 975		10 wt% HPW/Vulcan XC72R		10 wt% HPW/Carbon from Calotropis Gigantea			10 wt% HPW/Black pearl						
	Wt%	% select	% selectivity		6 selectivity		Wt% % selectivity		Wt%	% select	ivity	Wt% % selective		ivity
Reaction Time in min	conv. of TAA	TAME	olefins	conv. of TAA	TAME	olefins	conv. of TAA	TAME	olefins	conv. of TAA	TAME	olefins		
30	98	60	40	79	84	16	72	52	48	37	45	55		
60	90	50	40	58	94	6	44	57	43	5	19	81		
90	85	51	49	59	86	15	44	47	53	7	41	59		
120	85	60	40	63	75	25	36	64	36	8	61	39		
150	84	41	59	57	95	5	46	60	40	3	44	56		
180	75	65	35	54	87	13	32	73	37	7	47	53		

 $= 100 \, {}^{\circ}\text{C}$ **Reaction temperature** Mole ratio of the feed, MeOH : TAA = 10:1

Flow rate of the feed

= 10 ml/h


Flow rate of the feed = 10 ml/h Flow rate of carrier gas (N_2) = 30 ml/min GC Column used = OV 101 Activity Order: Packed column > HPW/CDX 975 (215 m²/g) > HPW/Vulcan XC 72 R (224 m²/g) > HPW/ACCG (1012 m²/g)) > HPW/Black Pearl (1091 m²/g)) > HPW/ACCG (1012 m²/g)) > HPW/Black Pearl (1091 m²/g)) > High activity of the catalyst is derived from the support (CDX 975) with the least specific surface area CDX 975 support offers optimum dispersion and thereby resulting in mild acidity needed for etherification reaction because of the relatively low specific surface area value

Plot of wt. % conversion of amyl^t alcohol Vs reaction time (in min)

Activated Carbon from Calotropis Gigantea (ACCG) – Support for W

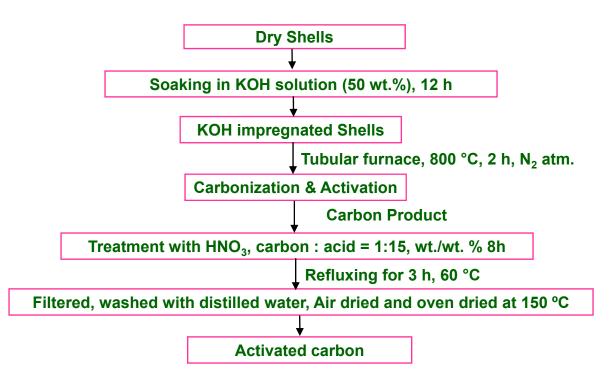
Catalyst Preparation: Dry impregnation followed by H₂ reduction

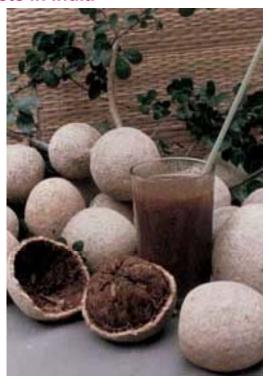
Hydrogenation reaction - Significance

- Prime and foremost reaction in HDS and HDN reactions
- Around 80 % of the HDS of 4, 6 DMDBT proceeds via the hydrogenation route where in the adsorbed
- 4, 6 DMDBT is first hydrogenated and then the hydrogenated compound is desulphurized
- Hydrogenation of olefins An important reaction in chemical industry
- Relevant to petrochemical industries
- Many catalytic processess and applications in the pharmaceutical, agrochemical and petrochemical industries is based on catalytic hydrogenation of unsaturated hydrocarbons by heterogeneous catalysts

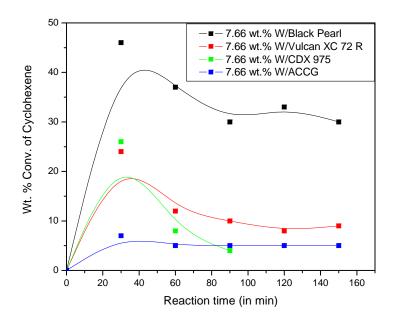
Hydrogenation activity of W/C catalysts is evaluated by the vapour phase hydrogenation of Cyclohexene

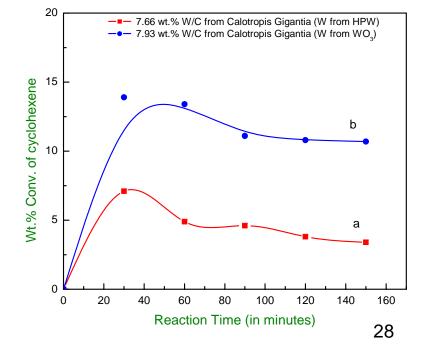
Summary:

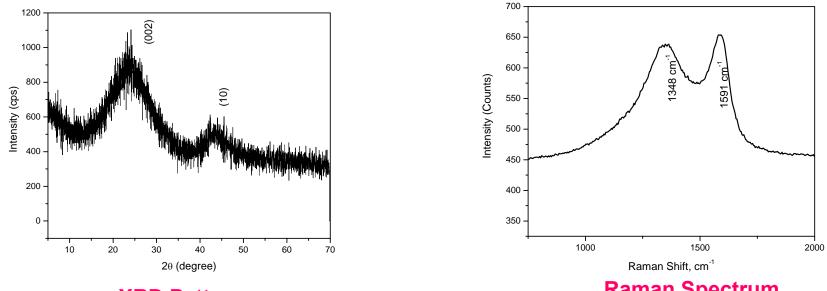

- 1. Calatropis Gigantea is an appropriate precursor for activated carbon with desirable properties
- 2. Among several activating agents, K₂CO₃ showed best performance
- 3. In addition to the creation of porosity, K₂CO₃ activation oxidized the carbon surface generating C=O (carbonyl and carboxylic groups)
- 4. The optimum conditions for the activation with K_2CO_3 are : Char:Activating agent (wt./wt.% ratio) = 1:3, Activation temperature = 800 °C, Activation time = 2 h, Carbon:HCI (wt.% /vol.% = 1:10)
- 5. All the activating agents tested induced microporosity except Al₂O₃ which resulted in the formation of mesopores (mean pore diamter = 3.9 nm)
- 6. Impurities in the carbon precursor (silica and alkali and alkaline earth metals) were reduced from 12.7 wt.% in the char to 1.8 wt.% in the activated carbon with the method of activation employed
- 7 The presence of paramagnetic centers (dangling bonds) reduced upon activation. EPR spectroscopic studies indicated the level of impurites in the original char and the activated carbon
- 8. The activated carbon from Calotropis Gigantea is employed as support for HPW for the vapour phase synthesis of TAME. HPW/ACCG showed higher catalytic activity than HPW/Black Pearl and comparable performance with HPW/Vulcan XC 72 R
- The activated carbon from Calotropis Gigantea is employed as support for W for the vapour phase hydrogenation of cyclohexene. HPW/ACCG showed comparable catalytic activity with that of W/Vulcan XC 72 R and W/CDX 975


III. Activated Carbon from Limonea Acidissima

Source of carbon: Shell of wood appleTree: wood apple tree, Bilva patra, Bel, Elephant woodBinomial nomenclature: Feronia Limonia, Limonia Acidissima,Limonia elaphantumHabitat: Found all over the deciduous forests in India


Synthesis Characterization Application as Catalyst (Pt) Support




Catalyst	W/Black Pearl W/Vulcan XC 72 R		W/CDX 975			W/ACCG						
	Wt%	% select	ivity	Wt%	Wt% % selectivity		Wt% % selectivity		ivity	Wt% % sele		vity
Reaction Time in min	conv. of Cyclo hexene	Cycloh exane	Other product	conv. of Cyclo hexene	Cyclo hexane	Other product	conv. of Cyclo hexene	Cyclo hexane	Other product	conv. of Cyclo hexene	Cyclo hexane	Benzene
30	46	76	24	24	84	16	26	79	11	7	51	49
60	37	85	15	12	82	18	8	88	12	5	39	61
90	30	85	15	10	83	17	4	87	13	5	44	56
120	33	86	14	8	82	18				5	36	64
150	30	87	13	9	82	18				5	37	63

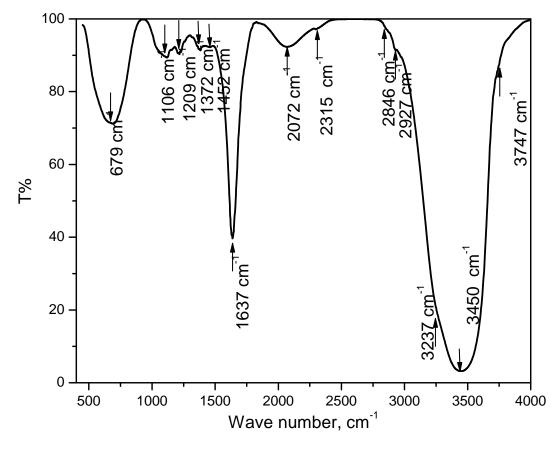
Activated Carbon from Calotropis Gigantea (ACCG) – Support for W

Effect of Carbon Support on the Hydrogenation activity Effect of W precursor on the Hydrogenation activity

Activated Carbon from Limonea Acidissima - Structural Properties

XRD Pattern

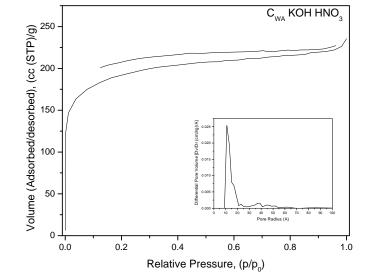
Raman Spectrum


Crystallographic structural details deduced from XRD studies

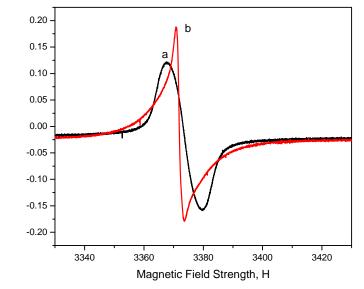
S. No.	Sample	d ₀₀₂ (nm)	*L _c (nm)	*L _a (nm)
1	Activated Carbon, C _{WA}	0.377	1.1	3.656

Structural parameters deduced from the confocal Raman spectroscopic studies

S. No.	Sample	Peak Intensity Frequency, v _{x,} cm ⁻¹		$\mathbf{R} = \mathbf{I}_{\mathrm{D}} / \mathbf{I}_{\mathrm{G}}$	L _a (nm) = 4.4/R (From Raman)	L _a (nm) (from
		G band	D band			XRD)
1	C _{WA}	1591	1348	1.408	3.125	29 656


Activated Carbon from Limonea Acidissima – Surface Functionality

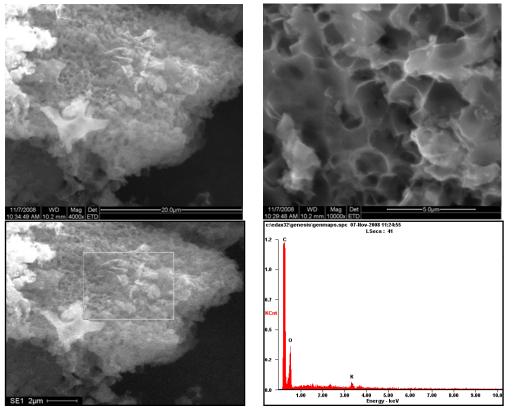
FT – IR spectrum of Activated Carbon (KOH activation)


Band position v, cm ⁻¹	Assignment
3747	Isolated –OH groups
3450	O-H stretching vibration of surface hydroxyl groups and adsorbed water. Asymmetry (shoulder like feature at 3237 cm ⁻¹) indicated presence of hydrogen bonding interaction
2927	Aliphatic, asymmetric C-H stretching vibration of methylene group
2846	Aliphatic, symmetric C-H stretching vibration of methylene group
2315	Ketone group
1637	C=O (carbonyl) stretching vibration in quinone
1452	In plane bending vibration of C-H of methylene group
1372	In plane bending vibration of C-H in methyl group
1000 - 1300 -	C-O stretching in phenols, alcohols, acids, ethers and esters
679	Out of plane deformation vibration of C-H groups located at the edges of aromatic planes

Activated Carbon from Limonea Acidissima Textural Properties and Electron Spin Density

N₂ adsorption-desorption isotherm and pore size distribution curve

Textural Properties deduced from Isotherm


EPR spectrum of (a) Activated Carbon from Limonea Acidissima and (b) DPPH

S. No.	Sample	S _{BET} (m²/g)	V _P (cm³/g)	Mean Pore Diameter ⁱ	(nm)
1	Activated carbon, C _{WA}	698	0.35	2.0	

Electron Spin Concentration deduced from Isotherm

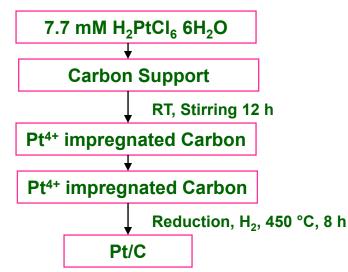
S. No.	Carbon Material	g-factor value	ΔH (in Gauss) Peak to peak separation	Spin Concentration per gram of carbon material
1	C _{WA}	2.03095	12	0.13 x 10 ¹⁹ 31

Activated Carbon from Limonea Acidissima – Morphology and Composition

10, 000 x

SEM images and **EDAX** spectrum

The elemental composition from EDAX


S. No.	Element	Wt. %	At. %
1	Carbon	74.84	80.02
2	Oxygen	24.70	19.83
3	Potassium	0.45	0.15

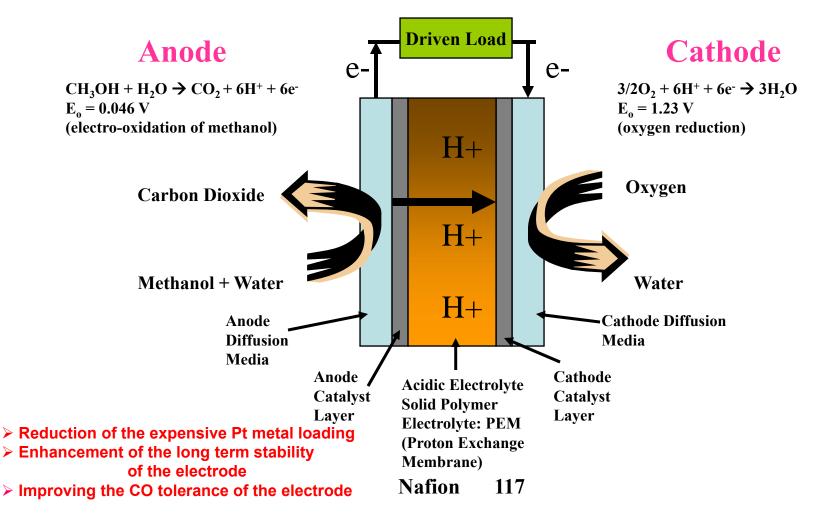
> Ash content – 1.04%

4000 x

Activated Carbon from Limonea Acidissima – Catalyst (Pt) Support

Catalyst Preparation: Dry impregnation

Evaluation of Electrocatalytic Activity of Pt/C catalysts:

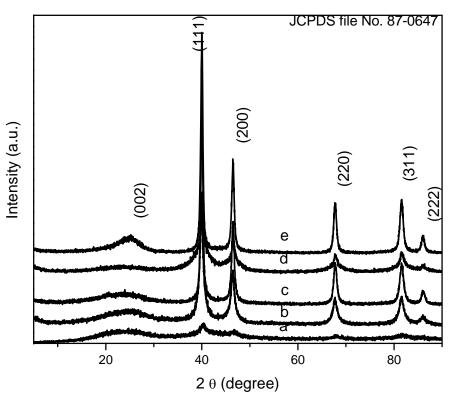

Reaction studied: MeOH electrooxidation

 $CH_3OH + H_2O \longrightarrow CO_2 + 6H^+ + 6e^- = 0.046 V$

Objective:

- i. Increase Pt utilization
- ii. Produce active, stable and CO tolerant electrocatalyst

Direct Methanol Fuel Cell (DMFC)



Overall Reaction

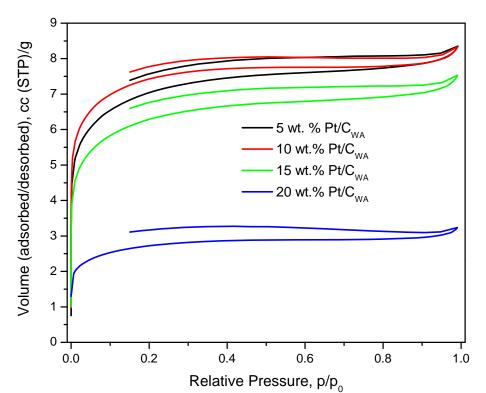
 $CH_3OH + 3/2 O_2 + H_2O \rightarrow CO_2 + 3H_2O E_{cell} = 1.18 V$

- > Acidic electrolytes are usually more advantageous compared to basic electrolytes
- \rightarrow Acidic electrolytes aid CO₂ rejection
- > Insoluble carbonates are formed in alkaline electrolytes

Dispersion of Pt crystallites on Carbon Support

 Diffraction peaks characteristic of Pt metal with a face centered cubic lattice

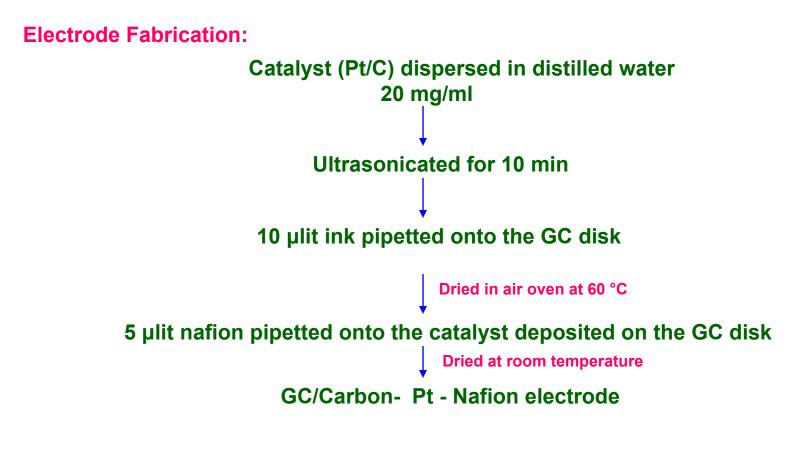
The lattice constant value of around 0.39 nm correlated well with the FCC structure of Pt metal


The reflection from (220) plane of Pt metal is considered for the calculation of crystallite size

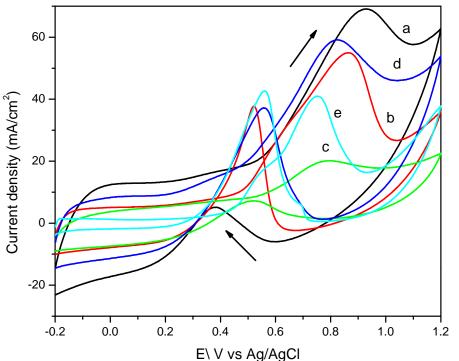
The crystallite size of Pt is found to be dependent on the Pt loading and also on the nature of the carbon support

X-ray diffraction patterns of (a) 5 wt.% Pt/CWA (b) 10 wt.% Pt/CWA (c) 15 wt.% Pt/CWA and (d) 20 wt.% Pt/CWA and (e) 20 wt.% Pt/Vulcan XC 72 R

Catalyst	Crystallite size (nm)	Lattice constant, a, (nm)
5 wt. % Pt/CWA	5.0	0.3897
10 wt. % Pt/CWA	10.2	0.3909
15 wt. % Pt/CWA	13.5	0.3907
20 wt. % Pt/CWA	10.4	0.3904 35
20 wt.% Pt/Vulcan XC 72	13.1	0.3909


Textural Properties of Pt/C Electrocatalysts

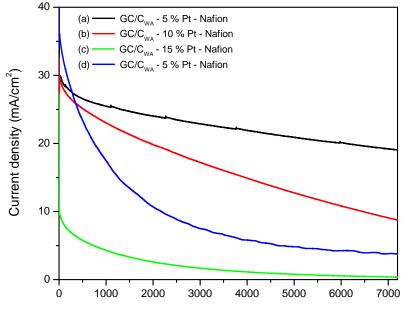
 N_2 adsorption-desorption isotherms of Pt/C_{WA} electro catalysts (a) 5 wt.% Pt/C_{WA}, (b) 10 wt.% Pt/C_{WA} (c) 15 wt.% Pt/C_{WA} and (d) 20 wt. % Pt/C_{WA}


S. No.	Electro catalyst	S _{BET} (m²/g)	ⁱ S _{Micropore} (m ² /g)	$^{ii}V_{p}(cm^{3}/g)$	Mean Pore Diameter ⁱⁱⁱ (nm)
1	5 wt. % Pt/C _{WA}	505	267	0.289	2.28
2	10 wt. % Pt/C _{WA}	526	318	0.288	2.19
3	15 wt. % Pt/C _{WA}	451	233	0.261	2.31
4	20 wt. % Pt/C _{WA}	195	102	0.119	2.44

Electrochemical Measurements

Experimental Conditions:

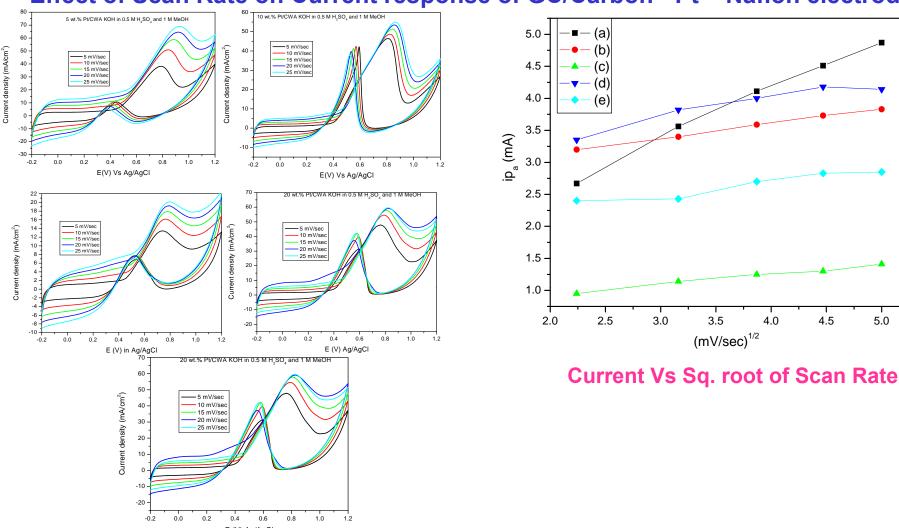
Electrolyte	: 0.5 M H ₂ SO ₄
Working Electrode	: Pt/C catalyst deposited on GC disk
Reference Electrode	: Ag/AgCl, 3.5 M KCl (+ 0.205 V Vs NHE)
Counter Electrode	: Pt foil (1.5 cm ²)
Scan rate	: 5, 10, 15, 20 and 25 mV/sec


MeOH Electrooxidation Activity of Pt/C catalysts

Cyclic Voltammetric response of (a) GC/C_{WA} - 5 wt.% Pt - Nafion electrode (b) GC/C_{WA} - 10 wt.% Pt - Nafion electrode (c) GC/C_{WA} - 15 wt.% Pt - Nafion electrode and (d) GC/C_{WA} - 20 wt.% Pt - Nafion electrode and (e) GC/Vulcan XC 72 R - 20 wt.% Pt - Nafion electrode in 0.5 M H₂SO₄ and 1 M MeOH, at a scan rate of 25 mV/sec between -0.2 to 1.2 V Vs Ag/AgCI

Comparison of Electrocatalytic Activity – Pt/C_{WA} and Pt/Vulcan XC 72 R

S.	S. Electrode Onset		i _f /i _b		Activity*		
No.		Potential, V		Forwar	d sweep	Reverse	sweep
				I (mA/cm ²)	E (V)	I (mA/cm ²)	E (V)
1	GC/C _{WA} -5 % Pt-Nafion	0.21	14.4	69.0	0.92	4.97	0.37
2	GC/C _{WA} -10 % Pt-Nafion	0.18	1.45	55.0	0.86	37.6	0.52
3	GC/C _{WA} -15 % Pt-Nafion	0.30	2.76	20.0	0.79	7.2	0.51
4	GC/C _{WA} -20 % Pt-Nafion	0.18	1.60	58.9	0.82	37.28	0.51
5	GC/Vulcan XC 72 R-20 % Pt-Nafion	0.25	0.96	40.9	0.75	42.6	38 _{0.56}


Electrochemical Stability of Pt/C catalysts - Chronoamperometry

Chromoamperometric response of (a) GC/C_{WA} - 5 wt.% Pt - Nafion electrode (b) GC/C_{WA} - 10 wt.% Pt - Nafion electrode (c) GC/C_{WA} - 15 wt.% Pt - Nafion electrode and (d) GC/C_{WA} - 20 wt.% Pt - Nafion electrode polarized at + 0.6 V Vs Ag/AgCl in 0.5 M H₂SO₄/ 1 M MeOH for 3 hours

S. No.	Electrode	Acti	vity*	% Decrease in
		Initial (I), mAcm ⁻ ₂	Final (I), mAcm ⁻²	activity after 3 hs at + 0.6 V
1	GC/C _{WA} -5 % Pt-Nafion	25.2	19.1	24
2	GC/C _{WA} -10 % Pt-Nafion	29.7	19.0	36
3	GC/C _{WA} -15 % Pt-Nafion	10.0	0.4	96
4	GC/C _{WA} -20 % Pt-Nafion	36.1	3.7	89

*Stability evaluated in 0.5 M H₂SO₄ and 1 M CH₃OH for 3 h with the electrode being polarized at 39 0.6 V Vs Ag/AgCI

Effect of Scan Rate on Current response of GC/Carbon- Pt – Nafion electrode

Dependence of peak currents on the square roots of scan rates for

- (a) GC/Pt CWA 5 wt.%- Nafion electrode, (b) GC/Pt CWA 10 wt.%- Nafion electrode,
- (C) GC/Pt CWA 15 wt.%- Nafion electrode, (d) GC/Pt CWA 20 wt.%- Nafion electrode
- and (e) GC/Pt Vulcan XC 72 20 wt.% Nafion electrode in 0.5 M H₂SO₄ and 1 M MeOH, (d)
- at different scan rates (5, 10, 15, 20 and 25 mV/sec) between -0.2 to 1.2 V Vs Ag/AgCI **(e)**

Current varied linearly as a function of sq. root of scan rate

MeOH electrooxidation on Pt/C catalysts is diffusion controlled

3.5

(mV/sec)^{1/2}

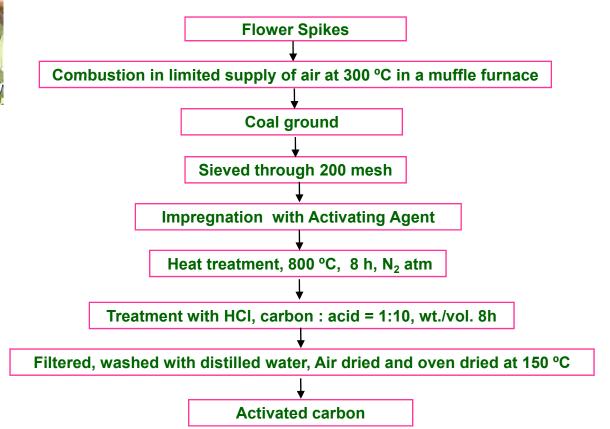
4.0

4.5

5.0

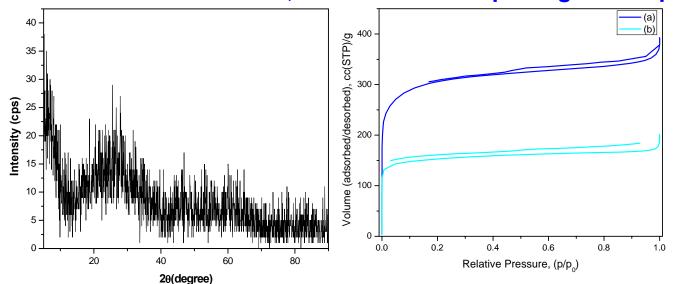
Summary:

- Limonea Acidissima Shells are suitable precursor for producing activated carbon
- KOH activation followed by HNO3 treatment resulted in high specific surface area carbon material (698 m²/g)
- Quinone type carbonyl (C=O) functional groups are formed on the surface of the carbon upon activation with KOH followed by HNO₃ treatment
- Significant amount of unpaired electron spins (0.13 x 10¹⁹ spins/g) with g value (2.03095) close to free electron g value are observed. The spin concentration values are comparable with those of commercial acetylene black (3.8 x 1019) and graphon (1.1 x 1019).
- The activated carbon material produced from Limonea Acidissima by KOH activation is a suitable support for Pt for the electroxidation of MeOH
- The excellent performance of 5 wt. % Pt/C_{WA} is attributed to the increase in the extent of utilization of Pt metal because of the smaller crystallite size of Pt (5 nm)
- The use of carbon material from Limonea acidissima as support for Pt offered the promise of effective utilization of Pt, higher electrooxidation (MeOH) activity and CO tolerance compared to 20 wt.% Pt/Vulcan XC 72 R prepared under identical conditions
- Pt/CWA catalysts showed improved CO tolerance compared to Pt/Vulcan XC 72 R
- With the same amount of Pt loading (20 wt.%) the crystallite size of Pt on CWA support is smaller (10.4 nm) compared to the crystallite size (13.1 nm) on Vulcan XC 72 R (commercial fuel cell grade carbon support)
- Carbon material from the inexpensive and abundant source of wood apple shells can be a substitute of commercial fuel cell grade carbon


IV. Activated Carbon from Borassus Flabellifera (ACBF)

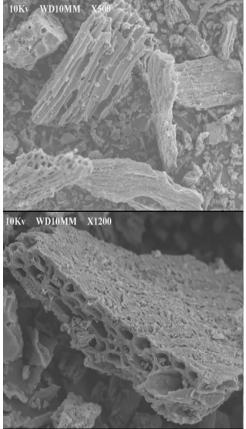
Common Names : Palmyra palm, Toddy palm, wine palm, Talauriksha palm Distribution : India, Srilanka

Synthesis Characterization Application as Catalyst (HPW & Pt) support



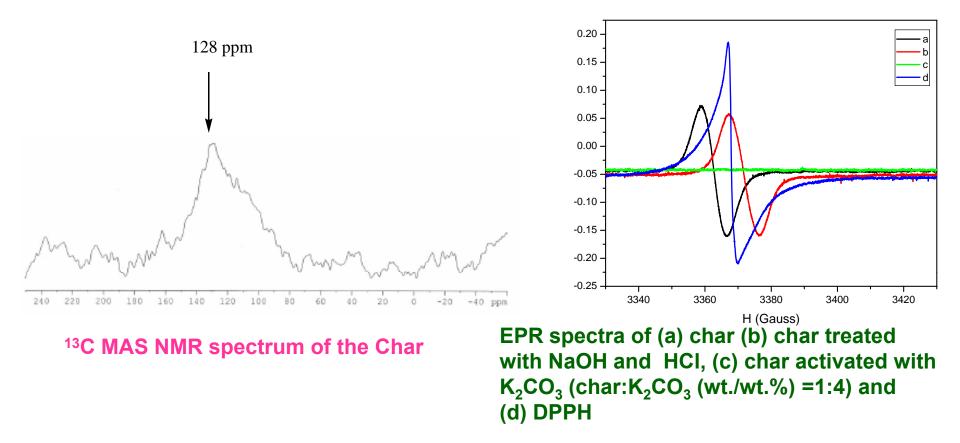
B. Viswanathan, T. K. Varadarajan, P. Indra Neel, Patent No. IN 2007 CH00376

42


Activated Carbon from Borassus Flabellifera Structural, Textural and Morphological Properties

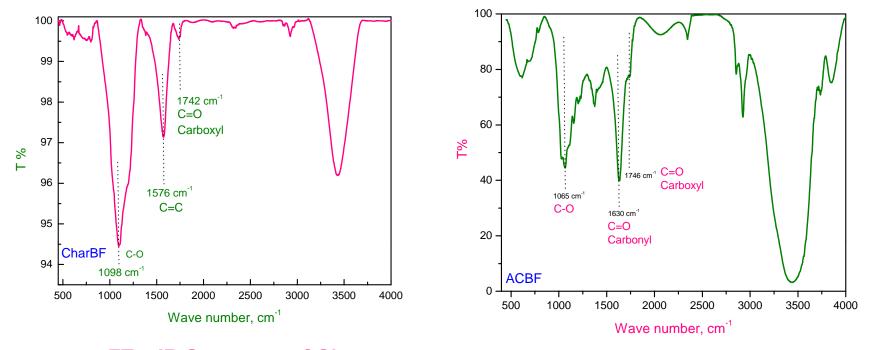
(a) 500 x

XRD pattern of Activated Carbon


 N_2 adsorption-desorption isotherms of (a) activated carbon with a Char:K₂CO₃ (wt./wt.%) = 1:1 of (b) Thermal activated carbon (800 °C, 8 h, Ar atm.

(b) 1200 x

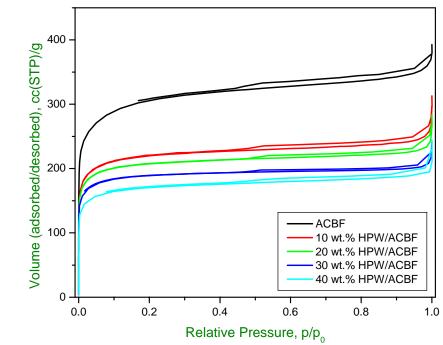
S. No.	Sample	K ₂ CO ₃ : C (wt./wt.%)	S _{BET} (m²/g)	V _P (cm³/g)	Mean Pore Diameter ⁱⁱ (nm)
1	Char	0	17	0.07	10.0
2	Activated with K ₂ CO ₃	1	1070	0.55	2.0
3	Thermal Activated	0	550	0.28	2.0 ⁴³


Carbon Materials from Borassus Flabellifera – ¹³C MAS NMR and EPR studies

> Strong resonance line near 121 ppm - carbon nuclei in the aromatic planes

S. No.	Carbon Material	g-factor value	ΔH (in Gauss) Peak to peak separation	Spin Concentration per gram of carbon material
1	Char (as synthesized)	2.01033	7.5	0.62 x 10 ¹⁹
2	Char (base and acid treated)	2.01344	9.0	0.55 x 10 ¹⁹
3	Char activated with K_2CO_3 (char: $K_2CO_3 = 1:4$, wt./wt.%)	-	-	- 44

Carbon Materials from Borassus Flabellifera – Surface Functionality



FT – IR Spectrum of Char

FT – IR Spectrum Activated Carbon

In the activated carbon C=O (quinone type carbonyl groups) predominated over the C=C stretching in the aromatic ring

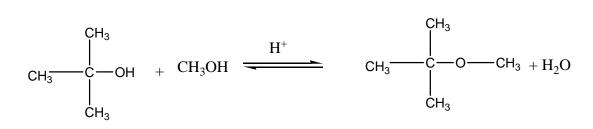
> This indicates extensive oxidation of carbon surface upon activation with K_2CO_3 (Char: $K_2CO_3 = 1:1$)

for HPW/BFAC

Activated Carbon from Borassus Flabellifera – Support for HPW

b d % е 1000 2500 500 1500 2000 3000 3500 4000 Wave number (cm⁻¹) FT – IR spectra of HPW/BFAC

N₂ adsorption-desorption isotherm

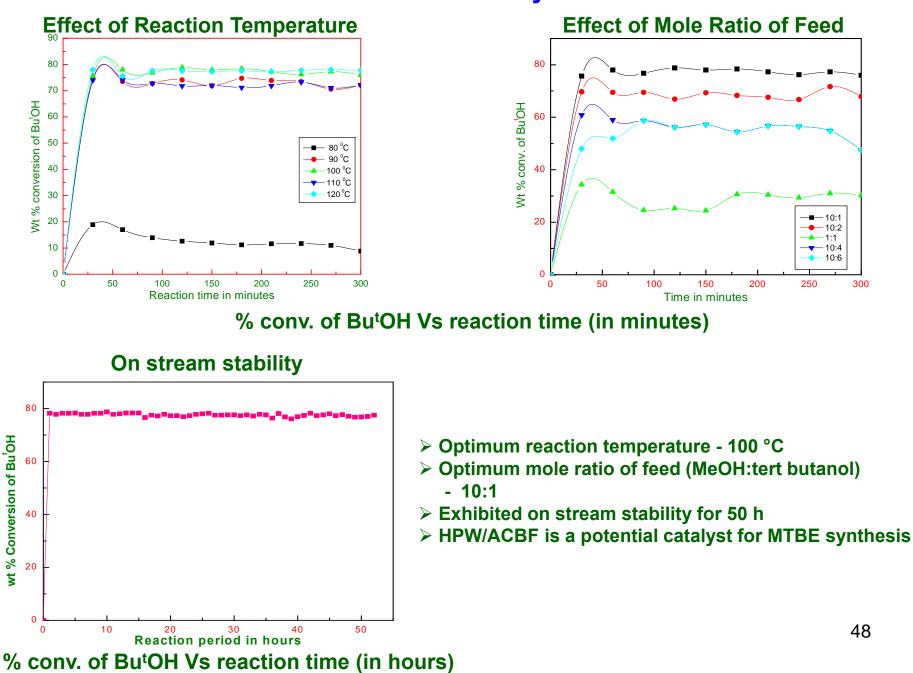

Catalyst	S _{BET} (m ² g ⁻¹)	V _P (cm ³ g ⁻¹)
ACBF	1070	0.5557
10 wt% HPW/ACBF	786	0.3864
20 wt% HPW/ACBF	756	0.3609
30 wt% HPW/ACBF	678	0.3133
40 wt% HPW/ACBF	582	0.2916

 	Speed	u Ui	 WBIAO

Band Positi	Assignment	
Bulk HPW	HPW/ACBF	
1080	1072 - 1091	P-O
983	964 - 988	W=O _t
889	895 - 910	W-O-W _c
839	795 - 819	W-Q ₆ W _e

Activated Carbon from Borassus Flabellifera – Support for HPW

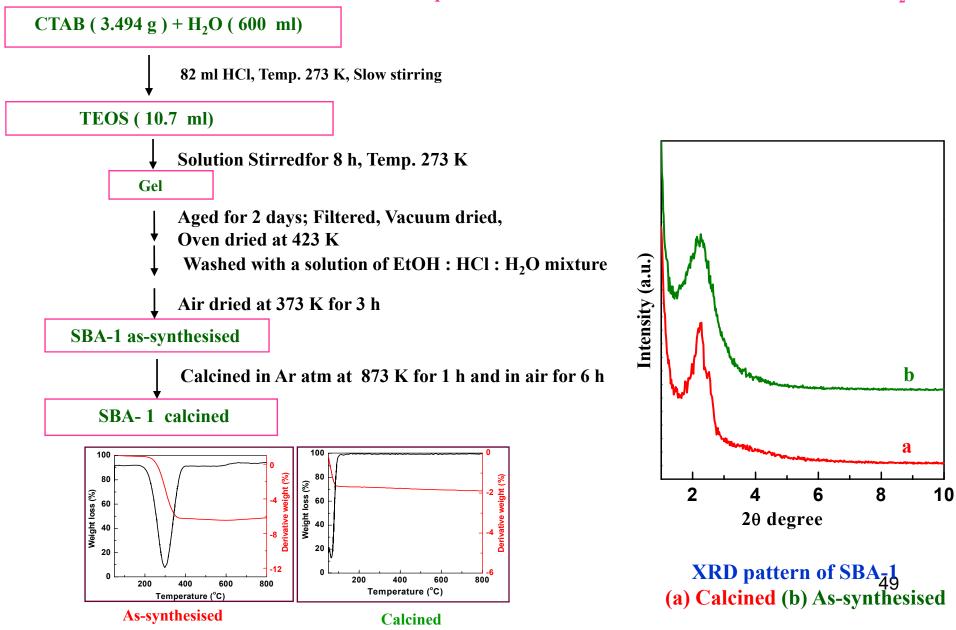
Application of HPW/ACBF Catalysts – Vapour Phase Synthesis of MTBE

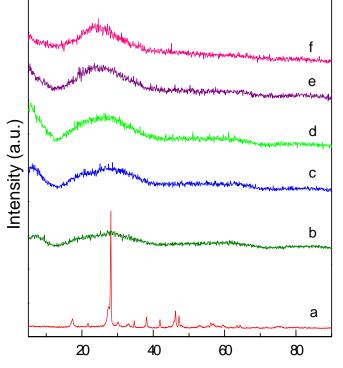

MTBE - Special Features

Highly favourable performance qualities

High octane number Low sulfur content Acceptable blending vapour pressure High miscibility in gasoline Moderate boiling point Stability in storage Cost comparable to other high-octane component Economical choice in the refinery market place Preferred over several gasoline oxygenates including DIPE, TAME and ETBE **Reaction conditions :**

Catalyst employed : 20 wt % HPW/ACBF Amount of catalyst : 0.5 g Reaction temperatures employed : 80, 90, 100, 110, 120 °C Flow rate of the feed : 10 ml/h Flow rate of carrier gas : 30 ml/h MeOH : t BuOH = 10 : 1, 10:2, 10:4, 10:6, 1:1 (mole ratio)

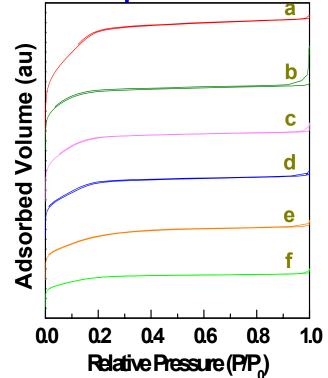

HPW/ACBF - MTBE synthesis



Carbon Vs Silica – A comparison of support performance

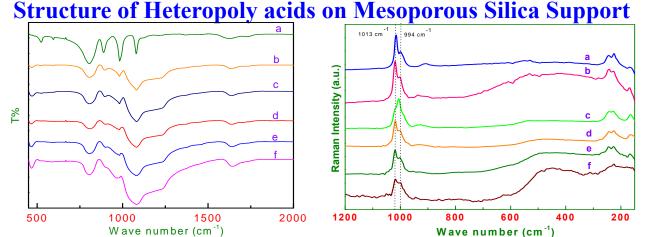
Synthesis of SBA-1 Mesoporous silica

Molar composition : 1 TEOS : 0.2 Surfactant : 56 HCl : 700 H₂0



HPW/SBA-1 - Textural and Structural Properties

(a) HPW (bulk) (b) 50 wt % HPW/SBA-1

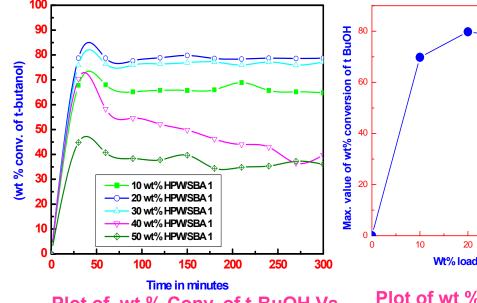

(c) 40 wt % HPW/SBA-1 (d) 30 wt % HPW/SBA-1

(e) 20 wt % HPW/SBA-1 (f) 10 wt % HPW/SBA-1

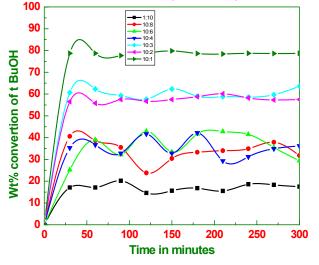
(a) SBA-1 calcined (b) 10 wt % HPW/SBA-1
(c) 20 wt % HPW/SBA-1 (d) 30 wt % HPW/SBA-1
(e) 40 wt % HPW/SBA-1 (f) 50 wt % HPW/SBA-1

Catalyst	S _{BET} (m ² g ⁻¹)	V _P (cm ³ g ⁻¹)
SBA-1 calcined	918	0.4621
10 wt % HPW/SBA-1	567	0.2803
20 wt % HPW/SBA-1	535	0.2601
30 wt % HPW/SBA-1	480	0.2441
40 wt % HPW/SBA-1	393	0.221500
50 wt % HPW/SBA-1	265	0.1472

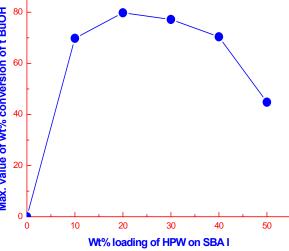
FT – IR and FT – Raman Spectra of (a) HPW (bulk) (b) 50 wt % HPW/SBA-1 (c) 40 wt % HPW/SBA-1 (d) 30 wt % HPW/SBA-1 (e) 20 wt % HPW/SBA-1 (f) 10 wt % HPW/SBA-1

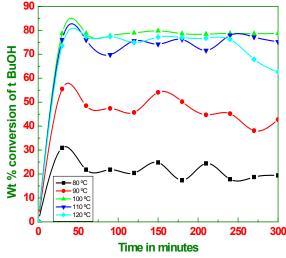


P. Indra Neel, B. Viswanathan, T. K. Varadarajan, 17th National symposium on Catalysis, 18-20th January, 2005, CSMCRI, Bhavnagar, Gujarat, India.

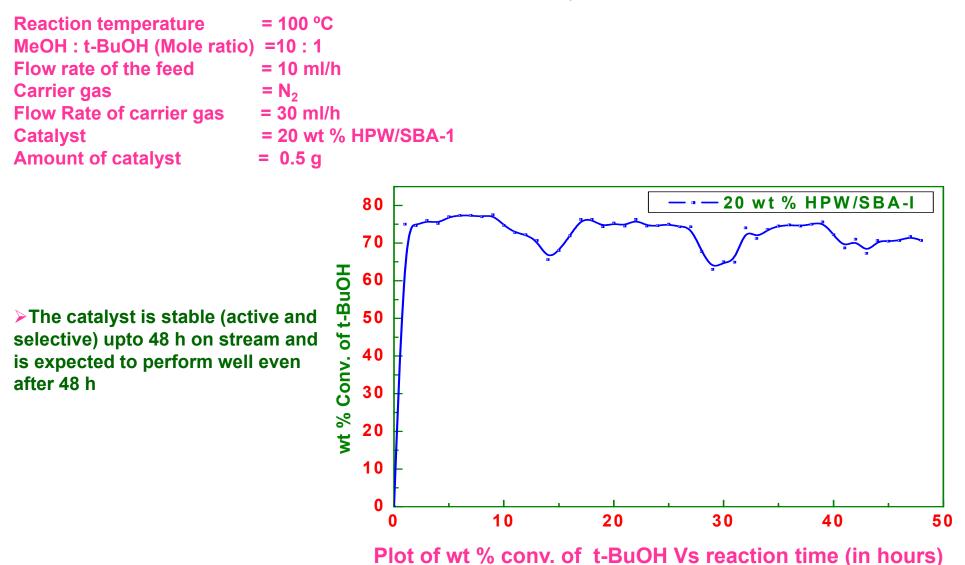

51

HPW/SBA-1 Catalysts – MTBE Synthesis


Effect of wt % loading of HPW on the conversion of t-BuOH


Plot of wt % Conv. of t-BuOH Vs Reaction Time (in min.)

Effect of mole ratio of the feed


Plot of wt % Conv. of t-BuOH Vs wt % loading of HPW on SBA-1

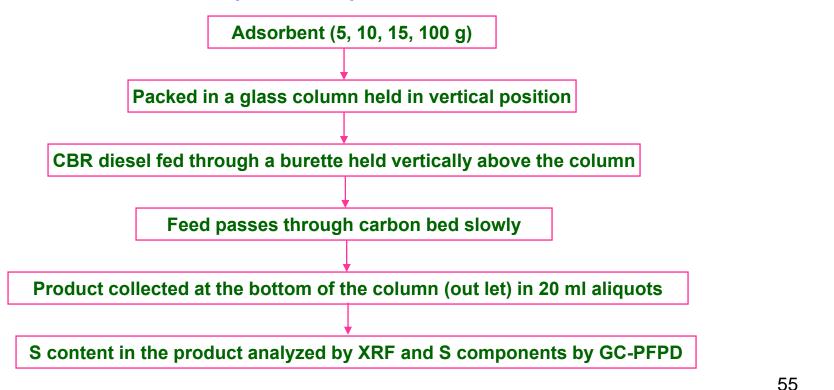
Plot of wt % conv. of t-BuOH Vs reaction time (in minutes) variation of temp. from 80 to 120 °C

- > Optimum loading of HPW 20 wt.%
- Optimum temperature is 100 °C with a maximum t-BuOH conv. of 80 wt %
- > Optimum mole ratio of MeOH : t-BuOH should be 10 : 1
- Optimum flow rate of the feed 10 ml/h Different flow rates of the feed (4, 6, 8, 10, 12 and 14 ml/h) were employed

Evaluation of on stream stability - HPW/SBA – 1

P. Indra Neel, B. Viswanathan, T. K. Varadarajan, National symposium and conference on Solid state chemistry, 1-3rd December, 2005, 53 ISCAS-2005, University of Goa, Goa, India

Summary:


- > Flower spikes of Borassus Flabellifera are a promising precursor for activated carbon
- > The activated carbon material is amorphous and microporous with tubular pore net work
- > Activated carbon from the natural source is an appropriate support for HPW
- > The primary structure of polyanion remained intact on the carbon support
- Strong interaction between the carbon support and heteropoly anion through the corner shared oxygen (W-O_c-V) of the polyanion is observed
- The catalytic performance of HPW/Carbon catalysts for the synthesis of MTBE is comparable to that of mesoporous silica based catalyst

V. Adsorptive Desulphurization Process - Application of Carbon Materials

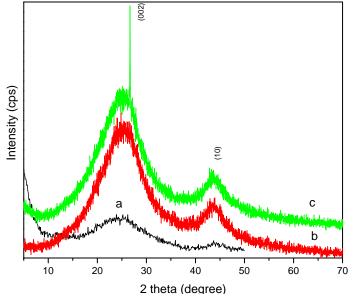
Objectives:

- Develop suitable adsorbents for desulfurisation
- Adsorbent Reduction of S from 700 ppm to > 300 ppm Regenerable to sustain continuous operation Work under mild operating conditions
- > A simple, inexpensive and efficient process for desulphurisation is designed

Sulphur Adsorption Process

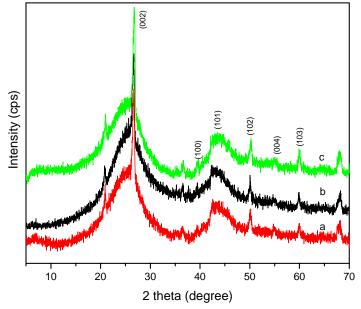
"Adsorptive desulphurization carried out in a simple experimental set up at RT and atmospheric pressure"

S sorbing ability of different commercial activated carbon materials


S. No.	Activated Carbon as Sorbent	*ml-diesel treated/ g of adsorbent	S removed (ppm)
1	IG 18 x 40	4	134
2	IG 12 x 10	4	81
3	IG 8 x30	4	76
4	AC 4 x 8	4	12
5	AC 6 x 12	4	73
6	AC 12 x 30	4	92
7	Calgon carbon as received	4	181
8	Adsorbent carbon	4	229

*20 ml initial product collected from the column packed with 5.0 g activated carbon and analyzed for S

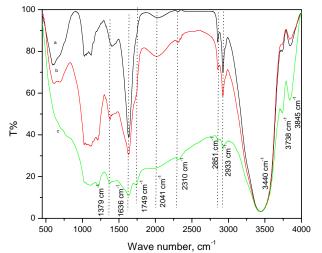
Adsorbent carbon as received and Calgon carbon as received showed outstanding performance by adsorbing 229 and 181 ppm of S per g of adsorbent from 4 ml of treated diesel


>So intensive studies of adsorptive desulphurisation were carried out on Adsorbent carbon and Calgon carbon

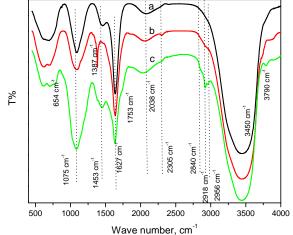
Modified Adsorbent (AC) and Calgon Carbon (CC) – Structural and Textural Properties

(a) AC as received, b) AC treated with HNO₃
(c) AC treated with HNO₃ and activated with Ar

Crystallinity of nitric acid treated adsorbent carbon increased upon Ar activation at 800 ° C



(a) CC as received, (b) CC treated with HNO₃ and (c) CC treated with HNO₃ followed by Ar activation


- Diffraction peaks are typical of graphitic carbon structure
- Calgon based carbons are structurally more ordered than adsorbent based carbons

Sample	Carbon Sorbent	$S_{BET} (m^2/g)$	Vp (cm ³ /g)
a	Adsorbent Carbon as received	950	0.451
b	Adsorbent Carbon treated with conc. HNO ₃	882	0.398
c	Adsorbent Carbon treated with conc. HNO ₃ followed by Ar activation	1048	0.523
d	Calgon carbon as received	1014	0.587
e	Calgon carbon treated with conc. HNO ₃	649	0.387
f	Calgon carbon treated with conc. HNO ₃ followed by ar activation	996	0.598

Modified Adsorbent (AC) and Calgon Carbon (CC) – Surface Functionality

FT-IR spectra of (a) Adsorbent carbon as received, (b) Adsorbent carbon treated with HNO_3 (c) Adsorbent carbon treated with HNO_3 and activated with Ar

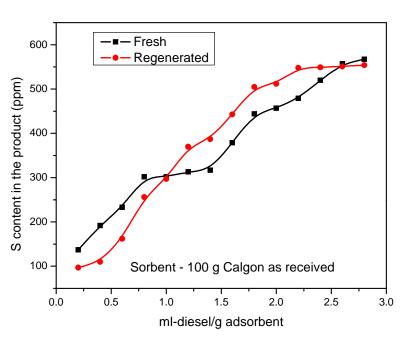
FT – IR spectra of (a) calgon carbon as received, (b) calgon carbon treated with HNO_3 and (c) calgon carbon treated with HNO_3 followed by Ar activation

Sorbent Amount	5.0 g	10.0 g	15.0 g
Sorbent Type	S removed*, (in ppm)		
Adsorbent carbon as received	229	380	410
Adsorbent carbon treated with HNO ₃	105	186	577
Adsorbent carbon treated with HNO ₃ followed by Ar activation	346	518	586
Calgon carbon as received	181	371	451
Calgon carbon treated with HNO ₃	280	378	488
Calgon carbon treated with HNO ₃ followed by Ar activation	340	399	619

S sorption capacity – Adsorbent Carbon Vs Calgon Carbon

Adsorptive Desulphurization – Removal of refractory S compounds

Sulphur Species	S content (in ppm)			
	CBR diesel (Feed)	Adsorbent carbon HNO ₃ followed by Ar treatment, 15.0 g	Calgon carbon, HNO ₃ followed by Ar treatment, 15.0 g	
C ₁ BT	4.6	Nil	Nil	
C ₂ BT	119.6	Nil	Nil	
C ₃ BT	137.5	75.2	67.2	
C ₃ ⁺ BT	79.6	68.9	47.4	
DBT	91.5	2.6	1.3	
C ₁ DBT	157.7	Nil	Nil	
C ₂ DBT	116.7	Nil	Nil	
C ₃ DBT	29.5	4.3	2.1	
Total S	737	151	118	


Analyzed by GC – PFPD

Adsorptive desulphurization process removed refractory S compounds more easily compared to conventional hydrodesulphurization process

V. Selvavathi, A. Meenakshisundaram, B. Sairam, P. Indra Neel, M. Rajasekaren, B. Viswanathan 6th International symposium on Fuels and Lubricants (ISFL – 2008), March 9 – 12, 2008 at New Delhi 59

Process Scaling up & Adsorbent Regeneration Methods

S. No.	ml-diesel/g adsorbent	S content in the product (S content removed) (in ppm)	
		Adsorbent carbon activated with HNO ₃ followed by Ar activation	Calgon carbon as received
1	0.2	13 (724)	137 (600)
2	0.4	68 (669)	192 (545)
3	0.6	110 (627)	233 (504)
4	0.8	169 (568)	302 (435)
5	1.0	194 (543)	302 (435)
6	1.2	233 (504)	313 (424)
7	1.4	263 (474)	317 (420)
8	1.6	290 (447)	379 (358)
9	1.8	325 (412)	444 (293)
10	2.0	375 (362)	457 (280)
11	2.2	415 (322)	479 (258)
12	2.4	443 (294)	520 (217)
13	2.6	463 (274)	557 (180)
14	2.8	486 (251)	567 (170)
15	3.0	496 (241)	519 (218)
16	3.2	505 (232)	532 (205)
17	3.4	510 (227)	548 (189)

S removal capacity of fresh vs toluene regenerated sorbent

Summary:

> An efficient desulphurization process based on adsorption, operated under modest conditions of temperature and pressure is developed

> The potential of the process of adsorptive desulphurization lies in the elimination of refractive S containing compounds under mild process parameters

> New method of activation, which is a unique combination of nitric acid treatment and Ar activation, of carbon based adsorbents to induced desired surface functionality, polarity, phase composition and pore texture, is developed

> It was found that subsequent Ar activation of nitric acid treated carbon adsorbents are inevitable to derive the best out of oxidative modification of carbon surface chemistry

> The utility of Adsorbent carbon as well as Calgon carbon and their tailored forms as adsorbents for organo sulphur compounds is elucidated

> The process of adsorptive desulphurization is scaled upto 100 g (adsorbent) batch

> A simple, inexpensive, efficient, environmentally benign and reliable solvent (toluene) based regeneration has also been developed.

Conclusion

Patent:

- 1. B. Viswanathan, T. K. Varadarajan, P. Indra Neel
 - A Process for the preparation of Activated Carbon from Botonical Sources, Patent No. IN 2007 CH00376

Publication:

- 1. B. Viswanathan, P. Indra Neel and T. K. Varadarajan, Methods of Activation and Specific Application of Carbon Materials, e -book, Feb., 2009 at NCCR web site
- 2. R. Mahalaxmi, P. Indra Neel and B. Viswanathan, Functionality of Carbon Surfaces, Indian Journal of Chemistry Section A, (Accepted)

National/International conferences:

1. P. Indra Neel, B. Viswanathan, T. K. Varadarajan, Preparation, Characterization and Evaluation of Catalytic Activity of dodeca tungsto phosphoric acid (HPW) and dodeca tungstosilicic acid (HSiW) supported on SBA-I mesoporous silica" 17th National symposium on Catalysis, 18-20th January, 2005, CSMCRI, Bhavnagar, Gujarat, India

2. P. Indra Neel, B. Viswanathan, T. K. Varadarajan, Spectroscopic analysis of supported heteropoly acid catalysts, International Conference on Spectrophysics, INCONS-2005, 9-12th, February, 2005, Pachaiyappa's college, Chennai, India

 P. Indra Neel, B. Viswanathan, T. K. Varadarajan, Nanoclusters of polyoxometalates dispersed on SBA-1 mesoporous silica for the production of gasoline additives, National symposium and conference on Solid state chemistry, 1-3rd December, 2005, ISCAS-2005, University of Goa, Goa, India
 P. Indra Neel, B. Viswanathan, T. K. Varadarajan Hydrogenation behaviour of W/C systems" 18th National Symposium on Catalysis, April 16-18, 2007, IIP Dehradun, India

5. V. Selvavathi, A. Meenakshisundaram, B. Sairam, P. Indra Neel, M. Rajasekaren, B. Viswanathan, 6th International symposium on Fuels and Lubricants (ISFL – 2008), March 9 – 12, 2008 at New Delhi

Acknowledgements

Prof T K Varadarajan

Prof B Viswanathan

Heads of the Department of Chemistry & SAIF

Prof B Viswanathan (Late) Prof S. Vancheesan Prof M N Sudheendrarao (Late) Prof G. Sundarajan Prof R Dhamodharan Prof S Sankararaman (SAIF) Prof A K Mishra (SAIF) Prof S Pusphavanam (SAIF)

Doctoral Committee Members

Prof K Vidyasagar (CY) Prof M V Sangaranarayanan (CY) Prof U V Varadaraju (MSRC) Prof V Sankaranarayanan (PH)

Department of Chemistry, IIT Madras NCCR

All non teaching staff Mr Narayanan for sorptometric and TG – DTA studies Mr Sivaramakrishna for EPR studies Friends and Colleagues