CURTIUS Rearrangement

Degradation of acid hydrazides or acyl azides to amines or amine derivatives (see 1st edition).

1	Curtius, T.	Chem. Ber.	1890	23	3023
2	Caldwell, W.T.	J. Am. Chem. Soc.	1939	61	3584
3	Newcastle, G.W.	Synthesis	1985		220
4	Thornton, T.J.	Synthesis	1990		295
5	Saunders, J.M.	Chem. Rev.	1948	43	205
6	Cohen, L.D.	Angew. Chem.	1961	73	259
7	Smith, P.A.S.	Org. React.	1946	3	337
8	Pfister, J.R.	Synthesis	1983		39

3,5-Dimethoxyaniline $4 .^{8} 1(5.65 \mathrm{~g} ; 28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and TBAB (20 mg) were cooled and treated with $\mathrm{NaN}_{3}(2.5 \mathrm{~g} ; 38.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ with stirring over 2 h at $0^{\circ} \mathrm{C}$. After extraction ($\mathrm{Et}_{2} \mathrm{O}$), the extract was added to TFA ($2.5 \mathrm{~mL} ; 43 \mathrm{mmol}$) and refluxed for 40 h to give 5.63 g of $3(80 \%)$, mp $99^{\circ} \mathrm{C} .3(4.5 \mathrm{~g} ; 18 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($4.2 \mathrm{~g} ; 30 \mathrm{mmol}$) and water (80 mL) were stirred under N_{2} for 20 h at $20^{\circ} \mathrm{C}$. Work up and distillation gave 2.6 g of 4 (94%), bp $85-110^{\circ} \mathrm{C} / 0.2$ torr, $\mathrm{mp} 48^{\circ} \mathrm{C}$.

DANHEISER Annulation

Regiocontrolled synthesis of five membered rings from silylallenes and Michael acceptors in the presence of TiCl_{4} (see 1st edition).

	1	2		3 (70\%)	
1	Danheiser, R.L.	J. Am. Chem. Soc.	1981	103	1604
2	Danheiser, R.L.	Tetrahedron	1983	39	935
3	Danheiser, R.L.	Org. Synth.	1988	66	8

Cyclopentene 3. ${ }^{1} \mathrm{TiCl}_{4}$ ($0.283 \mathrm{~g} ; 1.5 \mathrm{mmol}$) was added to $1(0.126 \mathrm{~g} ; 1 \mathrm{mmol})$ and 2 (0.07 g ; 1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Work up and chromatography afforded $0.125-0.144 \mathrm{~g}$ of 3 ($68-75 \%$).

DAKIN Phenol Oxidation

Oxidation of aldo- or keto-phenols to polyphenols by $\mathrm{H}_{2} \mathrm{O}_{2}$ (a Bayer-Villiger oxidation) (see 1st edition).

1	Dakin, H.D.	Am. Chem. J.	1909	42	477
2	Baker, J.	J. Chem. Soc.	1953		1615
3	Criegee, R.	Liebigs Ann.	1948	560	127
4	Seshadri, T.R.	J. Chem. Soc.	1959		1660
5	Rosenblat, D.H.	J. Am. Chem. Soc.	1953	75	4607
6	Jung, M.E.	J. Org. Chem.	1997	62	1553
7	Lee, J.B.	Quart. Rev.	1969	21	454
8	Varma, R.S.	Org. Lett.	1999	1	189

Phenol 2. ${ }^{6}$ To 1 ($96 \mathrm{mg} ; 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added (PhSe$)_{2}(3 \mathrm{mg} ; 0.01$ mmol) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ ($0.062 \mathrm{~mL} ; 0.614 \mathrm{mmol}$). After 18 h stirring at $20^{\circ} \mathrm{C}$ water and EtOAc were added and the organic layer was evaporated. The residue in 3 mL MeOH was treated with NH_{3} to give 73 mg of $2(78 \%)$.

DAKIN-WESTKetone Synthesis

An acylative decarboxylation of α-amino or α-thio acids (see 1st edition).

1

2 (57\%)

1	Dakin, H.; West, R.	J. Biol. Chem.	1928	78	91
2	Dyer, E.	J. Org. Chem.	1968	33	880
3	Buchanan, G.L.	Chem. Soc. Rev.	1988	17	91
4	Fischer, L.E.	Org. Prep. Proc. Int.	1990	22	467
5	Kawase, M.	J. Chem. Soc. Chem. Commun.	1998		641

Purine 2. ${ }^{2}$ A suspension of acid $1(1.0 \mathrm{~g} ; 4.4 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(30 \mathrm{~mL})$ was refluxed for 5 h and stirred overnight at $20^{\circ} \mathrm{C}$. The residue on evaporation was triturated with $\mathrm{Et}_{2} \mathrm{O}$, dried (KOH) and extracted (hexane, $9 \times 40 \mathrm{~mL}$) to afford 0.66 g of $2(57 \%), \mathrm{mp} 98-99^{\circ} \mathrm{C}$.

DANISHEFSKY Dienes

Silyloxydienes in regio- and stereo-controlled Diels-Alder and hetero Diels-Alder reactions (see 1st edition).

2 (72\%) ${ }^{1}$ R: H

(91\%)4

1	Danishefsky, S.	J. Am. Chem. Soc.	1974	96	7807
2	Danishefsky, S.	J. Am. Chem. Soc.	1978	100	$6536 ; 7098$
3	Danishefsky, S.	J. Am. Chem. Soc.	1982	104	6457
4	Vorndam, P.E.	J. Org. Chem.	1990	55	3693
5	Nakagawa, N.; Aino, T.	J. Org. Chem.	1992	57	5741
6	Cativiela, C.	Synthesis	1995		671
7	Danishefsky, S.	Acc. Chem. Res.	1981	14	400

3-Phenyl-4-benzamidophenol 6. ${ }^{6}$ Danishefsky diene 1 ($468 \mathrm{mg} ; 4 \mathrm{mmol}$) was added to oxazolone $3(474 \mathrm{mg} ; 2 \mathrm{mmol})$ in $\mathrm{PhH}(25 \mathrm{~mL})$ and the mixture was refluxed for 48 h with stirring. After evaporation the cycloadducts 4 and 5 were treated with 0.005 N HCl in 20 mL THF (1:4) for 7 h at $20^{\circ} \mathrm{C}$. Work up and chromatography (silica gel, hexane:EtOAc 1:1) gave 410 mg of 6 (71\%).

DARZENS Epoxide Synthesis

Synthesis of glycidic esters, amides or ketones from an aldehyde or ketone and an α-haloester, amide or ketone (see 1st edition).

cis- and trans-Epoxide $3 .{ }^{2} \mathrm{tBuOK}(\mathrm{K}, 16 \mathrm{~g} ; \mathrm{t}-\mathrm{BuOH}, 400 \mathrm{~mL}$) was added to a mixture of $1(42.4 \mathrm{~g} ; 0.4 \mathrm{~mol})$ and $2(59.8 \mathrm{~g} ; 0.4 \mathrm{~mol})$ under N_{2} at $10^{\circ} \mathrm{C}$ over 90 min . After stirring the solvent was removed at $50^{\circ} \mathrm{C}$. Work up gave a viscous oil ($87.1 \mathrm{~g} ; 99 \%$) which treated with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and hexane $(300 \mathrm{~mL})$ gave 77 g of $3(88.4 \%), \mathrm{mp} 43-47^{\circ} \mathrm{C}$.

1-Benzoyl-2-phenylethene oxide $6 .^{7}$ A toluene solution of phenacyl chloride $4(0.2 \mathrm{~g}$; $1.3 \mathrm{mmol})$ was treated with $\mathrm{PhCHO} 1(0.2 \mathrm{~g} ; 1.9 \mathrm{mmol})$ and catalyst 5 (0.1 mmol) in $30 \% \mathrm{NaOH}(0.6 \mathrm{~mL})$. The mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$ under Ar. Usual work up followed by chromatography (preparative TLC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 262 mg of 6 (90%; 43% ee).

DAVIES Asymmetric synthesis

Iron chiral auxiliary for asymmetric aldol reaction, Michael addition, β-amino acid and β-lactam synthesis.

1	Davies, S.G.	Chem. Commun.	1982		1303
2	Davies, S.G.	Chem. Commun.	1985		607
3	Davies, S.G.	J. Organometal. Chem.	1985	296	C40
4	Davies, S.G.	Tetrahedron	1986	42	175
5	Davies, S.G.	Tetrahedron	1986	42	5123
6	Davies, S.G.	Aldrichimica Acta	1990	23	31

For synthesis of 1 see ref. 3 and 4.
(RR/SS)-[($\left.\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{COCH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{NHCH}_{2} \mathrm{Ph}\right]$ 2. ${ }^{5} \mathrm{n}$ - $\mathrm{BuLi}(0.4 \mathrm{~mL} ; 0.64$ mmol) was added to $\mathrm{PhCH}_{2} \mathrm{NH}_{2}(70 \mathrm{mg} ; 0.66 \mathrm{mmol})$ in THF (20 mL) at $-20^{\circ} \mathrm{C}$ to give a purple solution. After 1 h stirring at $-20^{\circ} \mathrm{C}$ this was added to $1(250 \mathrm{mg} ; 0.52 \mathrm{mmol})$ in THF (30 mL) at $-78^{\circ} \mathrm{C}$. $\mathrm{MeOH}(66.5 \mathrm{mg} ; 2.08 \mathrm{mmol}$) was added and the mixture further stirred 1 h at $-78^{\circ} \mathrm{C}$. After evaporation of the solvent, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was filtered through Celite and chromatographed (Alumina I, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOAc}: \mathrm{MeOH}$ $10: 9: 1$) to afford 690 mg of 2 in 90% single diastereoisomer, $[\alpha]_{D}{ }^{21}=+143.0^{\circ}$.
(4S)-(-)-4-Methyl-N-benzyl- β-lactam 3. Oxidation of 2 with Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ followed by chromatography on silica gel (Merck 60 H), hexane: $\mathrm{Et}_{2} \mathrm{O} 2: 1$ gave the iron complex. Elution with the same solvents $1: 2$ gave 106 mg of $3(65 \%),[\alpha]_{D}{ }^{21}=-38.5^{\circ}$ (c 2.1, MeOH).

D A V I S Oxidizing Reagent

2-Sulfonyloxaziridines as aprotic neutral oxidizing reagents in oxidation of amines, sulfides, selenides and asymmetric oxidation (see 1st edition).

$(85 \%,(S) 93 \% \text { ee })^{6}$

1	Davis, F.A.	J. Org. Chem.	1982	47	1174
2	Davis, F.A.	Tetrahedron Lett.	1983	24	1213
3	Davis, F.A.	J. Org. Chem.	1986	51	$4083 ; 4240$
4	Zajak, W.W.	J. Org. Chem.	1988	53	5856
5	Davis, F.A.	J. Org. Chem.	1990	55	3715
6	Davis, F.A.	J. Am. Chem. Soc.	1990	112	6679
7	Chen, D.C.	Org. Prep. Proc. Int.	1996	28	115
8	Dimitrenco, G.I.	J. Am. Chem. Soc.	1997	119	1159

cis-4-(Nitromethyl)cyclohexanecarboxylic acid 3. ${ }^{4}$ To a solution of 2-(phenylsulfonyl)-3-phenyloxaziridine 2 ($0.523 \mathrm{~g} ; 2.0 \mathrm{mmol}$) in CHCl_{3} (10 mL) was added 3-azabicyclo[3.2.2]nonane 1 ($0.125 \mathrm{~g} ; 1 \mathrm{mmol}$). The reaction mixture was stirred for 15 min , then the solvent was removed by rotary evaporation and replaced by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was ozonized at $-78^{\circ} \mathrm{C}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was then extracted with saturated NaHCO_{3} solution. The aqueous layer was neutralized with HCl and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was rotary evaporated and the residue subjected to PLC. The major fraction that was isolated was recrystallized from EtOH to provide 0.123 g of $3(66 \%)$, mp $83-85^{\circ} \mathrm{C}$.

DAVID-MUKAIYAMA-UENO Selective Diol Oxidation Regiospecific oxidation of diols to ketoalcohols by Br_{2} via Sn derivatives.

 3		$\xrightarrow[\mathrm{B}_{3} \mathrm{~S} \mathrm{SnOMe}_{\mathrm{OMe}}]{ }$		$\mathrm{CH}_{2} \mathrm{Ph}$
Mukaiyama, T.	Chem. Lett.	1975		145
Mukaiyama, T.	Bull. Soc. Chim. Japan	1976	49	1656
Ueno, Y.	Tetrahedron Lett.	1976		4597
David, S.	Nouveau J. Chem.	1979	3	63
David, S.	C. R. Acad. Sci. Paris (C)	1974	278	1051
David, S.	J. Chem. Soc. Perkin I	1979		1568

Hydroxyacetophenone 2. ${ }^{3}$ To 1 ($570 \mathrm{mg} ; 4 \mathrm{mmol}$) and hexabutyl-distannoxane (2.7 $\mathrm{mL} ; 5.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise $\mathrm{Br}_{2}\left(0.27 \mathrm{~mL}\right.$; 5.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under Ar. After 3 h stirring evaporation and crystallization gave 410 mg of 2 (76%), mp $84-86^{\circ} \mathrm{C}$.

DAVID-THIEFFRY Monophenylation of Diols

Selective phenylation of one hydroxyl group of glycols by triphenylbismuth diacetate.

1	David, S.; Thieffry, A.	Tetrahedron Lett.	1981	22	2885
2	David, S.; Thieffry, A.	Tetrahedron Lett.	1981	22	5063
3	David, S.; Thieffry, A.	J. Org. Chem.	1983	48	441

3-Phenoxybutan-2-ol $2 .{ }^{3} 1$ ($90 \mathrm{mg} ; 1 \mathrm{mmol}$), triphenylbismuth diacetate 3 ($558 \mathrm{mg} ; 1$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) were refluxed for $4-5 \mathrm{~h}$ (TLC). Evaporation and chromatography afforded 142 mg of $2(86 \%)$.

DAVIDSON Oxazole Synthesis

Synthesis of triaryloxazoles from α-hydroxyketones (see 1st edition).

		$\xrightarrow[\Delta]{\mathrm{Py}_{4}} \stackrel{\substack{\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}-\mathrm{C} \\ \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}=\mathrm{O}}}{ }$	$\xrightarrow[\text { refl. } 1 \mathrm{~h}]{\mathrm{NH}_{4} \mathrm{OAC} ; \mathrm{HOAC}}$		
	12	3 (70			
1	Davidson, D.	J. Org. Chem.	1937	2	328
2	Cornforth, J.W.	J. Chem. Soc.	1953		93
3	Theilig, S.	Chem. Ber.	1953	86	96
4	Budevich, M.	Chem. Ber.	1954	87	700
5	Willey, R.H.	Chem. Rev.	1945		93

DIMROTH Rearrangement

Migration of an alkyl or aryl group from a heterocyclic to an exocyclic N (first descovery by Rathke) (see 1st edition).

2-(Ethylamino)pyrimidine $3 .{ }^{3} 2(0.25 \mathrm{~g} ; 1 \mathrm{mmol})$ in $1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$ was heated for 15 min on a water bath. The pH was corrected to 5 and all was added to a picric acid solution to afford 0.23 g of picrate $3(70 \%), \mathrm{mp} 167^{\circ} \mathrm{C}$.

DE KIMPE Amidine Synthesis

Conversion of aldehydes to keteneimines (see 6) and amidines (see 7) via α-cyano-enamines.

	$\mathrm{R}-$				
1	De Kimpe, N .	Tetrahedron	1976	32	3063
2	De Kimpe, N .	Synthesis	1978		895
3	De Kimpe, N .	J. Org. Chem.	1978	43	2670
4	De Kimpe, N .	Synth. Commun.	1979	9	901
5	De Kimpe, N .	Chem. Ber.	1983	116	3846
6	De Kimpe, N .	Can. J. Chem.	1984	62	1812

2-Isopropylimino-3-methylbutanenitrile $4 .{ }^{2} \mathrm{NaHSO}_{3}(10.9 \mathrm{~g} ; 105 \mathrm{mmol}$) in water (50 mL) was added with stirring to $1(7.1 \mathrm{~g} ; 100 \mathrm{mmol})$. After 2 h at $20^{\circ} \mathrm{C}, \mathrm{KCN}(14.3 \mathrm{~g}$; 220 mmol) in water (25 mL) was added and stirring was continued for 5 h . Extraction with $\mathrm{Et}_{2} \mathrm{O}$ and vacuum distillation afforded 10 g of $2(72 \%)$, bp $75-76^{\circ} \mathrm{C} / 13$ torr. To a solution of $2(10 \mathrm{~g} ; 70 \mathrm{mmol})$ in $\mathrm{PhH}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of tBuOCl ($8.7 \mathrm{~g} ; 80 \mathrm{mmol}$) in $\mathrm{PhH}(15 \mathrm{~mL})$. After 1 h stirring at $0^{\circ} \mathrm{C} \mathrm{Et}_{3} \mathrm{~N}(8.4 \mathrm{~g} ; 84 \mathrm{mmol})$ or the same amount of DABCO was added. Stirring was continued 1 h at $20^{\circ} \mathrm{C}$ and 18 h at $50^{\circ} \mathrm{C}$. Usual work up afforded 5.9 g of $4(61 \%)$, bp $47^{\circ} \mathrm{C} / 12$ torr.
N^{1}-Phenyl- N^{2}-isopropyl-2-methylpropanamidine 7. ${ }^{3}$ A solution of 4 ($6.9 \mathrm{~g} ; 50 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ was treated with $\mathrm{MeMgl}(87.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ followed by quenching $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ and extraction to give keteneimine 6. This with $\mathrm{PhNH}_{2}(4.5 \mathrm{~g} ; 50 \mathrm{mmol})$ afforded 6.15 g of amidine 7 (60%).

DE MAYO Photocycloaddition Photochemical 2+2 cycloaddition (see 1st edition).

DESS-MARTIN Oxidizing Reagent

Oxidation of alcohols to aldehydes or ketones by means of periodinanes, e.g. 1 (see 1st edition).

1	Dess, P.B.; Martin, J.C.	J. Am. Chem. Soc.	1978	100	300
2	Dess, P.B.; Martin, J.C.	J. Am. Chem. Soc.	1979	101	5294
3	Yagupolsky, L.M.	Synthesis	1977		574
4	Dess, P.B.; Martin, J.C.	J. Org. Chem.	1983	48	4155
5	Robins, J.C.	J. Org. Chem.	1990	55	5186
6	Wipf, P.	Synlett	1997		1

Formylaziridine $3 .^{6} 2\left(1.15 \mathrm{~g} ; 4.76 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ was added to a suspension of $1^{4}(2.35 \mathrm{~g} ; 5.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$. After 1 h stirring at $20^{\circ} \mathrm{C}$, usual work up and chromatography (silica gel, 28% EtOAc in hexane) afforded 0.91 g of 3 (80\%).

DELEPINE Amine Synthesis

Synthesis of primary amines from alkyl halides with hexamethylenetetramines (see 1st edition).

1	Delepine, M.	Bull. Soc. Chim. Fr.	1885	13	356
2	Galat, A.	J. Am. Chem. Soc.	1939	61	3585
3	Henry, A.	J. Org. Chem.	1990	55	1796
4	Angyal, S.T.	Org. Synth.	Coll. Vol.	N	121

DEMJANOV Rearrangement

Deamination of primary amines to rearranged alcohols (via diazonium compounds) with ring contraction or enlargement for alicyclic amines (see 1st edition).

DIELS-ALDER Cyclohexene Synthesis
4+2 Thermal cycloaddition between a diene and an activated alkene or alkyne, sometimes catalyzed by Lewis acids (see 1st edition).

1	Diels, O.; Alder, K.	Liebigs Ann.	1928	460	98
2	House, H.O.	J. Org. Chem.	1963	28	27
3	Johnson, C.R.	J. Org. Chem.	1987	52	1493
4	Wenkert, E.	Chem. Rev.	1990	22	131
5	Waldmann, H.	Tetrahedron Asymm.	1991	2	1231
6	Jorgensen, K.A.	J. Org. Chem.	1995	60	6851
7	Fowler, F.W.	J. Org. Chem.	1997	62	2093
8	Oppolzer, W.	Angew. Chem.	1984	96	840
9	Boger, D.L.	Chem. Rev.	1986	86	781
10	Bieker, W.	Tetrahedron Lett.	2001	42	419

Indolizines 5 and $6 .^{7} 4$ (100 mg; 0.6 mmol$)$ in $\mathrm{PhH}(4 \mathrm{~mL})$ in a thick-walled glass tube, under Ar was heated (oil bath, $110^{\circ} \mathrm{C}$) with stirring for 24 h . The residue obtained after evaporation was chromatography (silica gel, heptane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1) afforded 5 and 6 (4:1), 94 mg (94\%).

DIMROTH Triazole Synthesis

Synthesis of 1,2,3-triazoles from alkyl or aryl azides and active methylene compounds.

1	Dimroth, O.	Chem. Ber.	1902	36	$1029 ; 4041$
2	Hoover, J.R.E.	J. Am. Chem. Soc.	1956	78	5832
3	L'abbé, G.	Ind. Chim. Belge	1971	36	3
4	Olsen, C.E.	Tetrahedron Lett.	1968		3805
5	Tolman, R.L.	J. Am. Chem. Soc.	1972	94	2530
6	L'abbé, G.	Angew. Chem. Int. Ed.	1975	14	779

Triazole $3 .{ }^{2}$ To $\mathrm{Na}(4.6 \mathrm{~g} ; 0.2 \mathrm{atg}$) in $\mathrm{MeOH}(500 \mathrm{~mL})$ were added cyanoacetamide 1 ($16.82 \mathrm{~g} ; 0.2 \mathrm{~mol}$) and benzyl azide $2(26.6 \mathrm{~g} ; 0.2 \mathrm{~mol})$. After 1 h reflux, the mixture was cooled to afford 35 g of $3(81 \%)$, mp $230-232^{\circ} \mathrm{C}$.

DJERASSI-RYLANDER Oxidation

RuO_{4} in oxidative cleavage of phenols or alkenes, oxidation of aromatics to quinones, oxidation of alkyl amides to imides or of ethers to esters (see 1st edition).

1	Djerassi, C.; Engle, R.R.	J. Am. Chem. Soc.	1953	75	3838
2	Pappo, R.; Becker, A.	Bull. Res. Council /sr.	1956	A5	300
3	Rylander, P.N.	J. Am. Chem. Soc.	1958	80	6682
4	Caputo, J.A.	Tetrahedron Lett.	1962		2729
5	Caspi, E.	J. Org. Chem.	1969	34	$112 ; 116$
6	Tanaka, K.	Chem. Pharm. Bull.	1987	35	364
7	Tamura, O.	Synlett	2000		1553

DOEBNER-MILLER Quinoline Synthesis

 Quinoline synthesis from anilines and aldehydes (see 1st edition).| |
 1 | $\xrightarrow[\text { week }]{20^{\circ}}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | (32\%) | |
| 1 | Doebner, O.; Miller, W. | Ber. | 1883 | 16 | 2464 |
| 2 | Leir, C.M. | J. Org. Chem. | 1977 | 42 | 911 |
| 3 | Corey, J.E. | J. Am. Chem. Soc. | 1981 | 103 | 5599 |
| 4 | Bergstom, F.W. | Chem. Rev. | 1944 | 35 | 153 |
| 5 | Johnson, W.S. | J. Am. Chem. Soc. | 1944 | 66 | 210 |

DOERING-LA FLAMME Allene Synthesis

Allene synthesis from olefins via gem-dihalocyclopropanes (see 1st edition).

		$3(34 \%)$	$\xrightarrow{\mathrm{CHBr}_{3}}$		
1	Doering, v.W.	J. Am. Chem. Soc.	1954	76	6162
2	La Flamme, P.M.	Tetrahedron	1958	2	75
3	Moore, W.R.	J. Org. Chem.	1962	27	4182
4	Chinoporos, E.	Chem. Rev.	1963	63	235

1,1,3-Trimethyl-2,2-dibromo-cyclopropane 2. ${ }^{1,2}$ To a solution of 2-methyl-2-butene 1 $(14.0 \mathrm{~g} ; 0.2 \mathrm{~mol})$ in a solution of $\mathrm{KOtBu}(22.4 \mathrm{~g} ; 0.2 \mathrm{~mol})$ in tBuOH was added under stirring and cooling CHBr_{3} ($50.6 \mathrm{~g} ; 0.2 \mathrm{~mol}$). The mixture was poured into water, extracted with pentane and distilled to give 24.4 g of $2(50 \%)$, bp $63-65^{\circ} \mathrm{C} / 15 \mathrm{~mm}$.

2-Methyl-2,3-pentadiene $3 .^{1,2} 2(24.4 \mathrm{~g} ; 0.1 \mathrm{~mol})$ in THF (50 mL) was added to Mg turnings ($4.86 \mathrm{~g} ; 0.2 \mathrm{atg}$) in THF. Hydrolysis with water and fractionation afforded 2.75 g of $3(34 \%)$, bp $72.5^{\circ} \mathrm{C}$.

DONDONI Homologation

Homologation of aldehydes, ketones, acyl chlorides via 2-(trimethylsilyl) thiazole addition, also two carbon homologation (see 1st edition).

3

1	Dondoni, A.	Angew. Chem. Int. Ed.	1986	25	835
2	Dondoni, A.	J. Org. Chem.	1989	54	693
2	Dondoni, A.	J. Org. Chem.	1997	62	6261
3	Dondoni, A.	Synthesis	1998	1681	
4	Dondoni, A.	J. Chem. Soc. Chem. Commun.	1999	2133	
5	Vasella, A.	Helv. Chim. Acta.	1998	81	889
6	Nicolaou, A.	Angew. Chem. Int. Ed.	1999	38	3345

1,3,4,6-Tetra-O-acetyl-2-O-benzyl-L-gulopyranose (5). ${ }^{3}$ To a cooled ($-20^{\circ} \mathrm{C}$), stirred solution of crude aldehydo-L-xylose diacetonide 3 ($3.53 \mathrm{~g}, \mathrm{ca} .15 .3 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added 2-(trimethylsilyl) thiazole $2(3.2 \mathrm{~mL}, 19.9 \mathrm{mmol})$ during 15 min . The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for an additional hour and concentrated. A solution of the residue in anhydrous THF (60 mL) was treated with $n-\mathrm{Bu}_{4} \mathrm{NF} .3 \mathrm{H}_{2} \mathrm{O}$ $(4.48 \mathrm{~g}, 15.3 \mathrm{mmol}$) at room temperature for 30 min and then concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to give the anti adduct $4(4.50 \mathrm{~g}, 80 \%$ from 3) containing 5% of the syn isomer. Crystallization of the crude product from AcOEt-cyclohexane afforded pure $4(3.42 \mathrm{~g}, 61 \%$ from 3$)$. The transformation of 4 to 5 was carried out by the following reaction sequence: a) benzylation ($\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}$); b) aldehyde liberation by cleavage of the thiazole ring (N-methylation, reduction, hydrolysis); c) deacetonization ($\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}$); d) exhaustive acetylation ($\mathrm{Ac}_{2} \mathrm{O}$).

DÖTZ Hydroquinone Synthesis
Hydroquinone synthesis (regiospecific) from alkynes and carbonyl carbene chromium complexes (see 1st edition).

 1			
	 5	 6	
Dötz, K.H.	Angew. Chem. Int. Ed.	1975	644
Dötz, K.H.	Chem. Ber.	1988	665
Hofmann, P.	Angew. Chem. Int. Ed.	1989	908
Dötz, K.H.	New J. Chem.	1990	433
Dötz, K.H.	Synlett	1991	381
Schmaltz, H.G.	Angew. Chem. Int. Ed.	1994	303

DOWD Ring Expansion

Ring expansion of cyclic ketones mediated by free radicals.

1	Dowd, P.	J.Am.Chem.Soc.	1987	109	3493
2	Dowd, P.	Tetrahedron	1989	45	77
3	Dowd, P.	J.Org.Chem.	1992	52	7163
4	Dowd, P.	Chem.Rev.	1993	93	2091

Methyl 2-Bromomethylcyclopentanone-2-carboxylate 3.2 A solution of 2carbomethoxycyclopentanone $1(0.43 \mathrm{~g}, 3 \mathrm{mmol})$ in THF (2 mL) was added to a suspension of $\mathrm{NaH}(127 \mathrm{mg}, 3.6 \mathrm{mmol})$ in THF (5 mL) containing HMPA ($645 \mathrm{mg}, 3.6$ mmol) at $20^{\circ} \mathrm{C}$. After 1 h stirring, was added $\mathrm{CH}_{2} \mathrm{Br}_{2} 2$ ($2.6 \mathrm{~g}, 15 \mathrm{mmol}$). After 10 h reflux, water was added followed by usual work up. Column chromatography (silica gel 8 g , hexane:EtOAc 4:1) gave 435 mg of 3 (67\%).

3-Carboxymethoxycyclohexanone 4. To 3 (100 mg, 0.43 mmol) in $\mathrm{PhH}(80 \mathrm{~mL})$ was added tri-n-butyltin hydride ($116 \mathrm{mg}, 0.4 \mathrm{mmol}$) and AIBN ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$). Under stirring the mixture was heated to reflux for 24 h . Evaporation of the solvent, extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, washing with $10 \% \mathrm{KF}(1 \times 10 \mathrm{~mL})$ and column chromatography (silica gel 2 g ; hexane:EtOAc $2: 1$) afforded 49.4 mg of 4 (75\%), $\mathrm{R}_{\mathrm{f}}=0.31$ (hexane:EtOAc 2:1).

D U F F Aldehyde Synthesis

Formylation of phenols and anilines with hexamethylenetetramine 2 (see 1st edition).

1	Duff, J.C.	J. Chem. Soc.	1932		1987
2	Duff, J.C.	J. Chem. Soc.	1934		1305
3	Ogata, Y.	Tetrahedron	1968	24	5001
4	Wada, F.	Bull. Soc. Chim. Jpn.	1980	53	1473
5	Jacobsen, E.N.	J. Org. Chem.	1994	59	1939
6	Ferguson, L.N.	Chem. Rev.	1946	38	230

Aldehyde 3. ${ }^{5} 1$ ($125 \mathrm{~g} ; 0.61 \mathrm{~mol}$) and $2(170 \mathrm{~g} ; 1.21 \mathrm{~mol})$ in HOAc (300 mL) were heated to $130^{\circ} \mathrm{C}$ with stirring and kept at $130^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$ for 2 h . At $75^{\circ} \mathrm{C}, 33 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ $(300 \mathrm{~mL})$ was added and the mixture heated to $105-110^{\circ} \mathrm{C}$ for 1 h . Work up afforded $56-71 \mathrm{~g}$ of $3(40-50 \%)$, mp $53-56^{\circ} \mathrm{C}$.

DUTHALER-HAFNER Enantioselective Allylation

Cyclopentadienyldialkoxyallyltitanium complex 1^{4} in enantioselective allylation of aidehydes.

1	Duthaler, R.O.	Helv. Chim. Acta	1990	73	353
2	Duthaler, R.O; Hafner, A	Pure Appl. Chem.	1990	62	631
3	Hafner, A; Duthaler, R.O.	Eur. Pat. Appl. Ep. 387,$196 ;$ C.A., 1991, 114, 122718h			
4	Hafner, A.	J. Am. Chem. Soc.	1992	114	2321
5	Duthaler, R.O; Hafner, A.	Chem. Rev.	1992	92	827
6	Duthaler, R.O; Hafner, A.	Inorg. Chem. Acta	1994	222	95

(1S)-1-Phenyl-3-buten-1-ol $3 .{ }^{4} 2$ in THF (5.3 mL ; 0.8 M 4.25 mmol) was added slowly (10 min) at $0^{\circ} \mathrm{C}$ under Ar to a solution of $(R, R)-1(3.06 \mathrm{~g} ; 5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$. After 1.5 h stirring at $0^{\circ} \mathrm{C}$, the mixture was cooled to $-78^{\circ} \mathrm{C}$ and benzaldehyde (403 $\mathrm{mg} ; 3.8 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added over 5 min . After 3 h stirring at $-74^{\circ} \mathrm{C}$ the mixture was quenched with $45 \% \mathrm{NH}_{4} \mathrm{~F}(20 \mathrm{~mL})$ and after separation of 1.68 g of ligand, chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:hexane: $\left.\mathrm{Et}_{2} \mathrm{O} 4: 4: 1\right)$ afforded 521 mg of (S)-3 (93\%, 95\% ee).

