BAEYER Pyridine Synthesis

Synthesis of pyridines from pyrones (see 1st edition).

1	Baeyer, A.	Chem. Ber.	1910	43	2337
2	Nenitzescu, C.D.	Liebigs Ann.	1959	625	74
3	Cavallieri, L.F.	Chem. Rev.	1947	41	525
4	Dimroth, K.	Angew. Chem.	1960	72	331
5	Balaban, A.T.	Liebigs Ann.	1992		173

BAER-FISCHER Amino Sugar Synthesis
Synthesis of 3 -nitro and derived 3-amino sugars by aldol condensation of sugar-derived dialdehydes with nitroalkanes (see 1st edition).

1

2

3

1	Baer, H.H; Fischer, H.O.L.	Proc. Nat. Acad. Sci. USA	1958	44	991
2	Baer, H.H.	Adv. Carbohydr. Chem.	1969	24	67
3	Brimacombe, J.S.	J. Chem. Soc. Perkin I	1974	62	
4	Santoyo-Gonzales, F.	Synlett	1990	715	

Nitrosugar 4. ${ }^{3}$ Methyl-L-rhamnoside $3(100 \mathrm{~g} ; 0.55 \mathrm{~mol})$ in 1000 mL water was treated with $\mathrm{NaIO}_{4}(200 \mathrm{~g} ; 0.83 \mathrm{~mol})$ at $20^{\circ} \mathrm{C}$. After $3 \mathrm{~h} \mathrm{NaHCO}_{3}$ was added, the mixture poured into $\mathrm{EtOH}(4000 \mathrm{~mL})$ and filtered. The filtrate was concentrated and extracted with hot EtOH . The extract was cooled, filtered and treated with nitroethane ($104.5 \mathrm{~g} ; 1.4 \mathrm{~mol}$) followed by a solution of $\mathrm{Na}\left(12 \mathrm{~g} ; 0.52\right.$ at.g.) in $\mathrm{EtOH}(750 \mathrm{~mL})$. After 4 h at $20^{\circ} \mathrm{C}$ the solution was treated with CO_{2}, filtered and concentrated. The mixture was treated with pyridine (400 mL) and $\mathrm{Ac}_{2} \mathrm{O}(300 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ for 12 h . Work up left a residue which dissolved in $\mathrm{Et}_{2} \mathrm{O}$;petroleum ether (1:1) (500 mL) and cooled afforded 36 g of 4 (19\%), mp $137-138^{\circ} \mathrm{C},[\alpha]_{D}=-130^{\circ}$ (c 1).

BAEYER - VILLIGER Ketone Oxidation

Regioselective peroxide oxidation of ketones to esters or lactones with retention of configuration (see 1st edition).

1	Bayer, A.; Villiger, V.	Chem.Ber.	1899	32	3625
2	Hassner, A.	J.Org.Chem.	1978	43	1774
3	Sarapanami, C.R.	J.Org.Chem.	1986	51	2322
4	Johnson, C.R.	J.Am.Chem.Soc.	1990	112	6729
5	Morimoto, T.	Synth.Commun.	1995	25	3765
6	Yamashita, M.	J.Org.Chem.	1997	62	2633
7	Hassal, C.H.	Org.React.	1957	9	73
8	Krow, G.R.	Org.React.	1993	43	251

Bicyclic lactone (2). ${ }^{2}$ To a solution of $1(790 \mathrm{mg}, 5 \mathrm{mmol})$ in $90 \% \mathrm{HOAc}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.5 \mathrm{~mL})$ in $90 \% \mathrm{HOAc}(3 \mathrm{~mL})$. The mixture was kept at $0^{\circ} \mathrm{C}$ for 24 h , poured into water and extracted with hexane. The organic layer after washing (NaHSO_{3} and $\mathrm{H}_{2} \mathrm{O}$) was evaporated to give 570 mg of 2 (65%).
ε-Caprolactone (4). Cyclohexanone 1 ($196 \mathrm{mg}, 2 \mathrm{mmol}$) and moist bentonite clay (2 g) in $\operatorname{MeCN}(10 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ with stirring and magnesium monoperoxyphthalate (MMPP) (3 mmol) was added in six portions at ten minute intervals. After additional 1 h stirring, followed by cooling, filtering and washing the precipitate with $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$, evaporation of the solvent afforded 200 mg of 4 (88\%).

BAILEY Crisscross Cycloaddition

A bis 3+2 cycloaddition between aromatic aldazines and olefins or acetylenes, called "crisscross" cycloaddition.

Diazabicyclooctadiene $2 .{ }^{4}$ A mixture of acetylenic aldehyde 1 ($1.56 \mathrm{~g}, 5 \mathrm{mmol}$) and hydrazine. $2 \mathrm{HCl}(260 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $\mathrm{EtOH}(80 \mathrm{~mL})$ was refluxed for 4 h under stirring. To the cooled mixture $\left(20^{\circ} \mathrm{C}\right)$ was added triethylamine ($0.5 \mathrm{~g}, 5 \mathrm{mmol}$) and the mixture was stirred for 1 h at the same temperature. The crystals were filtered. Recrystalization afforded 1.042 g of 2 (69\%), mp 276-278 ${ }^{\circ} \mathrm{C}$.

BAKER-VENKATARAMAN Flavone Synthesis

Rearrangement of aromatic o-keto esters of phenols to o-hydroxy-1,3-diketones followed by cyclization to flavones (see 1st edition).

1
2
3
4
5
5

Baker, W.
J. Chem. Soc.

1938 1381

Venkataraman, K.
J. Chem. Soc.

1939 1767

Kramm, E.
J. Org. Chem.

1984 49 3212

4 Krupadavam, G.L.D.
Levine, E.
J. Heterocycl. Chem.

1996
33 1561

Levine, E. Chem. Rev. 1954

BALABAN-NENITZESCU-PRAILL Pyrylium Salt Synthesis
Synthesis of pyrylium salts by acylation of unsaturated ketones or by diacylation of alkenes.

1	Balaban, A.T.; Nenitzescu, C.D.	Liebigs Ann.	1959	625	$66 ; 74$
2	Balaban, A.T.; Nenitzescu, C.D.	J. Chem. Soc.	1961		$3553 ; 3561$
3	Balaban, A.T.; Nenitzescu, C.D.	J. Chem. Soc.	1961		$3564 ; 3566$
4	Praill, P.F.G.; Whitear, A.L.	J. Chem. Soc.	1961		3573
5	Balaban, A.T.; Nenitzescu, C.D.	Org.Synth.Coll.		5	1106
6	Balaban, A.T.; Boulton, A.J.	Org.Synth.Coll.		5	$1112 ; 1114$

2,4,6-Trimethylpyrylium perchlorate 2 . $^{2.5}$ Anh. t - BuOH 1 ($148 \mathrm{~g} ; 2 \mathrm{~mol}$) and $\mathrm{Ac}_{2} \mathrm{O}$ (10 mL) at $-10^{\circ} \mathrm{C}$ were cautiously treated with $70 \% \mathrm{HClO}_{4}(1.75 \mathrm{~mol})$ and the temperature was controlled at $90-100^{\circ} \mathrm{C}$. The mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . After cooling 2 was filtered and washed ($\mathrm{AcOH}, \mathrm{Et}_{2} \mathrm{O}$) to give 205-215 g of 2 (53-57\%), explosive when dry. The tetrafluoroborate or triflate ${ }^{5}$ are not explosive.

BAMBERGER Benzotriazine Synthesis
Synthesis of benzotriazines from pyruvic acid hydrazone 2 and aryldiazonium salts 1 (see 1st edition).

1	Bamberger, E.	Chem. Ber.	1892	25	3201
2	Abramovitch, R.A.	J. Chem. Soc.	1955		2326

BAMBERGER Imidazole cleavage
Synthesis of 2-substituted imidazoles from imidazoles via cleavage with acid chlorides to enediamides (see 1st edition).

Imidazole 2. ${ }^{5}$ Imidazole $1(9.2 \mathrm{~g} ; 54 \mathrm{mmol})$ in EtOAc $(140 \mathrm{~mL})$ was treated with benzoyl chloride ($15.7 \mathrm{~g} ; 112 \mathrm{mmol}$) in EtOAc (40 mL) and $1 \mathrm{M} \mathrm{NaHCO} 3(380 \mathrm{~mL})$ added simultaneously in 1 h under ice-cooling. The mixture was stirred for 1 h , then a further portion of benzoyl chloride (15.7 g; 112 mmol) in EtOAc and $1 \mathrm{M} \mathrm{NaHCO}_{3}$ (280 mL) was added followed by more $1 \mathrm{M} \mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. After 24 h the organic layer was concentrated and the residue dissolved in THF (300 mL). The THF solution was stirred with $10 \% \mathrm{NaHCO}_{3}(600 \mathrm{~mL})$ for 24 h to decompose any N -formyl intermediate and to remove benzoic acid. Extraction with EtOAc, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, solvent evaporation and recrystallization from EtOAc:hexane afforded 16.24 g of 2 (84%), mp $128-129^{\circ} \mathrm{C}$

BAMFORD-STEVENS-CAGLIOTI-SHAPIRO Olefination

Conversion of ketones to olefins via tosylhydrazones with NaOR, LAH, LDA or BuLi. But 2-naphthaldehyde tosylhydrazone is reduced by LAH to 2-methylnaphthalene (see 1st edition).

1 Bamford, W.;Stevens, T.J.Chem.Soc.
1952
4735
2 Farnum, D.G.
3 Nikon, A.
4 Stadler, H.
5 Caglioti, R.
J.Org.Chem.

1963
28 870
J.Org.Chem.

198146
4692
Helv.Chim.Acta. 198467
1379

6 Caglioti, R.
Tetrahedron Lett. 1962
1261

7 Shapiro, R.H
8 Siemeling, E.
Tetrahedron
196319
1127

9 Shapiro, R.H.
J.Am.Chem.Soc.

196789 1442; 5734
J.Org.Chem. 199762

3407
Org.React.
197623
405
β-MethyInaphthalene $5 .{ }^{7}$ To a solution of $4(2.0 \mathrm{~g}, 6.17 \mathrm{mmol})$ in THF (50 mL) was added $\mathrm{LiAlH}_{4}(3.0 \mathrm{~g}, 78.9 \mathrm{mmol})$ and the mixture refluxed for 18 h . After careful decomposition of excess hydride with moist $\mathrm{Et}_{2} \mathrm{O}$ and water, the organic phase was washed with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and water, dried and evaporated, to yield 620 mg of 5 (70.7 \%).

1,3-Diphenyl-4,5-di(2-pyridyl)cyclopentene $8 .{ }^{8}$ A solution of 7 ($30.2 \mathrm{~g}, 54 \mathrm{mmol}$) in THF (300 mL) was treated with LDA at $0^{\circ} \mathrm{C}$. After 14 h stirring at $20^{\circ} \mathrm{C}$, the mixture was quenched with brine at $0^{\circ} \mathrm{C}$. Workup gave 16.2 g of $8(80 \%)$.

BARBIER Reaction In situ Grignard generation in the presence of an electrophile (see 1st edition).

1	Barbier, P.	C. R.	1899	128	110
2	Grignard, V.	C. R.	1900	130	1322
3	Ashby, R.	Pure \& Appl. Chem.	1980	52	545
4	Huang, X.Z.	Tetrahedron Lett.	1988	29	1395
5	Blomberg, C.	Synthesis	1977		18
6	Hassner, A.	J. Organomet. Chem.	1978	156	227
7	Imai, T.	Synthesis	1993		395
8	Banik, Bak.	Tetrahedron Lett.	2001	42	187

2-Chloro-1-nonen-4-ol 5. ${ }^{7}$ To 3 ($500 \mathrm{mg} ; 5 \mathrm{mmol}$) and 4 ($611 \mathrm{mg} ; 5.5 \mathrm{mmol}$) was added successively $\mathrm{ScCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.7 \mathrm{~g} ; 7.5 \mathrm{mmol})$ and $\mathrm{Nal}(1.1 \mathrm{~g} ; 7.5 \mathrm{mmol})$. After 20 h stirring at $20^{\circ} \mathrm{C}, 30 \% \mathrm{NH}_{4} \mathrm{~F}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added. Usual work up and chromatography followed by distillation gave 820 mg of 5 (93\%).

BARBIER-WIELAND Degradation

A multi-step (Grignard reaction, elimination, oxidative cleavage) procedure for chain degradation of carboxylic acids (esters) (see 1st edition).

1
2

3 (80\%)

1	Barbier, P.	C. R.	1913	156	1443
2	Wieland. E.	Chem. Ber.	1912	45	484
3	Sarel, S.	J. Org. Chem.	1959	24	2081
4	Fetisson, M.	C. R.	1961	252	139
5	Djerassi, C.	Chem. Rev.	1946	38	526
6	Chadha. M.S.	Synthesis	1978		468

9-Oxodecanoic acid 4. ${ }^{6}$ To PhMgBr (from $\mathrm{PhBr} ; 29.8 \mathrm{~g}$, and Mg 4.6 g in $\mathrm{Et}_{2} \mathrm{O} 100$ $\mathrm{mL})$ was added the hydroxy ester $1(7 \mathrm{~g} ; 32 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ over 1 h and refluxed for 2.5 h . Aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the etheric extracts were concentrated to give diol 2 which was refluxed with $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ for 1 h . Extraction $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, washing and evaporation afforded 7.3 g of $3(80 \%)$, distilled at $180^{\circ} \mathrm{C}$ (Bath) $/ 0.5$ torr. $\mathrm{CrO}_{3}(6 \mathrm{~g} ; 60 \mathrm{mmol})$ in water (8 mL) was added to crude $3(6.4 \mathrm{~g})$ in $\mathrm{AcOH}(75 \mathrm{~mL})$ over 1.5 h . After stirring at $35^{\circ} \mathrm{C}$ for 1 h , work up gave 2.2 g of $4(60 \%), \mathrm{mp} 48^{\circ} \mathrm{C}$.

BARLUENGA lodination Reagent

Bis(pyridine)iodonium(I) tetrafluoroborate reagent for 1,2-iodofunctionalization of isolated or conjugated olefins, or cyclization of alkynyl sulfides.

3

1	Barluenga, J.	J.Chem.Soc.Perkin 1	1984		2623
2	Barluenga, J.	Angew.Chem.Int.Ed.	1985	24	319
3	Barluenga, J.	Tetrahedron Lett.	1986	27	1715
4	Barluenga, J.	J.Org.Chem.	1990	55	3104
5	Barluenga, J.	J.Org.Chem.	1993	58	2058
6	Barluenga, J.	Angew.Chem.Int.Ed.	1993	32	893
7	Goldfinger, M.B.	J.Am.Chem.Soc.	1994	116	7895
8	Barluenga, J.	J.Am.Chem.Soc.	1997	119	6933
9	Barluenga, J.	Tetrahedron Lett.	1998	39	7393
10	Barluenga, J.	Angew.Chem.Int.Ed.	1998	37	3136
11	Barluenga, J.	Pure Appl.Chem.	1999	71	431
12	Barluenga, J.	Angew.Chem.Int.Ed.	2001	40	3389

Thiaanthracene 4. ${ }^{10}$ To a solution of $\mathrm{IPy}_{2} \mathrm{BF}_{4} 1(3.72 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ cooled to $-80^{\circ} \mathrm{C}$ was added $\mathrm{HBF}_{4}\left(1.36 \mathrm{~mL}, 54 \%\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 10 \mathrm{mmol}\right)$. After 10 min a solution of diyne $3(3.08 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the reaction mixture was stirred. Quenching with $10 \% \quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, washing, drying and filtration through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (elution with EtOAc : hexane) afforded 3.99 g of $4(92 \%), \mathrm{mp} 102-103^{\circ} \mathrm{C}$.

BARTON Nitrite Photolysis

Long range functionalization of alcohols via nitrites leading to γ-hydroxy oximes (see 1st edition).

BARTON Deamination

Free radical deamination of primary amines via isocyanides (see 1st edition).

1	Barton, D.H.R.	J.Chem.Soc.Perkin I	1980	2657	
2	Swindell, C.S.	J.Org.Chem.	1990	55	3
3	Barton, D.H.R.	Aldrichimica Acta	1990	23	3

Octadecane (4). ${ }^{1}$ A solution of $3(0.279 \mathrm{~g}, 1 \mathrm{mmol}$) and azoisobutyronitrile (AIBN) (0.1 g) in dry xylene (50 mL) was added dropwise to a solution of tri-n-butyl stannane (0.64 $\mathrm{g}, 2.2 \mathrm{~mol}$ equiv). A solution of AIBN (0.1 g) in xylene (50 mL) was slowly added at $80^{\circ} \mathrm{C}$ over 5 h . The solvent was removed in vacuum, the residue dissolved in pentane and iodine in pentane was added until the iodine color persisted. The solvent was evaporated and 4 was isolated by preparative TLC (silica gel, pentane). Sublimation in vacuum gave 0.205 g of 4 (81%), $\mathrm{mp} 29^{\circ} \mathrm{C}$.

BARTON Phenylation of Phenols, Enols

Phenylation of phenols, enols and other anions by a pentavalent organo-bismuth reagent under neutral, acidic or basic conditions.

1	Barton, D.H.R.	J.Chem.Soc.Chem.Commun.	1980		246,827
2	Barton, D.H.R.	J.Chem.Soc.Chem.Commun.	1981	503	
3	Barton, D.H.R.	Tetrahedron Lett.	1982	23	3365
4	Barton, D.H.R.	J.Chem.Soc.Perkin Trans	1985		2657,2667
5	Barton, D.H.R.	Tetrahedron	1988	44	3039
6	Barton, D.H.R.	Aldrichim Acta	1990	23	3

1-Phenyl-2-naphthol (2). ${ }^{4}$ To a stirred solution of $\mathrm{Ph}_{3} \mathrm{BiCl}_{2}$ ($550 \mathrm{mg}, 1.07 \mathrm{mmol}$) and 2naphthol 1 ($144 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (1 mL) at $20^{\circ} \mathrm{C}$ under an Ar atmosphere was added tetramethyl-2-t-butylguanidine (TMBG) ($500 \mathrm{mg}, 0.11 \mathrm{mmol}$). After 5 h stirring, usual work up and chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O}$:hexane 1:4) afforded 198 mg of 2 (90\%).

1,3,5-Trihydroxy-2,4,6-triphenylbenzene 4 and 2,2,4,5-tetraphenyl cyclopent-4-ene-1,3-dione (5). ${ }^{4}$ A mixture of phloroglucinol 3 ($300 \mathrm{mg}, 3.9 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{BiCO}_{2}$ ($3.0 \mathrm{~g}, 6 \mathrm{mmol}$) in dioxane (10 mL) was heated to reflux under Ar for 11 h . After removing insoluble material by filtration, the solvent was evaporated and the residue chromatographed (hexane:EtOAc 7:3) to give 195 mg of 4 (24%) and 368 mg of 5 (40%). The same reaction but using a molar ratio of $3: \mathrm{Ph}_{3} \mathrm{BiCO}_{3}=1: 5.7$ and heating for 24 h at $80^{\circ} \mathrm{C}$ afforded 4 in 60% yield.

BARTON Decarboxylation

Decarboxylation of a mixed anhydride (thiohydroxamic-carboxylic) and interception of radicals as a sulfide, selenide or bromo derivative (see 1st edition).

3 5 (74\%)

6

1 Barton, D.H.R.

2 Barton, D.H.R
3 Barton, D.H.R.
4 Tamm, Ch.
5 Renault, P.
6
J. Chem. Soc. Chem. Commun.

1983
939
5777
5939
403
181
199023

BARTON-KELLOG Olefination

Olefin synthesis (especially tetrasubstituted) from hydrazones and thioketones via Δ^{3}-1,3,4-thiazolidines (see 1st edition).

1

1
2 Barton, D.H.R.

4

5
Barton, D.H.R.
J. Chem. Soc. Perkin I

Chem. Soc.
Kellog, R.M.
Tetrahedron Lett.
Kellog, R.M.
J. Org. Chem.

Barton, D.H.R.
J. Chem. Soc. Perkin I

1972
1970
1970
1972
1974
(-)-2-Diphenylethylenecamphane 5. 2 ($585 \mathrm{mg} ; 3 \mathrm{mmol}$) (from 1, lead tetraacetate and TEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\left.-20^{\circ} \mathrm{C}\right)^{5}$ and $4(505 \mathrm{mg} ; 3 \mathrm{mmol})$ in THF (5 mL) were heated to reflux under N_{2} for 3 h . After chromatography, the product was refluxed with $\mathrm{Ph}_{3} \mathrm{P}$ $(870 \mathrm{mg})$ in THF (5 mL) for 16 h and evaporated. The residue in petroleum ether was treated with 1 mL of Mel (exothermic) and stirred 2 h . Chromatography (silica) afforded 545 mg of $6(90 \%)$, mp $69.5-72.5^{\circ} \mathrm{C}(\mathrm{EtOH})$.

BARTON-MC COMBIE Alcohol Deoxygenation

Deoxygenation of secondary alcohols to hydrocarbons via xantates (see 1st edition).

1	Barton, D.H.R.; McCombie, S.W.	J. Chem. Soc. Perkin I	1975		1574
2	Cristol, S.J.	J. Org. Chem.	1982	47	132
3	Barton, D.H.R.	Tetrahedron	1986	42	2329
4	McClure, C.K.	J. Org. Chem.	1991	56	2326
5	Chatgilialoglu, C.	Tetrahedron Lett.	1995	36	3897
6	Crich, D.	Aldrichimica Acta	1987	20	36

Cholestane 3. ${ }^{5}$ To a stirred solution of $1(100 \mathrm{mg} ; 0.19 \mathrm{mmol})$ and 5,10 -dihydrosilanthrene $2(67 \mathrm{mg}$; 0.32 mmol) in cyclohexane (20 mL) was added AIBN (5 mg) and the mixture was heated for 1 h at $80^{\circ} \mathrm{C}$. Evaporation of the solvent and chromatography (hexane) gave 95 mg of 3 (85%).

BENARY Conjugated Aldehyde Synthesis
Formation of polyunsaturated aldehydes from vinyl halides and enaminoaldehydes (see 1st edition).

1	Benary, E.	Chem. Ber.	1930	63	1573
2	Normant, H.	C. R.	1958	247	1744
3	Schiess, P.	Helv. Chim. Acta	1972	55	2363
4	Näff, F.	Helv. Chim. Acta	1974	57	1317

3 (via Grignard reagent). 1 ($4.42 \mathrm{~g} ; 25 \mathrm{mmol}$) and Mg ($0.6 \mathrm{~g} ; 25 \mathrm{mat}$) in THF followed by $2(4.02 \mathrm{~g} ; 25 \mathrm{mmol})$ and usual work up gave 1.32 g of $3(33 \%)$, bp $95-103^{\circ} \mathrm{C}$, as a mixture of $12 \%(E, Z)$ and $88 \%(E, E)$.

BECKMANN Rearrangement or Fragmentation
Acid catalyzed rearrangement of oximes to amides or cleavage of oximes to nitriles.

1	Beckmann, E.	Chem. Ber.	1886	19	988
2	Conley, R.T.	J. Org. Chem.	1963	28	210
3	Hassner, A.	Tetrahedron Lett.	1965		525
4	Eaton, P.E.	J. Org. Chem.	1973	38	4071
5	Nishiyama, H.	Tetrahedron	1988	44	2413
6	Johnson, C.R.	J. Am. Chem. Soc.	1990	112	6729
7	Samant, G.D.	Synth. Commun.	1997	27	379
8	Popp, I.	Chem. Rev.	1958	58	370
9	Heldt, W.Z.	Org. React.	1960	11	1
10.	Denz, y.	Tetrahedron Lett.	2001	42	403

ε-Caprolactam 2. ${ }^{4}$ To a solution of $\mathrm{P}_{2} \mathrm{O}_{5}(36 \mathrm{~g})$ in $\mathrm{MeSO}_{3} \mathrm{H}(360 \mathrm{~g})$ was added $1(2 \mathrm{~g}$; 20 mmol) under stirring. After 1 h at $100^{\circ} \mathrm{C}$ quenching with NaHCO_{3}, extraction $\left(\mathrm{CHCl}_{3}\right)$, evaporation of the solvent and recrystallization from hexane gave 1.92 g of 2 (96\%), mp 65-68 ${ }^{\circ} \mathrm{C}$.
ω-Hexenenitrile 4. ${ }^{6}$ To $3\left(99 \mathrm{mg} ; 0.5 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{P}_{2} \mathrm{O}_{5}(70 \mathrm{mg}$; $0.5 \mathrm{mmol})$. After 24 h at $20^{\circ} \mathrm{C} \mathrm{Et} 2 \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{~mL})$ were added followed by chromatography to afford 43 g of 4 (73%).
N -Phenylbenzamide $8 .{ }^{7} \mathrm{FeCl}_{3}(15 \mathrm{~g})$ was dissolved in $\mathrm{MeCN}(60 \mathrm{~mL})$ and Montmorillonit K-10 (10 g) was added. After 5 h stirring the clay was filtered, washed and dried (5 h at $280^{\circ} \mathrm{C}$). Ketoxime 7 ($400 \mathrm{mg} ; 2 \mathrm{mmol}$), clay catalyst (1 g) in PhMe was refluxed (TLC monitoring). Filtration and concentration in vacuum followed by chromatography (EtOAc:hexane) gave 400 mg of 8 (100\%).

BERCHTOLD Enamine Homologation

Addition of acetylenic esters to cyclic enamines leading by rearrangement ring expansion to cyclic ketones with two more carbon atoms.

1-(N-Morpholino)-2,3-dicarbomethoxy-1,3-cycloheptadiene (3). ${ }^{3}$ Dimethyl acetylene dicarboxylate 1 ($16.2 \mathrm{~g}, 77.4 \mathrm{mmol}$) was added to morpholinocyclopentene $2(11 \mathrm{~g}$, 77.4 mmol) in $\mathrm{PhMe}(40 \mathrm{~mL})$ under N_{2} with ice cooling and stirring at such a rate that the temperature never rose above $50^{\circ} \mathrm{C}$. After a short supplementary stirring, the mixture was heated to reflux for 12 h . The solution was treated with excess of $\mathrm{Et}_{2} \mathrm{O}$ under cooling and the precipitate was filtered off. Recrystallization from $\mathrm{Me}_{2} \mathrm{CO}$ afforded 11.4 g of $3(48 \%)$, mp $167-168^{\circ} \mathrm{C}$.

2,3-Dicarbomethoxy-3-cycloheptenone (4). A solution of 3 (1 g, 3.25 mmol) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $32 \% \mathrm{HCl}(1 \mathrm{~mL})$ was heated to reflux. Water (2 mL) was added and the mixture was heated for another 10 min to reflux. After cooling the precipitate was crystallized from $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O} 2: 1$ to give 610.5 mg of $4(90 \%), \mathrm{mp} 63.5-64^{\circ} \mathrm{C}$.

BERGMAN Cycloaromatization
Ring annulation by radical cyclization of ene-diynes and (Z)-allene-ene-ynes in a thermal reaction to give aromatics (electrocyclization).

			solvent hydrocarbon CCl_{4} $\mathrm{CH}_{3} \mathrm{OH}$	X H Cl $\mathrm{CH}_{2} \mathrm{OH}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{H} \\ & \mathrm{Cl} \\ & \mathrm{H} \end{aligned}$
1	Bergman, R.G.	J. Am. Chem. Soc.	1972	94	660
2	Bergman, R.G.	J. Am. Chem. Soc.	1981	103	4082; 4091
3	Schreiber, S.L.	J. Am. Chem. Soc.	1988	110	631
4	Maier, M.E.	Liebigs Ann.	1992		855
5	Grissom, J.W.	Tetrahedron Lett.	1992	33	2315
6	Bergman, R.G.	Acc. Chem. Res.	1973	6	25
7	Myers, A.G.	J. Am. Chem. Soc.	1989	111	8057
8	Myers, A.G.	J. Am. Chem. Soc.	1992	114	9369
9	Ming-Jung Wu	Tetrahedron Lett.	1994	35	1879
10	Cramer, C.J.	J. Am. Chem. Soc.	1998	120	6269
11	Grissom, J.W.	Tetrahedron	1996	52	6453

3,4-Dihydrobenz-[e]-indene 2. ${ }^{5}$ A mixture of ene-diyne 1 ($39.9 \mathrm{mg} ; 0.17 \mathrm{mmol}$), PhCl $(1.8 \mathrm{~mL})$ and 1,4-cyclohexadiene $3(0.4 \mathrm{~mL} ; 4.2 \mathrm{mmol})$ under N_{2} was heated for 19 h at $210^{\circ} \mathrm{C}$. Chromatography (silica gel, hexane:EtOAc 95:5) afforded 30.1 mg of 2 (72\%). TLC (hexane:EtOAc 3:1), $\mathrm{R}_{\mathrm{f}}=0.48$.
5-[tert-Butyldimethylsilyl)oxy]-3-(4-methoxyphenyl)-6,7,9,10-tetrahydro-5,9-metha nobenzocycloocten-8(5H)-one 5. ${ }^{4}$ A solution of $4(44 \mathrm{mg} ; 105 \mu \mathrm{~mol})$ in $3(2 \mathrm{~mL})$ was heated under reflux for 5 h . The solvent was evaporated in vacuum and the residue purified by flash chromatography (petroleum ether:AcOMe 20:1) to afford 23.7 mg of 5 (51%) as a colorless oil. TLC (petroleum ether:AcOMe 4:1), $R_{f}=0.54$.

BERNTHSEN Acridine Synthesis

 Acridine synthesis from diphenylamine and carboxylic acids (see 1st edition).

1	Bernthsen, A	Liebigs Ann.	1878	192	1
2	Popp, F.D.	J. Org. Chem.	1962	27	2658
3	Albert, F.	J. Org. Chem.	1948		1225
4	Buu-Hoi, M.P.	J. Chem. Soc.	1955		1082

BIGINELLI Pyrimidone Synthesis

Pyrimidone synthesis from urea, an aldehyde and a β-keto ester.

1	Biginelli, P.	Chem. Ber.	1891	24	2962
2	Folkers, K.	J. Am. Chem. Soc.	1933	55	3361
3	Swett, I.	J. Am. Chem. Soc.	1973	95	8741
4	Zaugg, H.E.	Org. React.	1965	14	88
5	Kappe, C.O.	J. Org. Chem.	1997	62	7201
6	Wipf, P.	Tetrahedron Lett.	1995	36	7819

Pyrimidone 4. ${ }^{5}$ Ethyl acetoacetate $1(1.3 \mathrm{~g} ; 10 \mathrm{mmol})$, PhCHO 2 ($1.06 \mathrm{~g} ; 10 \mathrm{mmol}$) and urea $3(0.6 \mathrm{~g} ; 10 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL}$ containing 1-2 drops of conc. HCl$)$ was stirred 2 h at $20^{\circ} \mathrm{C}$. A precipitate appeared and stirring was continued for 3 h to afford 1.98 g of $4(76 \%), \mathrm{mp} 106-107^{\circ} \mathrm{C}$.

BESTMANN Cumulene Ylides

Phosphocumulenes ylides and phosphallene ylides in nucleophilic additions to $\mathrm{C}=\mathrm{C}$; $C \equiv N$ and $C \equiv C$ or cycloaddictions (2+2;4+2;1,3-dipolar)

1	Bestmann, H.J.	Angew.Chem.Int.Ed.	1974	13	875
2	Bestmann, H.J.	Liebigs Ann.	1977	16	349
3	Bestmann, H.J.	Angew.Chem.Int.Ed.	1976	15	115
4	Bestmann, H.J.	Angew.Chem.Int.Ed.	1965	4	$585,645,830$
5	L'abbe, G.	J.Org.Chem.	1974	39	3770

Benzocoumarine (6). ${ }^{3}$ 1-Formyl-2-naphthol $5(1.72 \mathrm{~g}, 10 \mathrm{mmol})$ is added slowly to a stirred solution of ylid $4(3.02 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{PhH}(30 \mathrm{~mL})$. After $2-3$ days stirring at $20^{\circ} \mathrm{C}$ or 24 h reflux, the solvent was removed in vacuum and the residue was crystallized from MeOH or i-PrOH. Recrystallization from i PrOH or $\mathrm{PhH} / \mathrm{MeOh}$ afforded 1.43 g of $6(73 \%)$, $\mathrm{mp} 117^{\circ} \mathrm{C}$.

Phosphorane (8). ${ }^{3}$ A solution of 1-dimethylaminomethyl-2-naphthol 7 (2.01 g, 10 mmol) and ylid 4 ($3.02 \mathrm{~g}, 10 \mathrm{mmol}$) in anh. PhH (50 mL) was heated to reflux under stirring and N_{2}. After complete evolution of $\mathrm{Me}_{2} \mathrm{NH}$, the mixture was refluxed for 5 hours, then the solvent was removed in vacuum and the residue, after recrystallization from EtOAc or $\mathrm{PhH} / E t O A c$, afforded 3.15 g of $8(69 \%)$, mp $217^{\circ} \mathrm{C}$.

BIRCH-HÜCKEL-BENKESER Reduction

Reduction of aromatics, unsaturated ketones or conjugated dienes by alkali metals in liquid ammonia or amines.

1	Hückel, W.	Liebigs Ann.	1939	540	156
2	Birch, A.I.	J. Chem. Soc.	1944		430
3	Benkeser, R.A.	J. Am. Chem. Soc.	1961	77	3230
4	Benkeser, R.A.	J. Org. Chem.	1964	29	955
5	Moody, C.J.	Tetrahedron Lett.	1986	27	5253
6	Silverstein. R.M.	Synthesis	1987		922
7	Robideau, P.W.	Org. Reactions	1992	42	1
8	Birch, A.I.	Pure Appl. Chem.	1996	68	553

5,8-Dihydro-1-naphtol 2. ${ }^{2}$ To 1-naphtol $1(10.0 \mathrm{~g} ; 69 \mathrm{mmol})$ was added powdered $\mathrm{NaNH}_{2}(2.7 \mathrm{~g} ; 69 \mathrm{mmol})$, liquid $\mathrm{NH}_{3}(100 \mathrm{~mL}), t$ - $\mathrm{BuOH}(12.5 \mathrm{~g})$ and then $\mathrm{Na}(3.2 \mathrm{~g}$; 0.139 at) in small pieces. After evaporation of the NH_{3}, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Acidification gave an oil which solidified. Recrystallization gave 89.5 g of 2 (85\%), mp 71-74 ${ }^{\circ} \mathrm{C}$.

BISCHLER-NAPIERALSKI Isoquinoline Synthesis Isoquinoline synthesis from amides or phenethylamines (see 1st edition).

1	Bischler, A.; Napieralski, B.	Chem. Ber.	1893	26	1903
2	Morrison, C.G	J. Org. Chem.	1964	29	2771
3	Ramesh, D.	Synth. Commun.	1986	16	1523
4	Thygarayan, B.S.	Chem. Rev.	1954	54	1033
5	Fodor, G.	Angew. Chem. Int. Ed.	1972	11	919
6	Govindachari, T.R.	Org. React.	1951	6	74
7	Ishikawa, T.	Tetrahedron Lett.	1995	36	2795

BLANC-QUELLET Chloroalkylation

Lewis acid catalyzed aromatic chloromethylation (Blanc), chloroalkylation (Quellet).

		$-\mathrm{CH}_{2} .$		
$\mathrm{MeO}-\mathrm{Ph} \xrightarrow[\mathrm{ZnCl}_{2}, \mathrm{HClg}, 5^{\circ}]{\mathrm{MeCHO} \mathrm{5}}$	 6			
 8		 9		
Grassi, G., Masselli, C.	Gazz. Chim. Ital.	1898	28	477
Blanc, G.	Bull. Soc. Chim. Fr.	1923	33	313
Tashiro Masashi	J. Org. Chem.	1978	43	1413
Fuson, R.	Org. React.	1942	1	63
Quellet, R.	C. R.	1932	195	155
Quellet, R.	Bull. Soc. Chim. Fr.	1940	7	196
Neda, V.	J. Soc. Chem. Ind. Jpn.	1944	47	565
Mitchel, R. H.	Synlett.	1989		55

2,2'-Di(chloromethyl) -4,4'-di(tert-butyl)diphenylmethane (3). ${ }^{3}$ To cooled ($-5^{\circ} \mathrm{C}$) 1 ($35 \mathrm{~g}, 125 \mathrm{mmol}$) and chloromethyl methyl ether $2(80.5 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{CS}_{2}(150 \mathrm{~mL}$) was added $\mathrm{TiCl}_{4}(20 \mathrm{~mL})$. The mixture was stirred for 1 h , poured into ice water (300 mL) and the organic layer extracted with PhH . Evaporation gave 36 g of $3(76 \%)$, mp $90-91^{\circ} \mathrm{C}(\mathrm{EtOH})$.
2,4-Bis (bromomethyl)-mesitylene (9). ${ }^{8}$ Mesitylene 8 ($120 \mathrm{~g}, 1 \mathrm{~mol}$) was added to a mixture of $48 \% \mathrm{HBr}(475 \mathrm{~mL})$ and glacial acetic acid (125 mL), followed by 1,3,5-trioxane ($60 \mathrm{~g}, 2 \mathrm{~mol}$) and tetradecyltrimethylammomium bromide (5 g). The mixture was then well stirred such that only a single layer could by seen and then heated to a gentle reflux for 24 h . After cooling to $20^{\circ} \mathrm{C}$ the white solid was filtered, washed (water) and extracted with hot hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Finally there were obtained 290 g of 9 (94\%), mp $133-4^{\circ} \mathrm{C}$

BLICKE-PACHTER Pteridines Synthesis

Condensation of aminopyrimidines with aldehydes and HCN followed by cyclization with NaOMe to pteridines.

2,4,7-Triamino-6-phenylethynyl-pteridine $3 .{ }^{2}$ 2,4,5,6-Tetraaminopyrimidine 1 (2.5 g ; 14 mmol) in MeOH (12 mL) and HOAc (12 mL) was treated with NaCN ($1.5 \mathrm{~g} ; 30$ mmol) in water (6 mL) and phenylpropargylaldehyde $2(2.5 \mathrm{~g} ; 19 \mathrm{mmol}$) in MeOH (3 mL). After 10 min stirring and boiling, cooling deposited yellow crystals, washed (MeOH , water and MeOH), $1.9 \mathrm{~g}(28 \%)$ of 3 (acetate).

BLOMQUIS T Macrocycles Synthesis

Synthesis of large ring carbocycles by cyclization of bifunctional ketenes.

1,8-Cyclotetradecanedione 2. ${ }^{2}$ Suberic acid 1 ($3 \mathrm{~g} ; 1.7 \mathrm{mmol}$) and $\mathrm{SOCl}_{2}(0.4 \mathrm{~g} ; 3.4$ mmol) were heated at $55^{\circ} \mathrm{C}$ for 2 h and on a water bath until gas evolution ceased. Excess SOCl_{2} was removed in vacuum and the acid chloride was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(200-300 \mathrm{~mL})$. This was added to $\mathrm{Et}_{3} \mathrm{~N}(10-20 \mathrm{~mL})$ in $\mathrm{Et}_{2} \mathrm{O}(500-600 \mathrm{~mL})$ over 26 h under gentle reflux. The decanted solution was washed with dil. HCl and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and distilled. The yellow residue was treated with EtOH (5 mL) and KOH sol (1.8 g in 20 mL EtOH). After 10 h at $20^{\circ} \mathrm{C}$ and 2 h reflux, the mixture was diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the solvent evaporated to afford two crops of 2, total yield 10%, mp $147.5-148^{\circ} \mathrm{C}$.

B L U M Aziridine Synthesis
Synthesis of aziridines from epoxides via amino alcohols or azido alcohols and reaction with phosphines or phosphites (see $1^{\text {st }}$ edition).

1	Blum, J.	J.Org.Chem.	1978	43	397,4273
2	Shudo, K	Chem.Pharm.Bull.	1976	24	1013
3	Hassner, A	J.Am.Chem.Soc.	1970	92	3733
4	Hassner, A	J.Am.Chem.Soc.	1969	91	5046
5	Blum, J.	J.Heterocycl.Chem.	1994	31	837
6	Chiappe, C.	Tetrahedron Asymm.	1998	121	4079

Threo-2-Azido-1,2-diphenylethanol (2). ${ }^{1}$ A mixture of cis-stilbene oxide 1 ($3.92 \mathrm{~g}, 20$ $\mathrm{mmol})$ and $\mathrm{NaN}_{3}(4.48 \mathrm{~g}, 70 \mathrm{mmol})$ in 50% aqueous acetone $(60 \mathrm{~mL})$ was refluxed for 3 h . The solvent was removed in vacuum and the residue extracted with CHCl_{3}. The organic solution was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Distillation of the residue afforded 3.70 g of $2(77 \%)$ as a pale yellow oil, bp $122^{\circ} \mathrm{C} / 0.15 \mathrm{~mm}$.

Cis-2,3-Diphenylazirldine (3). A solution of 2 ($0.84 \mathrm{~g}, 3.5 \mathrm{mmol}$) and triphenylphosphine ($0.92 \mathrm{~g}, 3.5 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was refluxed for $1 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ (50 mL) was added and the mixture was allowed to stand ovemight at $5^{\circ} \mathrm{C}$ to allow complete precipitation of triphenyphosphine oxide. Column chromatography on silica gel yielded 0.53 g of 3 (77\%).

BODROUX-CHICHIBABIN Aldehyde Synthesis
Aldehyde synthesis from Grignard reagents and trialkyl orthoformate; see also Bouveault (see 1st edition).

$$
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Br} \xrightarrow[\mathrm{E}_{2} \mathrm{O}]{\mathrm{Mg}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{MgBr} \xrightarrow[\text { reflux } 6 \mathrm{~h}]{\stackrel{\mathrm{HC}(\mathrm{OEt})_{3}}{2}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{O}
$$

1

$$
3 \text { (60\%) }
$$

1	Chichibabin, A.E.	J. Russ. Phys. Chem. Soc.	1903	35	1284
2	Bodroux, F.	C. R.	1904	138	92
3	Smith, L.I.	J. Org. Chem.	1941	6	437

BOGER-CARBONI-LINDSEY Heterocycle Synthesis

Diels-Alder reactions of olefins, acetylenes, allenes with tetrazines or triazines to provide pyridazines or pyridines; reverse demand Diels-Alder reactions (see 1st edition).

1
2
3
4 (60\%)

1	Carboni, R.A.; Lindsey, R.V.	J. Am. Chem. Soc.	1959	81	4342
2	Boger, D.L.	J. Org. Chem.	1981	48	2179
3	Boger, D.L.	J. Org. Chem.	1982	47	3736
4	Boger, D.L.	J. Org. Chem.	1983	48	621
5	Boger, D.L.	J. Am. Chem. Soc.	1985	107	5745
6	Boger, D.L.	Chemtracts: Org. Chem.	1996	9	149

3-Ethyl-4-n-propylpyridine $7 .{ }^{2} 5(132 \mathrm{mg} ; 0.8 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added to a stirred solution of 1,2,4-triazine $6(85 \mathrm{mg} ; 1.2 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ under N_{2} at $25^{\circ} \mathrm{C}$. The resulting dark orange solution was warmed at $45^{\circ} \mathrm{C}$ for 20 h . Chromatography (silica gel, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) afforded 92 mg of pure 7 (71%).

BOGER Thermal Cycloadditions

Thermal cycloaddition of cyclopropenone ketal with olefinic acceptors to form cyclopentene derivatives.

1	Boger, D.L.	J.Am.Chem.Soc.	1984	106	805
2	Boger, D.L.	Tetrahedron Lett.	1984	25	5611
3	Boger, D.L.	J.Org.Chem.	1985	50	3425
4	Boger, D.L.	Tetrahedron	1986	42	2777
5	Boger, D.L.	Tetrahedron Lett.	1984	25	5615
6	Boger, D.L.	J.Am.Chem.Soc.	1986	108	6695,6713
7	Boger, D.L.	J.Org.Chem.	1988	53	3408

cis-Benzyl methyl 2-phenyl-6,10-dioxaspiro[4,5]dec-3-ene 1,1-dicarboxylate(cis). ${ }^{7}$ A solution of (Z)-benzyl methyl (phenyl methylene) malonate $2(Z)$ ($120 \mathrm{mg}, 0.405$ mmol) in $\mathrm{MeCN}-\mathrm{d}_{3}(0.4 \mathrm{~mL}$) was treated with cyclopropenone 1,3-propanediyl ketal 1 ($132 \mathrm{mg}, 1.18 \mathrm{mmol}, 2.9$ equiv) under N_{2}. After 20 h heating at $80^{\circ} \mathrm{C}$ (shielded from light), the cooled mixture was concentrated in vacuum, and the residue filtered through a short column of $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Evaporation of the solvent and chromatography $\left(\mathrm{SiO}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded: 8 mg of 2 (recovered), $\mathbf{1}$ (recovered) and a mixture of $\mathbf{3}$ (99 mg , 60\%). Ratio cis:trans 90:10.

BORCH Reduction

Reductive amination of aldehydes or ketones by cyanoborohydride (or triacetoxyborohydride) ${ }^{6}$ anion. Selective reduction of carbonyls to alcohols, oximes to N -alkylhydroxylamines, enamines to amines (see 1st edition).

1	Borch, R.F.	J. Am. Chem. Soc.	1969	91	3996
2	Borch, R.F.	J. Am. Chem. Soc.	1971	93	2897
3	Borch, R.F.	J. Chem. Soc. Perkin I	1984		717
4	Lane, C.F.	Synthesis	1975		135
5	Hutchins, R.O.	Org. Prep. Proc. Int.	1979	11	20
6	Abdel-Magid	Tetrahedron Lett.	1990	31	5595

Amine 6. Aldehyde 4 ($1.36 \mathrm{~g} ; 10 \mathrm{mmol}$) and aniline 5 ($1.023 \mathrm{~g} ; 11 \mathrm{mmol}$) in dichloroethane (40 mL) was treated with sodium triacetoxyborohydride ($3.18 \mathrm{~g} ; 15$ mmol) under N_{2} at $20^{\circ} \mathrm{C}$ to afford 2.37 g of 6 hydrochloride (95%).

BOUVEAULT Aldehyde Synthesis
Aldehyde synthesis from Grignard or Li derivatives with a formamide; see also Bodroux-Chichibabin (see 1st edition).

1	Bouveault, L.	C. R.	1903	137	987
2	Bouveault, L.	Bull. Soc. Chim. Fr.	1904	31	1306 (3)
3	Sice, J.	J. Am. Chem. Soc.	1953	75	3697
4	Einchorn, J.	Tetrahderon Lett.	1986	27	1791

5-Methoxy-2-thienaidehyde 6. ${ }^{3}$ 5-Methoxy-2-thienyllithium prepared from 4 (11.4 g; $0.1 \mathrm{~mol})$ and Li in $\mathrm{Et}_{2} \mathrm{O}(125 \mathrm{~mL})$ was added slowly to ice cooled DMF $5(8.0 \mathrm{~mL} ; 0.11$ $\mathrm{mol})$ in $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$ with efficient stirring and let stand at 20° overnight. The mixture was poured into ice, extracted with $E t_{2} \mathrm{O}$ and distillation gave 9.27 g of $6(65 \%)$, bp $79-81^{\circ} \mathrm{C} / 0.9 \mathrm{~mm}$; mp $24-26^{\circ} \mathrm{C}$ (petroleum ether).

BORSCHE-BEECH Aromatic Aldehyde Synthesis

Synthesis of aromatic aldehydes and of alkyl aryl ketones from aldoximes or semicarbazones and aromatic diazonium salts (see 1st edition).

1	Borsche, C.	Chem. Ber.	1907	40	737
2	Beech, W. F.	J. Chem.Soc.	1954		1297
3	Woodward, R. B.	Tetrahedron	1958	2	1

Pyridine-3-aldehyde (3). ${ }^{2} 3$-Aminopyridine 2 ($23.5 \mathrm{~g}, 0.24 \mathrm{~mol}$), $36 \% \mathrm{HCl}(68 \mathrm{~mL}$). $\mathrm{NaNO}_{2}(17.5 \mathrm{~g}, 0.25 \mathrm{~mol})$ and water $(75 \mathrm{~mL})$ was made neutral (NaOAc) and treated with formaldoxime 1. The mixture was acidified ($\mathrm{pH}-3$) and after $\mathrm{FeCl}_{3}(150 \mathrm{~g})$ was added, it was boiled for 1 h . Usual work up gave 3.6 g of $3(14 \%)$, bp $95-100^{\circ} \mathrm{C} / 16$ mm.

BREDERECK Imidazole Synthesis

Synthesis of imidazoles from formamide (acetamide) and α-diketones, α-ketols, α-aminoketones, α-oximinoketones (see 1st edition).

BOUVEAULT-BLANC Reduction

Reduction of esters to alcohols by means of sodium in alcohol (see 1st edition).

Bouveault, L.; Blanc, G.	C.R.	1903	136	1676
Paquette, L.A.	J. Org. Chem.	1962	27	2274
Ruhimann, K.	Synthesis	1972		236
Chaussar, J.	Tetrahedron Lett.	1987	28	1173
Rabideau, P.W.	Tetrahedron Lett.	1980		1401

BOUVEAULT-HANSLEY-PRELOG-STOLL Acyloin Condensation
Condensation of two esters to an α-hydroxyketone by means of rapidly stirred (8000 rpm) Na suspension in boiling toluene or xylene (see 1st edition).

Bouveault, L.

C. R.

1905140
1593

2	Hansley, V.L.	U.S. Pat. 2.228.268; cf. Chem. Abstr., 1941, 35, 2354			
3	Prelog, V.	Helv. Chim. Acta	1947	30	1741
4	Stoll, M.	Helv. Chim. Acta	1947	30	1815
5	Cramm, D.J.	J. Am. Chem. Soc.	1954	76	2743
6	Finley, K.T.	Chem. Rev.	1964	64	573
7	Ruhlmann, K.T.	Synthesis	1971		236

B O Y L A N - S I M S o-Hydroxylaniline Synthesis
Oxidation of dialkylanilines or their N -oxides with persulfates to o -aminophenols (see 1st edition).

1	Boyland, E.; Sims, P.	J. Chem. Soc.	1953		3623
2	Boyland, E.; Sims, P.	J. Chem. Soc.	1958		4198
3	Behrman, E.J.	J. Am. Chem. Soc.	1967	89	2424
4	Behrman, E.J.	J. Org. Chem.	1992	57	2266
5	Behrman, E.J.	Org. React.	1988	35	432

BRUYLANTS Amination
Amination - alkylation of aldehydes via α-cyanoamines (see 1st edition).

 1					
1	Bruylant, P.	Bull. Soc. Chim. Belge	1924	33	467
2	Bruylant, P.	Bull. Soc. Chim. Belge	1926	35	139
3	Bersch, H. W.	Arch. Pharm.	1978	311	1029
4	Ahlbrecht, H .	Synthesis	1985		743

N -(2-Hexene-4-yl)-pyrrolidine (4). ${ }^{3}$ To $3(10.57 \mathrm{~g}, 70 \mathrm{mmol})$ in THF (20 mL) under Ar, EtMgBr (1 molar, 22 mmol) in THF is added slowly at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and worked up to give 8.35 g of $4(78 \%)$, bp 83 ${ }^{\circ} \mathrm{C}$ (19 mm).

BRANDI-GUARNA Rearrangement

Synthesis of pyridine derivatives by rearrangement of isoxazolidone-5spirocyclopropanes resulting from dipolar addition to methylenecyclopropanes.

1	Brandi, A., Guarna, A.	J.Chem.Soc.Chem.Commun.	1985	1518	
2	Brandi, A., Guarna, A.	J.Org.Chem.	1988	53	$2426 ; 2430$
3	Brandi, A.	J.Org.Chem.	1992	57	5666
4	Brandi, A.	Tetrahedron Lett.	1995	36	1343
5	Brandi, A. deMeijere, A.	J.Org.Chem.	1996	61	1665
6	Brandi, A., Guarna, A.	Synlett	1993		1

Spiro 4,5-dihydro-3-methylisoxazole-5,1'-2'-phenylcyclopropane (3). ${ }^{3}$ Nitroethane ($1.3 \mathrm{~g}, 22 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($262 \mathrm{mg}, 2.6 \mathrm{mmol}$) in PhH (11 mL) was added over 1 h to a refluxing solution of 1-methylene 2-phenylcyclopropane $2(1.88 \mathrm{~g}, 14.5 \mathrm{mmol})$ and methyl isocyanate 1 ($1.24 \mathrm{~g}, 23 \mathrm{mmol}$) in $\mathrm{PhH}(10 \mathrm{~mL})$ under stirring. After 18 h stirring at $20^{\circ} \mathrm{C}$, the mixture was filtered and concentrated in vacuum. Unreacted 1 was recovered $\left(45-65^{\circ} \mathrm{C} 0.5\right.$ torr) and the residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 1 g of $3(40 \%), \mathrm{mp} 85^{\circ} \mathrm{C}$.

2-Methyl-6-phenyl-dihydropyrid-4-one (4). Vapours of 3 ($260 \mathrm{mg}, 1.4 \mathrm{mmol}$) were passed at 0.04 Torr through a quartz tube heated at $400^{\circ} \mathrm{C}$ then led into a cold trap. Washing with petroleum ether afforded 216 mg of $4(83 \%), \mathrm{mp} 162^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ petroleum ether).

von BRAUN Amine Degradation

Degradation of tertiary amines with cyanogen bromide (BrCN), or ethyl, benzyl or phenyl chloroformate (see 1st edition).

1	V. Braun, J.	Chem.Ber	1907	40	3914
2	Elderfield, R.C.	J.Am.Chem.Soc.	1950	72	1334
3	Boekelheide, V.	J.Am.Chem.Soc.	1955	77	4079
4	Wright, W.B.	J.Org.Chem.	1961	26	4057
5	Calvert, B.J.	J.Chem.Soc.	1965		2723
6	Rapoport, H.	J.Am.Chem.Soc.	1967	89	1942
7	Knabe, J.	Arch. Pharm.	1964	259	135
8	McCluskey, J.G.	J.Chem.Soc. (C)	1967	2015	
9	Hageman, H.A.	Org.React.	1953	7	198

4-Pipecoline (3). ${ }^{2}$ To a solution of $\operatorname{BrCN}(48 \mathrm{~g}, 0.46 \mathrm{~mol})$ in $\mathrm{PhH}(100 \mathrm{~mL})$ was added 1-isopropyl-4-pipecoline 1 ($58 \mathrm{~g}, 0.41 \mathrm{~mol}$) in $\mathrm{PhH}(275 \mathrm{~mL})$ over 1 h at $40^{\circ} \mathrm{C}$. The mixture was heated for 45 min at $55-60^{\circ} \mathrm{C}$ and was maintained at $20^{\circ} \mathrm{C}$ for 36 h . The basic material was extracted with $\mathrm{HCl}(100 \mathrm{~mL})$ and the solvent was distilled to give 44 g of residue. The neutral product 2 was refluxed with $48 \% \mathrm{HBr}(300 \mathrm{~mL})$ for 10 h . After distillation of HBr , the residue was leached in a mixture of EtOAc:EtOH (80:20). Filtration of insoluble $\mathrm{NH}_{4} \mathrm{Br}$ and concentration gave 3, mp 171-173 ${ }^{\circ} \mathrm{C}$.

Phenyl 21-chlorodeoxydihydrochanoajmaline-N-carboxylate (5). ${ }^{8}$ 21-Deoxy ajmaline $4(1.55 \mathrm{~g}, 5.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was treated with phenyl chloroformate ($0.86 \mathrm{~g}, 5.5 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$ for 18 h . Usual work-up, and chromatography afforded 2.24 g of 5 (96%).

BROOK Silaketone Rearrangement

Rearrangement of silaketone to silyl ethers (with chirality transfer) (see $1^{\text {st }}$ edition).

1	Brook, A.G.	J.Org.Chem.	1962	27	2311
2	Brook, A.G.	Acc.Chem.Res.	1974	7	77
3	Wilson, S.R..	J.Org.Chem.	1981	47	747
4	Kuwajima, J.	Tetrahedron Lett.	1980	21	623
5	Mori, M.	J.Org.Chem.	1996	61	1196
6	West, R.	J.Am.Chem.Soc.	1974	96	3214

Benzhydryloxy ethoxy diphenyl silane 2. ${ }^{2}$ To a solution of benzoyltriphenylsilane 1 $(2.5 \mathrm{~g}, 6.9 \mathrm{mmol})$ in $\mathrm{PhH}(25 \mathrm{~mL})$ was added a solution of sodium ethoxide in EtOH (2 $\mathrm{mL}, 0.8 \mathrm{mmol}$). The solution was washed with water and the solvent removed in vacuum. The oily residue was dissolved in hot $\mathrm{EtOH}(15 \mathrm{~mL})$ and cooled to give 2.1 g of 2 (74%), mp $67-75^{\circ} \mathrm{C}$. Recrystallization from EtOH gave 1.8 g of 2 (64\%), mp $77-78^{\circ} \mathrm{C}$.

Silyl amines 4 and $5 .{ }^{5}$ To a solution of 3 in THF was added BuLi at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 30 min at the same temperature. Mel was add4ed at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for another 30 min at the same temperature. After usual work-up are obtained 40% from 4 and 20% from 5.

BROWN Acetylene Zipper Reaction

Isomerization of internal acetylenes to the terminal position by means of potassium (or lithium) 3-aminopropylamide (KAPA).

1	Brown, C.A.	J.Am.Chem.Soc.	1975	97	891
2	Brown, C.A.	J.Chem.Soc.Chem.Commun.	1976	959	
3	Macaulay, S.R.	J.Org.Chem.	1980	45	734
4	Becker, D.	J.Org.Chem.	1984	49	2494
5	Abrams, S.R.	Can.J.Chem.	1984	62	1333

16-Heptadecyn-1-ol (2). ${ }^{4}$ A mixture of potassium (190 mg, 4.8 mmol) in $1,3-$ propanediamine $1(5 \mathrm{~mL})$ with ferric nitrate (1 mg) was heated to $90^{\circ} \mathrm{C}$ in a ultrasound cleaning bath. After 10-15 min potassium disappears and a green-brown solution of KAPA was formed. This mixture was cooled to $0^{\circ} \mathrm{C}$ and 12-heptadecyn-1-ol 1 (190 mg , 0.75 mmol) in THF (1 mL) was added. After 30 min stirring at $0^{\circ} \mathrm{C}$, the mixture was poured into water (125 mL) and extracted with hexane ($3 \times 100 \mathrm{~mL}$). The extract was dried with MgSO_{4} and after evaporation of the solvent, there was obtained 185 mg of 16-heptadecyn-1-ol 2 (98\%), mp $41^{\circ} \mathrm{C}$.

23-Tetracosyn-1-ol (4). ${ }^{5} \quad$ 1,3-Diaminopropane (10 mL) under N_{2} was treated with Li $(140 \mathrm{mg}, 20 \mathrm{~m}$ at g$)$ under heating $\left(70^{\circ} \mathrm{C}\right)$ and stirring. After 2 h the mixture was cooled to $20^{\circ} \mathrm{C}$, KO-t-Bu ($1.3 \mathrm{~g}, 12 \mathrm{mmol}$) was added and stirring was continued for another 15 min when 7 -tetracosyn-1-ol 3 ($1.05 \mathrm{~g}, 3 \mathrm{mmol}$) was added. After 2 h stirring the mixture was quenched with water and normal work up gave after chromatography (silica gel, hexane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1) 860 mg of 4 (82%), mp $76-7^{\circ} \mathrm{C}$.

BROWN Hydroboration

Hydroboration-regioselective and stereoselective (syn) addition of $\mathrm{BH}_{3}\left(\mathrm{RBH}_{2}, \mathrm{R}_{2} \mathrm{BH}\right)$ to olefins. Synthesis of alcohols or amines including optically active ones from olefins. Also useful in synthesis of ketones by "stitching" of olefins with CO (see 1st edition).

1	Brown, H.C.	J.Am.Chem.Soc.	1956	78	2583
2	Brown, H.C.	J.Org.Chem.	1978	43	4395
3	Masamune, S.	J.Am.Chem.Soc.	1986	108	7401
4	Hoffmann, R.W.	Angew.Chem.Int.Ed.	1982	21	555
5	Brown, H.C.	J.Am.Chem.Soc.	1986	108	2049
6	Srebnik, M.	Aldrichimica Acta	1987	20	9
7	Brown, H.C.	J.Org.Chem.	1989	54	4504
8	Brown, H.C.	J.Org.Chem.	1995	60	41

Isopinocampheol 6. ${ }^{2}$ To a hot solution of borane-methyl sulfide 1 ($2 \mathrm{~mL}, 20 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (11.3 mL) was added (+)- α-pinene $2(7.36 \mathrm{~mL}, 46 \mathrm{mmol}$), which led to quantitative formation of 3 . After addition of TMEDA ($1.51 \mathrm{~mL}, 10 \mathrm{mmol}$), reflux was continued for 30 min . The adduct was filtered and washed with pentane to give 3.32 g of $4(80 \%)$, mp $140-141^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$. A solution of $4(3.32 \mathrm{~g}, 8 \mathrm{mmol})$ in THF (16 mL) was treated with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(1.97 \mathrm{~mL}, 16 \mathrm{mmol})$. After 1 h , the solid TMEDA.2BF ${ }_{3}$ was removed and the solution of 5 was oxidized with alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 6 (100\%).
(-) 3-Hydroxytetrahydrofuran 8^{5} To a suspension of (-) $\quad \mathrm{lpc}_{2} \mathrm{BH}$ (diisopinocamphenyl borane) $3\left(7.1 \mathrm{~g}, 25 \mathrm{mmol}\right.$) in THF, see above, at $-25^{\circ} \mathrm{C}$ was added 2,3-dihydrofuran 7 ($1.9 \mathrm{~mL}, 25 \mathrm{mmol}$). The reaction mixture was stirred at the same tempreature for 6 h . The solid 3 disappeared, and formation of trialkyl borane was complete. The mixture was brought to $0^{\circ} \mathrm{C}$, acetaldehyde ($5.6 \mathrm{~mL}, 100 \mathrm{mmol}$) was added dropwise and stirring was continued for another 6 h at $25^{\circ} \mathrm{C}$. Excess acetaldehyde was removed in vacuum $\left(25^{\circ} \mathrm{C}, 12 \mathrm{~mm} \mathrm{Hg}\right)$, and 20 mL of THF was added. The boronate thus obtained was oxidized with 25 mL of 3 N NaOH and 3.75 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, and maintained for 5 h at $25^{\circ} \mathrm{C}$. The aqueous layer was saturated with $\mathrm{K}_{2} \mathrm{CO}_{3}$, extracted with $3.25 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated, the residue filtered through silica; pentane eluent removed pinene, whereas the $\mathrm{Et}_{2} \mathrm{O}$ eluent afforded the alcohol 8 which on distillation yielded 1.87 g , bp $80^{\circ} \mathrm{C} / 15 \mathrm{~mm}(92 \%)$, GC purity $99 \%, \alpha_{\mathrm{D}}=-17.3^{\circ} \mathrm{C}(\mathrm{c} 2.4 \mathrm{MeOH}, 100 \%$ ee $)$.
(S)-(-)-(Trifluoromethyl)oxirane $12 .^{8}$ B-chlorodiisopinocamphenylborane 10 (8.8 g, 27.5 mmol) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ under N_{2} was cooled to $-25^{\circ} \mathrm{C}$ and $9(4.7 \mathrm{~g}, 25 \mathrm{mmol})$ was added using a syringe. The reaction was followed by ${ }^{11} \mathrm{~B}$ NMR (${ }^{11} \mathrm{~B}: 32 \mathrm{ppm}$) for 96 h , when the reaction was complete. At $0^{\circ} \mathrm{C}$ was added diethanolamine ($5.3 \mathrm{~mL}, 55$ mmol), then the mixture was heated to $20^{\circ} \mathrm{C}$ and stirred for 2 h , whereupon the borane precipitated as a complex which was filtered and washed with pentane. The solvent was removed, the residue added to 15 N NaOH (10 equiv.) and heated at 95$100^{\circ} \mathrm{C}$ to distill the epoxide. This afforded 1.536 g of 12 ($64 \%, 96 \% \mathrm{ee}$).

BROWN Stereoselective Reduction

Stereoselective reduction of ketones to alcohols by means of borohydride reagents (Li $s-\mathrm{Bu}_{3} \mathrm{BH}$) or t-BuClBR * for formation of chiral alcohols.

1

Brown, H.C.
Brown, H.C.
Brown, H.C.
Brown, H.C.
Brown, H.C.
Brown, H.C.

J. Am. Chem. Soc.	1970	92	709
J. Am. Chem. Soc.	1972	94	1750
Chem. Commun.	1972		868
J. Am. Chem. Soc.	1972	94	7159
J. Org. Chem.	1989	54	4540
J. Org. Chem.	1995	60	41

Cis-4-tert-butylcyclohexanol 2. ${ }^{4}$ To 1 M lithium trimethoxyaluminium hydride (LTMA) (5.0 mL) in THF under N_{2}, was added sec-butylborane (from 2-butene and diborane), $1.25 \mathrm{~mL}, 5 \mathrm{mmol}$. After 30 min the mixture was cooled to $-78^{\circ} \mathrm{C}$ and $1(390 \mathrm{mg} ; 2.5$ mmol) was added. After 3 h , hydrolysis and oxidation $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ gave $2(96.5 \%$ cis and 3.5% trans).
(S)-Cyclohexylethanol $6 .{ }^{5}$ To 5.5 mmol of 4 in THF (from $\mathrm{Li}-\mathrm{tBuBH} 3, \mathrm{HCl}$ followed by (-)-2-ethylapopinene 3, $\alpha_{D}=-42.78^{\circ}$) was added 5 ($0.64 \mathrm{~g} ; 5 \mathrm{mmol}$) under N_{2}. After 2 days the solvent was removed, the residue dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, diethanolamine (2.2 equiv.) was added and stirred for 2 h . After filtration and washing with pentane, the filtrates were concentrated and chromatography gave 0.42 g of 6 (65%), 90% ee.

BUCHNER-CURTIUS-SCHLOTTERBECK Homologation
Ring enlargement of benzene derivatives by carbenes generated from diazo compounds (better in the presence of a Rh catalyst). Conversion of aldehydes to ketones by diazo compounds (Schlotterbeck); see also Pfau-Platter (see 1st edition).

BURTON Trifluoromethylation
Trifluoromethylation of aryl iodides or nitroarenes with $\mathrm{Cd}(\mathrm{Cu})$ reagents (see 1st edition).

1	Burton, D.J.	J. Am. Chem. Soc.	1985	107	5014
2	Burton, D.J.	J. Am. Chem. Soc.	1986	108	832
3	Clark, J.H.	J. Chem. Soc. Chem. Commun.	1988		638
4	Clark, J.H.	Tetrahedron Lett.	1989	30	2133

1-Trifluoromethyl-2,4-dinitrobenzene $2 .{ }^{4}$ A mixture of m-dinitrobenzene $1(840 \mathrm{mg} ; 5$ mmol), metallic $\mathrm{Cu}(1.905 \mathrm{~g} ; 30 \mathrm{mat}$), dibromodifluoromethane ($2.43 \mathrm{~g} ; 11 \mathrm{mmol}$), charcoal (1 g) (dried at $280^{\circ} \mathrm{C}$) in dimethylacetamide (7.5 mL) was heated to $100^{\circ} \mathrm{C}$ under N_{2}, to afford 1.026 g of $2(87 \%)$.

BUCHWALD Heterocyclization
Preparation of benzisothiazoles, butenolides or pyrroles using organo-zirconium reagents and acetylenes.

Chiral butenolide 3. ${ }^{2}$ A mixture of 1 ($995 \mathrm{mg} ; 2.79 \mathrm{mmol}$) and $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl} 2(791 \mathrm{mg}$; $3.07 \mathrm{mmol})$ in $\mathrm{PhH}(30 \mathrm{~mL})$ were stirred at $20^{\circ} \mathrm{C}$ under Ar for 16 h . After degassing, the mixture was stirred under a CO_{2} atm for 6 h . A solution of l_{2} ($708 \mathrm{mg} ; 2.79 \mathrm{mmol}$) in PhH (20 mL) was added and stirring was continued for 1 h . Usual work up and chromatography (radial), pentane: $\mathrm{Et}_{2} \mathrm{O}(9: 1$ to $7: 3)$ gave 1.93 g of $3(55 \%), 90 \%$ ee.

7-Methoxy-2,3-dimethylbenzo[b]thiophene 7. ${ }^{4}$ To 2-bromoanisole 4 ($385 \mathrm{mg} ; 2$ mmol) in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was added BuLi ($1.2 \mathrm{~mL} 1.68 \mathrm{M} ; 2.2 \mathrm{mmol}$). After 15 min stirring, zirconocene(methyl)chloride 5 ($570 \mathrm{mg} ; 2.1 \mathrm{mmol}$) in THF (10 mL) was added followed by 2-butyne 6 ($130 \mathrm{mg} ; 2.4 \mathrm{mmol}$) and heated for 18 h at $80^{\circ} \mathrm{C}$. Usual work up and recrystallization from pentane gave 274 mg of $\mathbf{7 (7 1 \%) , ~ \mathrm { mp }} 110-110.5^{\circ} \mathrm{C}$.

BUCHWALD-HARTWIG Aryl Halide Amination

Amination of aryl halides in the presence of a base and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}+\mathrm{BINAP}$ (Buchwald) or (DPPF) PdCl_{2} (DPPF=1,1'-bis(diphenylphosphino-ferrocene) (Hartwig).

Amide 3. ${ }^{3} 1$ ($505 \mathrm{mg} ; 1.97 \mathrm{mmol}$), 2 ($0.21 \mathrm{~mL} ; 2.30 \mathrm{mmol}$), NaOtBu (266 mg; 2.77 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{mg} ; 0.006 \mathrm{mmol})$, BINAP ($11 \mathrm{mg} ; 0.017 \mathrm{mmol}$) and $\mathrm{PhMe}(5 \mathrm{~mL})$ under N_{2} were heated for 21 h at $90-100^{\circ} \mathrm{C}$. Work up and chromatography afforded 426 mg of $3(81 \%)$, $\mathrm{mp} 74-76^{\circ} \mathrm{C}$.

BURGESS Alcohol Dehydration

Thermolysis of tertiary and secondary alcohols with (carbomethoxysulfamoyl) triethylammonium inner salt 1 or polymer linked reagent ${ }^{6}$ to give olefins; also conversion of amides to nitriles (see 1st edition).

1	Burgess, E.M.	J. Org. Chem.	1973	38	26
2	O'Grodnick, J.S.	J. Org. Chem.	1974	39	2124
3	Goldsmith, D.J.	Tetrahedron Lett.	1980	21	3543
4	Claremon, D.A.	Tetrahedron Lett.	1988	29	2155
5	Burgess, E.M.	Org. Synth.	1977	56	40
6	Wipf, P.	Tetrahedron Lett.	1996	37	4659
7	Wipf, P.	Tetrahedron	1998	54	6987
8.	Wipf, P.	Chem. Rev.	1995	95	2115

