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NOTES 

Fischer-Tropsch Synthesis over Supported Molybdenum 
Hexacarbonyl 

During the last 5 years there has been 
growing interest in new types of catalysts 
derived from transition metal complexes 
with special interest ‘focused on carbonyl 
complexes (Z-5). Simultaneously there has 
been much research directed to the possible 
application of these materials to commer- 
cially important reactions, particularly 
more selective catalysts for Fischer- 
Tropsch synthesis (FTS) (5-Z@. An early 
report (II) showed that MOM had no 
homogeneous activity for methanation or 
even olefin hydrogenation, an easily cata- 
lyzed reaction. However, it was later 
shown that when supported MOM could 
be activated to yield substantially higher ac- 
tivity for these reactions than traditional 
catalysts (prepared by the reduction of a 
supported salt) of Moo3 (12-16). This note 
reports the first study of Mo(CO)dA120j un- 
der conditions conducive to FTS and dem- 
onstrates the improved activity and selec- 
tivity of this catalyst relative to MOO+ 

If present, K+ was added to the alumina 
(Conoco y-A1203, Type Catapal SB) as 
KN03 using the incipient wetness tech- 
nique and the alumina was then dried at 
120°C prior to calcination at 500°C (this 
“standard” alumina is about 28% hydrox- 
ylated, s = 203 m2/g). “Dehydroxylated” 
alumina (about 0.6% residual surface OH, s 
= 125 m2/g) was prepared by treating stan- 
dard alumina at 1000°C for 1 h (this converts 
much of the r-Al,O, to 6-A1203 (17)). Sup- 
ported Mo(C0)6 was prepared using the dry 
mixing (and rigorously air free) technique 
previously described (18). Following fixing 
the complex on the alumina by decomposi- 
tion to Mo(C0)3(ads) at 100°C in He (Z9), 
the catalyst was activated in H2 at 500°C. 

Traditional MoO~/AI~O~ was prepared from 
(NH&M004 using the incipient wetness 
technique and reduced at 500°C in flowing 
HZ. 

Reaction was carried out in a stainless- 
steel tubular reactor holding 0.7- 1 .,O g cata- 
lyst in a flow system. The catalyst was either 
activated in situ or prepared in a fused 
quartz reactor and then transferred to the 
stainless-steel reactor without exposure to 
air. Flows were controlled by a Brooks 
mass flow controller and pressure regulated 
by a Grove Mity-Mite back-pressure regu- 
lator. He and CO were purified with an Ox- 
isorb cartridge (Scientific Gas Products) 
and the H2 was purified with a catalytic 
“oxygen removing purifier” followed by 
13 x molecular sieves (Matheson). Reaction 
products were analyzed by GC using sev- 
eral columns and peaks were integrated 
with a Hewlett-Packard Model 3388A digi- 
tal integrator. Details of the experimental 
system will be published separately. 

Table 1 shows the activities of both tradi- 
tional and carbonyl-derived catalysts for 
FTS. Theformal turnover frequency,’ mol- 
ecules reacting per unit time per metal atom 
in the catalyst (regardless of the disper- 
sion), for Mo(CO)ddehydroxylated alumina 
with 4% K+ is 2 x 10m2 s-l. K+ lowers the 

I Formal turnover frequency is related to turnover 
frequency by the expression Nf = N(D), where D is 
the fractional dispersion of a catalyst. Nf is a useful 
parameter for comparing activities when either disper- 
sions are unknown or chemisorption appears to yield 
erroneous values. CO chemisorption at 22°C and 150 
Torr on a catalyst of the type used in Table 2 and then 
cleaned in H2 at 500°C yielded a fractional dispersion 
of 0.005. Other data suggest that CO chemisorption 
significantly underestimates the true dispersion of 
these catalysts. 
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TABLE 1 

Activities of MO Catalysts for FT.!? 

Loading 
(% MO) % Conversion 

No K+ 4% K’ 

51.5 

Relative 
rate constant0 

No K’ 4% K+ 

MoOdstandard alumina 
Mo(CO)&tandard alumina 
Mo(CO)ddehydroxylated 

alumina 

5 28 17 1.00 1 .oo 
4 51 56 2.7 5.5 
3 66 64 5.4 9.2 

Note. Reaction conditions: 350°C 355 psi, 1300 h-’ GHSV, Hz/CO = 1. 
a Values of first-order rate constant relative to the value for MoOJstandard alumina 

activity of the traditional catalyst signifi- 
cantly more than for the carbonyl catalysts. 
Above 4% K+ the activity of carbonyl cata- 
lysts drops slowly, being one-half as active 
with 15% K+. 

Although the exact product distribution 
is somewhat dependent on the reaction 
conditions, a typical result is shown in Ta- 
ble 2. These catalysts yield close to 50 
atom% of the product carbon as CO*, indi- 
cating equilibration of the water gas shift 
reaction. Thus, almost all of the oxygen in 
products leaves the reactor as CO2 rather 
than H20. For this reason the product dis- 
tribution (carbon atom% selectivity) is 
given on a COz-free basis. The Cl through 
C4 products obey Anderson kinetics (20) 
with a probability of polymerization of 0.37, 
but the C5 yield is somewhat less than pre- 
dicted. In the absence of K+ the olefin yield 
is greatly reduced and higher levels of K+ 
modestly increase the olefin yield. 

In most cases neither the conversion nor 
product distribution changes significantly 
during 20 h of reaction. Over the tempera- 
ture range 300-425°C the activation energy 
is 18 kcal/mol and there is a negligible 

change in the product distribution. From 
115 to 765 psi (1 psi = 6.9 x lo3 N me2) the 
reaction is close to first-order in total pres- 
sure and the yield of CH4 and LPG’s (C2 
through C4 hydrocarbons) drops slightly 
with increasing pressure. 

The Bureau of Mines earlier studied FTS 
over a variety of MO catalysts (21). Typical 
of the more active catalysts is No. L6117 
consisting of 11% Mo/A1203 which gave a 
conversion of 54% at 355”C, 309 psi, 292 h-l 
GHSV, and Hz/CO = 1 corresponding to a 
formal turnover frequency of about 1 x 
10e3 s-i (or about 2 x lop4 s-i at the condi- 
tions of Table 1). The products were 68% 
CH4, 22% C2, and 10% C3 + C4. It is clear 
that the carbonyl catalyst is both signifi- 
cantly more active and results in less CH4. 
Murchison has recently reported improved 
MO catalysts for synthesizing LPG’s (22). 
A preferred catalyst used Saran carbon 
(with K+) as a support which aided in com- 
pletely reducing the MO during catalyst ac- 
tivation at 500°C in HZ. This catalyst 
yielded 62% LPG’s with a formal turnover 
frequency of about 1 x 10m3 s-i at 400°C 
900 psi, 300 GHSV, and H2/C0 = 1 (or 

TABLE 2 

Product Distribution of Mo(CO)ddehydroxylated Alumina (4% K+) for FTS 

Conversion CH4 CzH4 C2H6 C,H6 
(%I 

ws GHs CdH,,, C5 C,’ LPG’s 

64 41.1 2.1 25.6 3.0 15.3 2.9 6.2 2.3 1.6 55 

Note. Reaction conditions: as in Table 1. 
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about 3 x 10m5 s-r at the conditions of Table 
1). After 500 h on stream XPS analysis 
showed that 53% of the MO remained zero 
valent . 

We suggest that the high activity of 
Mo(CO)ddehydroxylated alumina is mainly 
due to the ability to initially prepare the MO 
in an oxidation state close to zero. Reduc- 
tion of Mo03/alumina at 500°C yields pri- 
marily Mo4+ (23). Activation of Mo(CO)d 
standard alumina at 500°C in an inert atmo- 
sphere yields an average oxidation state of 
Mo5+ due to reaction of the initially zero 
valent MO with surface OH groups (24). As 
in the case of a traditional catalyst, HZ at 
500°C reduces this material to mainly Mo4+ 
(29). However, this catalyst is several fold 
more active than the Moo3 catalyst of this 
study (and much more active than the Bu- 
reau of Mines catalyst). Both the use of a 
zero valent catalyst precursor and the use 
of dehydroxylated alumina appear impor- 
tant in achieving maximal activity (25, 26). 
The exact oxidation state of the MO during 
reaction is uncertain. Some oxidation of 
MO(O) must occur since Mo(CO)ddehy- 
droxylated alumina is only modestly more 
active than Mo(CO)dstandard alumina. 
However, after 20 h of reaction at a conver- 
sion of 65% about 1500 molecules of water 
have been formed per MO atom, but the cat- 
alyst still retains good activity. Thus, it ap- 
pears that once synthesized in a low valent 
state the catalyst is at least modestly resis- 
tant to reoxidation to Mo4+ and Mo6+, as 
also found by Murchison for MO/C (22). 
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