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A great challenge in the field of catalysis is the development of catalysts 
which possess the major advantages of both homogeneous (e.g., high 
activity, high selectivity, and mild reaction conditions) and heterogeneous 
(e.g., ease of catalyst recovery and high turnover numbers) catalysis. 

One way of bridging this 'gap' between homogeneous and heterogeneous 
catalysis is heterogenization of homogeneous catalysts. 

Heterogenization is achieved via either physisorption or through covalent 
grafting of a ligand or transition metal complex onto a solid support viz. 
Alumina, silica, MCM, carbon etc., 
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Introduction

Methods of heterogenization of homogeneous catalyst



Generally the activity and selectivity of the homogeneous catalysts  
are changed (either it increases or decreases) after heterogenization.  
This may be due to the changes in geometry and electronic properties 
of the catalytic site. 

In order to study these changes in advance, prior to carry out this 
reaction in the laboratory, a theoretical study should be carried out.  
Moreover, these properties of a catalyst can be obtained 
computationally more easily than by experimental means.

In the present work, the electronic and geometrical effects of 
anchoring bio-mimetic galactose oxidase catalyst onto oxidized carbon 
support is studied by a Density Functional Theory (DFT). 
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Synthetic model of Galactose Oxidase

Active site of 
Galactose Oxidase

RCH2OH                          RCHO +2e-+2H+

2e-+2H+ + O2 H2O2
---------------------------------------------------
RCH2OH + O2 RCHO+H2O2
----------------------------------------------------------------------------

The overall alcohol oxidation reaction catalysed by GOase

Oxidation of primary alcohol in galactose to aldehyde by 
GOase with  O2 as Oxidant

Galactose Oxidase and its function
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Percentage of atomic orbital contributions to HOMO and LUMO 
level of model - III
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Relative energies of HOMO - LUMO orbitals of  model - II
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Conclusion

The following results are obtained from DFT study upon anchoring the 
truncated models of galactose oxidase catalyst onto the hydroxyl 
functionalised carbon  support, 

The bond lengths of Cu-N decreases whereas Cu-O increases.
Inplane ∠N-Cu-N increases and ∠N-Cu-O, ∠O-Cu-O decreases. But out  
of plane ∠O- Cu-O increases.
Percentage of metal orbital contribution to HOMO and LUMO energy 
level is low when compared to ligand orbitals.  Hence redox properties 
of the catalyst is mostly ligand based rather than metal.
Shifting of HOMO energy to less negative value and decreasing HOMO-
LUMO energy gap indicates that the reducing capacity of the catalyst is  
still reduced and the oxidising capacity of the catalyst is increased by 
increasing the number of fused carbon rings in the carbon support. 
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