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Effect of Sulfidation on the Dehydrogenation 
Activity of a Bimetallic Reforming Catalyst 

Several commercial reforming pt-ocesses 
have start-up procedures involving sulfida- 
tion of the catalysts. Controlled sulfidation 
is said to improve the stability and life of 
the catalysts apart from increasing the C,+ 
yield. Pfefferle (1) has observed that the 
presence of sulfur in the feed decreases the 
aging rate of the catalyst while increasing 
the C,+ yield. Very recently Hayes et al. 
(2) have also reached the same conclu- 
sions based on their studies using sulfided 
and nonsulfided Pt-alumina catalysts with 
naphtha, n-heptane and cyclohexane as 
feed materials. They have found that coke 
lay-down on sulfided catalyst is about half 
that on unsulfided catalyst. In our present 
work, we have used a bimetallic reforming 
catalyst and have studied the intrinsic abil- 
ity of the metal surface to dehydrogen- 
ate cyclohexane, coupling Hz adsorption 
studies with reaction data. 

The reforming catalyst used in the 
present study had Pt as the major constitu- 
ent. The support was a high purity alumina 
and had about 100 ppm of Fe. Sample A 
was reduced and sulfided by passing a mix- 
ture of H,-CS, at 250°C for 10 hr at a 
pressure of 5 kg/cm2. Sample B was a sul- 
fided catalyst removed from a bench-scale 
reactor after 75 hr on a naphtha feed under 
typical reforming conditions. Sample C 
was a freshly reduced and unsulfided cata- 
lyst. All the three samples were reduced 
again at 500°C before H, chemisorption 
measurements were made according to the 
procedure of Spenadel and Boudart (3). 
Cyclohexane dehydrogenation experi- 
ments were carried out in a vertical flow 
reactor at conditions such that the conver- 
sions were mostly below 10%. 

Table 1 lists the data obtained over the 
catalyst samples. The dehydrogenation ef- 
ficiency expressed in terms of turnover 
number is defined as the number of mole- 
cules of benzene produced per hour per 
exposed metal atom. This was obtained by 
dividing the total number of molecules of 
benzene produced in 1 hr on a certain 
amount of catalyst by the number of atoms 
of hydrogen adsorbed by the same amount 
of catalyst. The ratio of adsorbed hy- 
drogen atoms to the total number of metal 
atoms in the catalyst (H/M ratio) is also 
presented in Table 1. 

The sulfided samples have a smaller 
value of H/M ratio compared to the unsul- 
fided sample. Similar results have been ob- 
tained by Zaidman er al. (4) . This is 
mostly due to the S blocking off of the ad- 
sorption sites. The used sulfided sample 
(B) has a slightly larger H/M value than 
the fresh sulfided catalyst (A). This is due 
to removal of part of the sulfur from the 
metal surface during the high pressure re- 
forming reaction. It is found that the turn- 
over number is higher (880 at 275°C) for 
the unsulfided sample than for the sulfided 
catalyst (200 at 275°C) . The used sample 
(B) also has a small turnover number (190 
at 275X), about the same magnitude 
as that of the fresh sulfided catalyst. The 
same trend is observed at other temper- 
atures also. The lower dehydrogenation 
efficiency in the case of sulfided catalysts 
cannot be explained on the basis of 
surface-structural rearrangements caused 
by the chemisorbed sulfur, since hydrogen- 
ation-dehydrogenation reactions are likely 
to be structure insensitive. While it is pos- 
sible that sulfur may drastically alter the 
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TABLE 1 
H/M RATIOS AND TURNOVER NUMBERS OF 

THE REFORMING CATALYST SAMPLES 

SEUll- 

de Pretreatment 
H/M Temp Turnover 
ratio (“C) No. 

A Reduced and 0.13 275 200 
sulfided (fresh) 250 < 100 

B Reduced and 0.36 215 190 
sulfided (used) 250 < 100 

225 <50 
C Reduced (fresh, 0.64 215 880 

unsulfided) 250 400 
225 160 

path of catalytic reactions by direct chemi- 
cal interactions with the adsorbed mole- 
cules instead of by inducing surface re- 
crystallization (5), the smaller turnover 
number could be ascribed to either one or 
both of the following two reasons: (a) more 
than one site might be necessary for the 
dehydrogenation of cyclohexane (6) and 
the presence of sulfur might exclude cer- 
tain sterically favorable multiple sites 
esential for the reaction to take place; (b) 
the added sulfur might alter the electronic 
properties of the metal surface itself. 

Both catalyst samples A and B have 
nearly similar turnover numbers. This 

shows that sulfidation of a fresh catalyst 
brings down the intrinsic dehydrogenation 
activity of the metal surface to a stable 
level. An unsulfided catalyst possesses 
very high dehydrogenation activity and 
leads to easy production of coke on the 
metal surface due to excessive dehy- 
drogenation of the adsorbed species. Thus, 
an unsulfided catalyst reaches quickly an 
activity level lower than the stable level of 
the sulfided sample. 
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