Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC's) Challenges in – materials selection and deposition

Venkatesan V. Krishnan Department of Chemical Engineering IIT Delhi

Barriers to the hydrogen economy

- How to make hydrogen (SR, electrolysis, Solar, Borohydride)?
- Loss of efficiency in making hydrogen
- Storage and Transportation?
- SOFC's can work with any 'fuel'
- Let us work in parallel with the Hydrogen advocates by using hydrocarbons directly with SOFC's
- Do not forget well to wheels efficiency!

DIRECT OXIDATION OF HYDROCARBONS AND OXYGENATES

Reactions:

Cathode: $(x + y/4 - z/2) O_2 + (4x + y - 2z) e \iff (2x + y/2 - z) O^2$ Anode: $C_x H_y O_z + (2x + y/2 - z) O^2 \iff (y/2) H_2 O + x CO_2 + (4x + y - 2z) e$

Overall: $C_x H_y O_z + (x + y/4 - z/2) O_2$ $(y/2) H_2 O + x CO_2$

Natural Gas, Propane/ Butane (LPG), Naphtha, Diesel, Alcohols, Syngas (from coal and biomass)

WHAT HAPPENS IN THE ANODE IN SUCH CASES ?

- Direct oxidation; $CH_4 + 4O^{2-} \rightarrow CO_2 + 2H_2O + 4e$
- Internal reforming; $CH_4 + H_2O \Leftrightarrow CO + 3H_2$
- Syngas oxidation; $CO + H_2 + O^{2-} \rightarrow CO_2 + H_2O$
- Coke deposition (thermal, catalytic); $CH_4 \Leftrightarrow CH_x + H_2$

WHY DO WE NEED NEW ANODES

- Incompatibility of Ni-YSZ anodes with any fuel other than H₂ – reforming essential; <u>coking with dry</u> <u>hydrocarbons</u> → *Reference: Toebes et al.*
- <u>Poisoning of Ni-YSZ by</u> sulfur compounds
- <u>Poor Redox tolerance</u> of Ni-based anodes
- YET, must satisfy the basic needs of SOFC anodes
 - Electronic conductivity
 - Ionic conductivity
 - Good catalytic activity
 - Compatibility of CTE's with that of electrolyte

EFFECT OF COKING ON Ni-YSZ ANODES

In H₂, 800°C, 3 hrs In CH₄, 800°C, 3 hrs

20% CO/7% H₂ 550°C. Ni particles

Toebes et al. (2002)

Coking due to decomposition and/or Bouduard Reaction

ALTERNATIVE ANODES ?

Cu/CeO₂/YSZ Gorte et al. (2000)

 $Ce_{0.9}Gd_{0.1}O_{1.95}$ combined with (La_{0.8}Sr_{0.2}) (Cr_{0.8}Mn_{0.2})O_{3-δ} <u>Barnett et al. (2002)</u>

<u>Irvine et al. (2001)</u> Titania-Niobia, Nb₂TiO_{7-x}

<u>Irvine et. al. (2003)</u> –

 $(La_{0.8}Sr_{0.2}) (Cr_{0.5}Mn_{0.5})O_{3-\delta}$

<u>Perovskites, Irvine et al.</u> <u>Boukamp, et al.</u>

• Transition metal ions

Why perovskites???

- Ionic and electronic conductivity can be tailored
- Good Hydrocarbon oxidation catalytic activity has been reported.
- No coking
- Good thermal and redox stability
- And yet, concern remains do we have adequate electronic conductivity under reducing conditions?

Review of work on alternate anodes - Gorte et al.

- Anodes based on Copper conductor; Ceria electrocatalyst
 - Cu and CeO_2 deposited on pre-formed porous anode substrates
 - Intermediate temperature SOFC's
- Considerable data on butane, methane, diesel, propane
 - Anode stable over long periods of time
 - Direct electrochemical Oxidation observed in button cells
 - Workable with fuel with existing sulfur levels
- Technology transfer to Franklin Fuel Cells, PA, US
 - Demonstration level, with diesel, gasoline and ethanol
- Performance tends to be lowered due to Copper sintering; enhancement necessary by carbon deposition
- Little/ no data on redox tolerance (deposition technique may be advantageous, use of Vol % < 20%)

Performance, Conductivity with Cu content

- Carbon enhancement occurs even at 25% Vol Cu; constant, independent of Cu
- But sufficient conductivity is attained with less than 10% volume

Overall conductivity not the problem; the issue is proper 'connectivity' at the 3phase boundary

Irvine et al. (2003) (La_{0.75} Sr_{0.25} Cr_{0.5} Mn_{0.5} O_{3- δ}), LSCM

Max. P. D. (W/cm²) = 0.47, 900°C Max. P. D. in Methane = 0.3 W/cm² (at 950°C)

Conductivity of perovskite at 850°C - in air, 28 S/cm

- in reducing atmosphere, 1.12 S/cm

Irvine et al., Niobia-Titania rutile system (2001)

- Max. conductivity under reduction, 300 S/cm
- Good catalytic activity towards methane Oxidation

Fig. 3 Conductivity in the system " Nb_2TiO_{7-x} " as a function of temperature (in H₂ atmosphere, 75% theoretical density of the polycrystalline pellet).

Fig. 4 Conductivity in the system "Nb₂TiO_{7-x}" as a function of oxygen partial pressure pO_2 (at 930 °C, 75% theoretical density of the pellet), measured on reoxidation.

Barnett et al. (2002) – LSCM-GDC composite

Small qty of Ni +

 $Ce_{0.9}Gd_{0.1}O_{1.95}$ – ionic conduction (La_{0.8}Sr_{0.2}) (Cr_{0.8}Mn_{0.2})O_{3-δ} – electronic conduction

- Usage of LSCM high electronic conductivity in reducing conditions, as well
- Compatible with GDC electrolytes

Figure 1. Voltage and power density vs. current density for SOFCs with LSCM-GDC-Ni and Ni-GDC anodes, operated at 750°C with air as the oxidant and either H2 or C3H8 fuel.

Compared to Ni-GDC, performance in C_3H_8 is significantly higher

Focus of research at Chemical Eng. Dept., IIT-D

- Nature of work essentially fundamental 'button cells'
- Aim is to contribute to existing knowledge 'pool', via publications and patents by addressing problems involving Electrochemistry, Materials and Catalysis
- We look forward to collaborate with 'developmental laboratories', e.g., test our ideas on a larger scale CGCRI, BHEL R&D

What we are involved in -

- SOFC component fabrication tape casting, sintering, painting, impregnation
- Characterization of components bi-layers, catalysts SEM, SA/ PSD, Porosity, XRD, Thermal Analysis
- Testing of Electrical Conductivity
- Fuel Cell Testing

FUEL CELL REACTOR AND OPERATION

Tape Casting (non-Aq)

Tape casting

YSZ and Pore Formers

Component function	Component	Quantity
Powder	YSZ	15g
Solvent	MEK	20mL
	EtOH	10mL
Dispersant	Oleic Acid	0.5mL
Binder	PVB	2.0g
Plasticizer	PEG	1.2mL

Characterization of tape

SEM of sintered bilayer

SEM of Graphite - as received

Anode Preparation by Perovskite Deposition

Porous anode matrix

Impregnation & calcination

Final Anode Structure

This method is totally different from the mixing and solid-state synthesis techniques listed in most literature. Moving away from the 3-phase boundary limitation to a 2phase boundary situation

Three Phase Boundary

Two Phase Boundary- a new approach

electrolyte

back

Impregnated La CrOx on preformed anodes

SEM and XRD both confirm that the required phase is formed inside the pores. But conductivity is very low i.e., 10⁻² S/cm.

Morphology of bi-layers

- Investigation of pore sizes choice of pore-formers, like Graphite, Starch, PMMA to name a few
- Porosity
- Pore size distribution
 Which are dependent on –
- Particle sizes
- Particle size distribution
- Particle 'shapes'

Starch

Tailoring the porosity of anode

Removal of pore formers by 950°C, completely

Removal of pore formers only begins at 1100°C

Sintering temperature is usually 1450°C up to 1550°C Pore structure may have a strong dependence on temperature of removal of pore former

Work in Progress

- Preparation and testing of chromites, titanates, niobates and vanadates
- Impregnation of perovskites onto pre-formed anode substructure
- Conductivity data on oxides as electrocatalysts under reducing conditions redox stability of oxides, as well
- Systematic investigation of pore and particle morphology
- Testing of anode supported cells on various fuels