Performance of Alkaline Fuel Cells: A Possible Future Energy System ?

Anil Verma

Assistant Professor

Department of Chemical Engineering

Indian Institute of Technology Guwahati

National Seminar on Challenges in Fuel Cell Technology: India's Perspective

Indian Institute of Technology Delhi, New Delhi

IIT Guwahati

Guest house (distant)

.

Guest house

Faculty quarters

11

Academic building

Man and the second residences and the

Fundamentals of alkaline fuel cell

Anode (Pt/C): $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ Cathode (Pt/C): $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

Overall Cell Reaction: $2H_2 + O_2 \rightarrow 2H_2O$

- Low temperature fuel cell technology
- Hydroxyl ions are the charge carriers

Laptop run by AFC

- •Most mature fuel cell technology in the past
- •Used in National Aeronautical and Space Administration's (NASA) space shuttle programs
- •The research was almost stopped due to many **myths**, technical bottlenecks and with the advent of Polymer Electrolyte Membrane (PEM)

Alkaline fuel cell used in Apollo space shuttle

AFC Research Trend at Present

Source: Compiled using search in Compendex and Inspec

Major research locations throughout the globe

Industries

- 1. Astris Energy Inc., Canada
- 2. Cenergie Corporation Plc., UK
- 3. ZeTek Power Plc. UK
- 4. Electrochem Technik, UK
- 5. Independent Power Technologies, Russia
- 6. Ovonic Fuel Cell Company, Rochester, USA

Institutes/Universities

- 1. Pennsylvania State University, USA
- 2. Mingchi University of Technology, Taiwan
- 3. Fudan University, China
- 4. DLR (German Aerospace Organization), Germany
- 5. Graz University of Technology, Austria
- 6. Kyoto University, Japan
- 7. University of Newcastle upon Tyne, UK
- 8. University of Alberta, Canada

Myths

- Expensive and useful only for applications in space
- Require very pure and costly gas feeds
- Can not work using air
- Poisoned by carbon dioxide
- Liquid electrolyte is the serious drawback
- Carbon monoxide is a problem

So what is true and what is false?

One thing is atleast clear: each type of fuel cell technology has its own advantages and disadvantages, BUT the <u>disadvantages</u> <u>stated for AFCs are grossly EXAGGERATED</u> or, often, simply incorrect.

Cost

Catalysts need not be based on expensive noble metals

Cheap electrolyte and less corrosive compared to acids: aqueous KOH solution

Modest system design: process-gas-humidification not required

Low power ambient fuel cell prices

Company (Fuel Cell Product)	Nominal Power 240 W 250 W		Type of Fuel Cell	Price (US\$) 2400 5700	
Astris (LC200-16) H-Power (PowerPEM-PS250)			AFC PEMFC		
DAIS-Analytic (DAC-200)	200 W		PEMFC	8500	
AFC peripheral costs			PEMFC peripheral costs		
	Cost (US\$)	%		Cost (US\$)	%
Air blower	14	5.5%	A ininini	220	41.497
CO ₂ scrubber	14	5.5%	(Compression subsystem) (Compression subsystem)	330	41.470
H ₂ recirculation ejector	22	8.6%	Air humidifier subsystem	65	8.1%
Electrolyte recirculation	100	39.2%	H ₂ recirculation ejector	22	2.8%
Nitrogen purge	15	5.9%	Radiator subsystem	92	11.5%
Electronic engine control (EEC)	50	19.6%	DI filter	14	1.8%
Piping, valving, misc.	40	15.7%	Electronic engine control (EEC) Piping, valving, mise.	220 55	27.5% 6.9%
Total periph. sys. cost (incl. mark-up and cost contingency)	255	100%	00% Total periph. sys. cost (incl. mark-up and cost contingency)		100%

Source: McLean et al., Int. J. Hydrogen Energy 27 (2002) 507-526.

Liquid Electrolyte

- Circulating electrolyte is a self-healing layer of liquid in which any defect (say in the form of a bubble) will not remain stationary
- ✓ Heat management is easy in liquid circulating electrolyte

Challenges

Circulating electrolyte poses some unique design/engineering challenges owing to its corrosive nature

Carbon dioxide: The bogeyman

It is commonly accepted that CO_2 intolerance is the most pronounced disadvantage of air-breathing AFCs

 $CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$ and/or $CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O_2$

But is this the really "Show-Stopper"?

Some of the research findings

Saleh et al. (1994) 1% CO₂

72 °C No significant effect (200 h) 25 °C

Adversely affect the performance

Gulzow (1996) With/without CO₂ $17 \,\mu$ V/h degradation (with/without CO₂)

Michael et al. (2000) 50 ppm CO₂ 6000 h (intermittent) 30% drop in power

Kordesch et al. (2001) Circulating electrolyte Improves the performance

Tiwari et al. (2006) <u>Methanol-Air</u>

- Significant decrease in cell performance only after about 60% of KOH has been converted to K₂CO₃
- KOH and K₂CO₃ electrolytes: Cell performance decreases because of sluggish methanol oxidation kinetics at the anode in the presence of carbonate

Direct alcohol alkaline fuel cell developed in IIT Delhi

Electrode development (Flow diagram)

Anode

Surface morphology of electrodes

Carbon paper

Fuel Cell Analysis

Schematic diagram of direct alcohol alkaline fuel cell

1. **Fuel-electrolyte** mixture **Exhausted-fuel**storage; 2. electrolyte mixture storage; 3, 4. Peristaltic pump; 5. Load; 6. Anode terminal; 7. Cathode terminal; 8. Air; 9. Cathode electrode; 10. Anode electrode; **11. Fuel and electrolyte mixture;** 12. Magnetic stirrer; 13. Anode shield

Photograph of direct alcohol alkaline fuel cell

Performance curves for different methanol concentration at 25 °C; 3 M KOH; Anode: Pt black; Cathode: MnO₂

Lifetime of the direct methanol and ethanol alkaline fuel cell at constant load (22 mA cm⁻²)

Regeneration of electrodes using HCl solution
Electrodes regain 80% of its original OCV

Preliminary study of a direct methanol alkaline fuel cell stack (4 cells)

Poisoning by Carbon monoxide

- Co poisoning is a serious problem in acidic fuel cells relying on platinum catalysts. In this case, the OH⁻ groups needed for the electrochemical oxidation of CO must produced by dissociation of water, under the kinetically unfavorable conditions of the acid environment
- In contrast, in alkaline condition, the OH⁻ groups are a part of the electrolyte and the CO oxidation is not hindered
- This appears to underpin the higher tolerance for catalyst poisoning in case of platinum-catalyzed AFCs

Power density

- AFCs are often dismissed as a fringe technology capable only of low power densities
- This unfair declaration comes from comparing apples and oranges
- Every thing being equal , however, AFCs will match or out perform the PEMFCs at high or low pressure because of high O₂ reaction kinetics

Lin et al. (2006)

Anode active layer damage due to poor microfluidics

Cathode perforation due to O₂ gas overpressure

Temperature

- AFCs work well at low temperature
- John Appleby, Texas University, USA, points out that aqueous alkaline electrolyte system have low activation energy for the cell reaction
- Electrolyte does not freeze (26-40% KOH solution freezes below -40° C) and AFCs are generally capable of starting, alas at reduced power

AFC Golf car by Astris Energy Inc.

Catalyst

AFC catalyst combinations (Gulzow et al. 2006)

AFC developer	Fuel system	Operating pressure (bar)	Anode catalyst	Cathode catalyst
Bacon*	H ₂ -O ₂	45	Ni	NiO
UTC-Apollo	H ₂ -O ₂	3.4	Ni	NiO
UTC-Orbiter	H ₂ -O ₂	4	Pt/Pd	Au/ Pt
Elenco	H ₂ -air	atmospheric	Pt	Pt
Siemens	H ₂ -O ₂	2.2	Ni	Ag
DLR	H ₂ -air	atmospheric	Ni	Ag

* AFCs developed by FT Bacon at the University of Cambridge, UK, in the 1940s and 50s.

AFC Backup power by Astris Energy Inc.

Conclusion and challenges to AFCs

- \checkmark CO₂ neither enhances the degradation process nor induces any detrimental effect
- ✓ CO_2 poisoning is the incorrect word
- \checkmark Slightly lower performance is due to reduced conductivity of the electrolyte
- ✓ CO₂ is not a problem and the electrolyte can be changed periodically as changing oil in IC engine
- \checkmark Liquid electrolyte is not a problem however it manages heat and water management
- ✓ Manages even alcohols
 - > For wider application, research on anion exchange membrane is required
 - ➤ Non-noble metal catalyst ?????
 - Electrode fabrication techniques
 - Electrolyte circuit design/engineering aspects due to corrosive nature of alkali

AFCs have the potential to become one of the key technologies AFC should be seen as positive not negative technology

Acknowledgements

- ✤ MNES, IIT Delhi and IIT Guwahati
- Dr. S. Basu
- ✤ Lab members

Thank you for your kind attention

