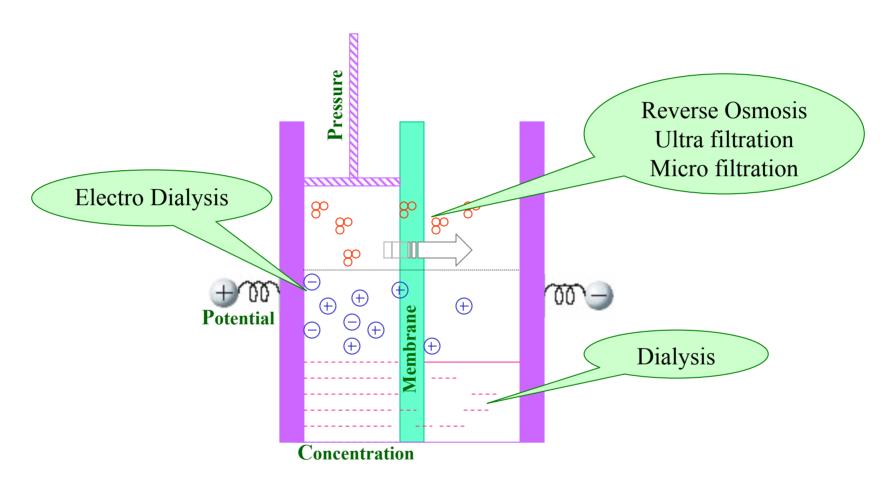
Strategies for the design and fabrication of membranes for fuel cells

B. Viswanathan and M. Helen
National Centre for Catalysis Research
Department of Chemistry, Indian Institute of Technology Madras



Why membranes are essential constituent of Fuel cells

- Separates the two electrodes
- Separates the two electrode reactions
- Prevents the mix up of reactants
- Allows the treatment of reactions as separate processes
 - no mixed kinetics

Schematic representation of membrane and processes therein

Pictorial representation of possible processes in a membrane

Role of membrane?

In reverse osmosis, ultra filtration, micro filtration & dialysis

> To act as a molecular sieve

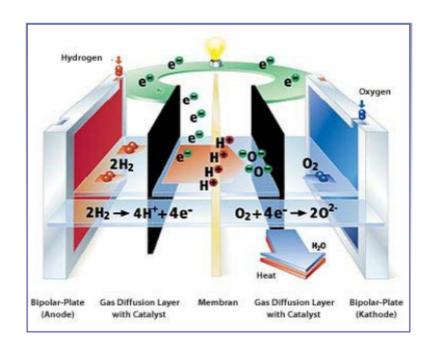
In electrochemical device

- To separate anode and cathode
- To prevent mixing of the fuel and oxidant
- To provide a conductive pathway

Membranes in electrochemical devices

- Fuel cells Polymeric proton conducting membranes
- > Batteries Lithium ion cells Amorphous polyethylene oxide (PEO)
- Water electrolysis Bipolar ion exchange membranes
- Sensor Polymeric membranes
- Biosensors Lipid membranes, enzyme immobilized membranes

Role decides the type of membrane employed

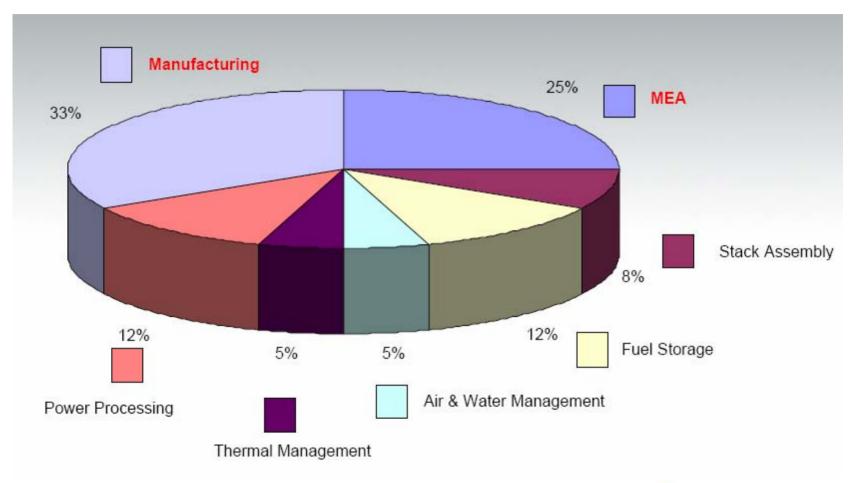


Required and desirable characteristics of membranes for fuel cell applications

- High ionic conductivity (and zero electronic conductivity)
- ➤ Long-term chemical stability at elevated temperatures in oxidizing and reducing environments
- > Stable under the fuel cell potential window
- Good mechanical strength resistance to swelling
- Low oxidant and fuel cross-over
- Low cost and ready availability

What Really Matters for Fuel Cell Commercialization?

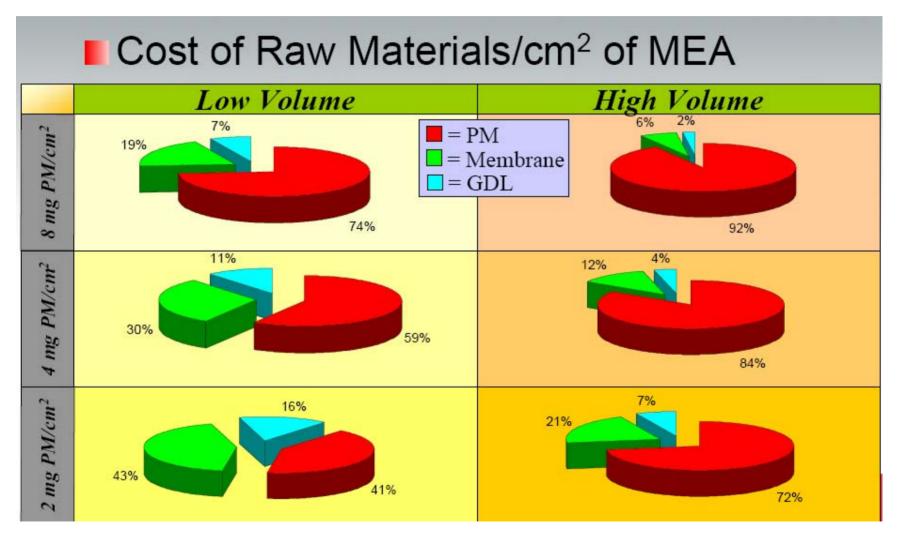
Grand Challenges & Needed Breakthroughs for Fuel Cells


Grand Challenges

- Affordability (\$/kW)
- Durability (performance loss ~ time)

Needed Breakthroughs

- Adv. Catalysts
- Adv. PEM Material
- Innovative CCM/MEA mft.


Cost breakdown for Automobile PEMFC Engine System

DMFC MEA Raw Materials Cost Analysis

Challenges for Conventional CCM/MEA Technologies

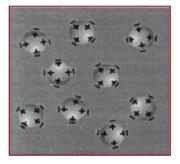
- Non-uniformity of catalyst coating and limited catalyst utilization
- Random MEA hydrophobicity ~
 hydrophilicity structure
 - poor H⁺ transportation
 - poor e transportation
 - poor water transportation
 - poor gas transportation
- Limited FC performance
- High cost per kW

$$-(CF_{2}-CF_{2})_{x}-(CF_{2}-CF)_{y}-$$

$$| (O-CF_{2}-CF)_{m}-O-(CF_{2})_{n}-SO_{3}H$$

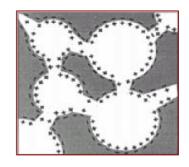
$$| x = 5-13.5; y = 1$$

$$| m = 1; n = 2$$


$$| CF_{3}$$

Advantages

- > Stable in both oxidative and reductive environments
- Excellent proton conductor (0.07 0.23 S cm⁻¹ at 100 % RH) $1M H_2SO_4 \sigma = 0.08 S cm^{-1}$
- ➤ Why Nafion® is so special as a membrane for fuel cells


Simplified Nafion® structure according to water content

Water incorporated PFSA

Fully swollen PFSA

- Dry membrane is characterized by the presence of isolated spherical ionic clusters
- As water is absorbed in the membrane, its hydrophilic domain size increases swells in water
- > Swelling induces a modification of the cluster structure which become spherical water pools in order to minimize the interfacial energy
- As more water is absorbed in the PFSA membrane, the cluster size is connected to each other through the water passage
- Water and hydrophilic solvents can penetrate the membrane through water channel and it can also provide the passage of protons **Percolation**

12

Characteristics of Nafion® membranes

Membarne	Dry thickness (µm)	Equivalent weight (gmol ⁻¹ /SO ₃ -)	Area resitance (Ω cm²)	Conductiviy (Scm ⁻¹)	Water content at 25°C
Nafion 105	125	1000	-	-	-
Nafion 112	50	1100	0.07	0.165	20.7 ± 0.5
Nafion 1135	89	1100	0.10	0.11	21.1 ± 0.6
Nafion 115	125	1100	0.12	0.09	21.9 ± 0.6
Nafion 117	175	1100	0.13	0.08	23.2 ± 0.4
Nafion 1110	254	1100	-	-	38

Nafion xyzz'

xy - Equivalent weight/100

zz'- Thickness x 25 μm

Characteristics of other commercial polymer membranes

Membrane	Dry thickness (µm)	Equivalent weight (gmol ⁻¹ /SO ₃ -)	Conductiviy (Scm ⁻¹)	Water content (wt %)	Manufacturer
Dow	125	800	0.114	54	Dow Chemical
Aciplex-S	120	1000	0.108	43	Asahi Chemical
Gore Select	5-20	900-1100	0.028-0.096	32-43	Gore
BAM 3G	140(wet)	375 -920	N/A	87	Ballard
Flemion	50	1000	0.14	38	Asahi Glass

General structure

A polymer containing anion groups(SO₃⁻) on a polymer backbone or side chain (proton exchange membranes)

Why proton exchange membrane is essential?

Limitations of Nafion®

- \triangleright Dehydrates at T > 80 °C & RH < 100%
- Diffusion of other species
- Lack of safety during its manufacturing and use (because of fluoro carbon)
- > Expensive (~ 1000 \$/m²)

Modified PFSA membranes

- > Thin and reinforced PFSA membranes
- Swelling with low volatile and non aqueous solvents
- Composites with hygroscopic oxides
- Composites with solid inorganic proton conductors like zirconium phosphates, heteropolyacids & metal hydrogen sulfate

Thin and reinforced PFSA membranes

- > To decrease the internal resistance
- > To reduce material cost

Nafion with porous polypropylene/polysulfone

- Thickness has been reduced to 5 30μm
- Has good conductivity & mechanical properties
- Water management is improved

Drawback

Reduced mechanical strength (under high temp & swelling)

Swelling with low volatile and non aqueous solvents

- ▶ Phosphoric acid (B.P: 158 °C) with Nafion achieved a conductivity of 0.05 S cm⁻¹ at 150 °C
- Phosphoric acid acts as a Bronsted base & solvates the proton
- ➤ Allows high operational temperature >100 °C
- ➤ Imidazole (B.P: 255 °C) and benzimidazole (B.P: 360 °C) were also tried

Limitations

- > No significant improvement in conductivity at low humidity
- ➤ Imidazole groups are not as water in solvating membrane acid groups

Composites with hygroscopic oxides

- \triangleright SiO₂ and TiO₂
- > Internal (self) humidification at low operational temperatures
- Water uptake:
 - Pristine Nafion 27 wt %
 - Nafion containing 3 wt % SiO₂ 43 wt %
- ➤ Conductivity in the range of 10⁻⁷ to 10⁻³ S cm⁻¹ at 100°C

Composites with solid inorganic proton conductors

- Bifunctional particles both hydrophilic and proton conducting
- Inorganic proton conductors
 - Heteropolyacids
 - zirconium phosphates
- > Decreases the chemical potential of water inside the membrane
- Provides H-bonding sites for water
 - Increase in hydration of the membrane
 - Decrease in water transport and evaporation

Nafion/HPA

Properties:

- ➤ Increased conductivity than Nafion: 0.012 0.015 S cm⁻¹ at 35 % RH
- Water uptake:
 - Pristine Nafion 27 wt %
 - Nafion/HPA 95 wt % (Due to increase in protonic sites of the membrane)

Drawbacks:

- > HPA is highly water soluble eventually leaches out from PEM
- \triangleright Decreased tensile strength (~14 kPa whereas Pristine Nafion ~ 40 MPa)

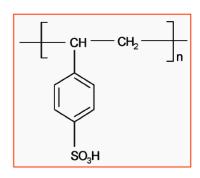
Nafion/α-ZrP

Properties:

- Water insoluble
- ➤ Has intercalated hydronium ions with conductivity of **0.1** S cm⁻¹ at **100** °C at **100** % RH
- Enhanced performance is due to increased water retention capability
 - Replacement of unassociated pore water with hydrophilic α-ZrP nanoparticles
 - Capillary condensation effects due to the smaller dimensions of the free spaces in α -ZrP filled pores

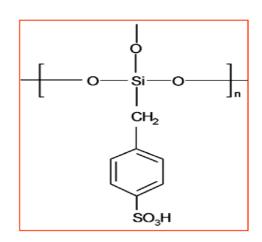
Drawbacks:

- ➤ H⁺ transport properties depend upon humidity
- Water management is difficult

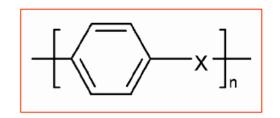


Alternate sulfonated polymer membranes Fluoropolymers Polysiloxanes Why?

- > To lower the material cost
- > To improve the operating temperature
- > Polymers should have high chemical and thermal stability
- Alteration of conducting property
- Preferential transport characteristics


Fluoropolymers

- Sulfonated polystyrenes first generation polymer electrolytes for fuel cells
- Suffers from a short lifetime mechanical/chemical stability
- Partially fluorinated polymer
 - Poly(tetrafluoroethylene-hexafluoropropylene) (FEP)
 - Poly(vinylidene fluoride) (PVDF)
- Prepared by grafting and then sulfonating the styrene groups
- High water uptake & high proton conductivity


Polysiloxanes

- Organic modified silicate electrolyte (ORMOLYTE) by using arylsulfonic anions or alkylsulfonic anions grafted to the benzyl group were attempted
- ➤ Exhibit a proton conductivity of 10⁻² S cm⁻¹ at RT
- > Chemically and thermally stable up to 200 °C
- Water uptake alteration are possible

Aromatic polymers

- Cost effective and ready availability
- Good oxidation resistance of aromatic hydrocarbons
- ➤ Electrolyte for high temperature range (> 100 °C)
- Investigated systems
 - polyetheretherketone (PEEK)
 - polysulfones (PSF) or Polyethersulfone (PES)
 - polybenzimidazoles (PBI)
 - polyimides (PI)
 - polyphenylenes (PP)
 - poly(4-phenoxybenzoyl-1,4-phenylene) (PPBP)

Sulfonation of polymers

- > By direct sulfonation in concentrated sulfuric acid, chlorosulfonic acid or sulfur trioxide
- By lithiation-sulfonation-oxidation
- By chemically grafting a group containing a sulfonic acid onto a polymer
- ➤ By graft copolymerization using high energy radiation followed by sulfonation of the aromatic component
- By synthesis from monomers bearing sulfonic acid groups

Modification of S-PEEK

S-PEEK

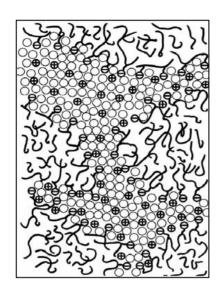
- ➤ Has excellent thermal oxidation resistance with a glass transition temperature of 143 °C
- ightharpoonup Conductivity, $\sigma_{100^{\circ}C} = 8 \times 10^{-3} \, \text{S cm}^{-1}$ at 100 % RH

S-PEEK/SiO₂

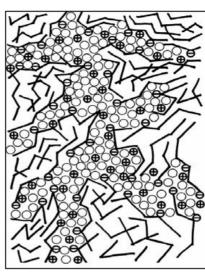
S-PEEK containing 10 wt% SiO_2 – Exhibited best mechanical and electrical characteristics ($\sigma_{100^{\circ}C} = 9 \times 10^{-2} \text{ S cm}^{-1}$)

S-PEEK/ZrO₂

S-PEEK containing 10 wt% ZrO_2 – Exhibited low permeability and good conductivity ($\sigma_{100^{\circ}C} = 4.5 \times 10^{-2} \text{ S cm}^{-1}$)


S-PEEK/HPA

S-PEEK containing 60 wt% TPA – Increased glass transition temperature, humidity and conductivity ($\sigma_{120^{\circ}\text{C}} = 0.1 \text{ S cm}^{-1}$)


Microstructures

Nafion 117

- **⊖**:-SO₃⁻
- protonic charge carrier
- \bigcirc : H_2O

S-PEEK

- Wide channels
- More separated
- Less branched
- Small -SO₃-/-SO₃- separation
- $pK_a \sim -6$
- $D_{MeOH} = 2.91 \times 10^{-6} \text{ cm}^2/\text{s}$

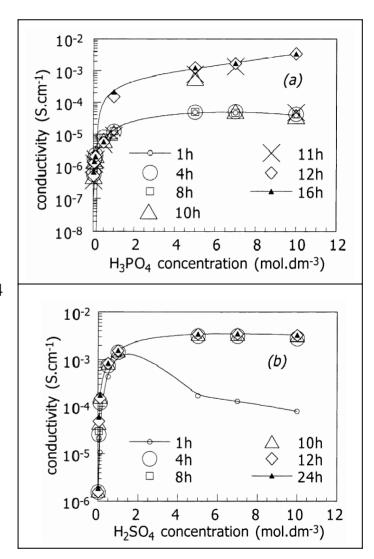
- Narrow channels
- Less separated
- Highly branched
- Large -SO₃-/-SO₃- separation
- $pK_a \sim -1$
- $D_{MeOH} = 6.57 \times 10^{-8} \text{ cm}^2/\text{s}$

Limitations of sulfonated polymers

- Highly deliquescent
- Hard to recover from solution
- ➤ Has a temperature limit at 200 °C
- ► H⁺ conductivity decays due to decomposition of the SO₃H groups
- ➤ High sulfonation results in high swelling and therefore poor mechanical properties

Acid-Base Polymer membranes

Two Approaches:


- Basic polymer with excess acid
- Acidic polymer with excess base (sulfonated polymer with absorbed imidazole, benzimidazole or another appropriate proton acceptor)

Basic polymers	Acids
Polybenzimidazole (PBI)	H_3PO_4
Poly-(ethylene oxide)s (PEO)	H_2SO_4
Polyvinyl alcohol (PVA)	HC1
Polyacrylamide (PAAM)	HNO_3
Polyethylenimine (PEI)	HClO ₄
Nylon	

Acid doped polybenzimidazole (PBI)

- High thermal and mechanical stability
- Very low solvent permeability (electroosmotic drag ~ 0)

D. Jones et al., J. Membr. Sci., 185 (2001)341

Doping with organic and inorganic bases

Membrane	Conductivity (S cm ⁻¹)
PBI-S	4.2 x 10 ⁻⁴
PBI-S/NH ₄ OH	1.5×10^{-2}
PBI-S/imidazol	e 7.9×10^{-3}
PBI-S/LiOH	1.2 x 10 ⁻²
PBI-S/NaOH	1.2×10^{-2}
PBI-S/KOH	1.7×10^{-2}
PBI-S/CsOH	1.7 x 10 ⁻²

N-benzylsulfonate grafted PBI (PBI-S)

Advantages

- ➤ High temperature oxidative stability of the blank PBI (~300 °C)
- Good chemical stability and mechanical properties of the blank PBI
- > Exhibits good conductivity
- Ease of fabrication of the composite
- Less fuel (Hydrogen) cross-over than Nafion 117

Disadvantages

- Long-term stability and reliability based on composite PBI membranes must be proven
- ➤ Conductivity of PBI–H₃PO₄ is 10 times < Nafion 117
- ➤ Diffusion of H₃PO₄ out of the PBI limit membrane performance

Inorganic Organic composite membranes

Justification:

- > To improve self-humidification of the membrane
- To reduce the electro-osmotic drag
- To suppress fuel crossover
- > To improve mechanical strength
- To improve thermal stability
- To enhance the proton conductivity

Organic component

Inorganic component

Perfluorosulfonic acid (PFSA)

Poly-(ethylene oxide)s (PEO)

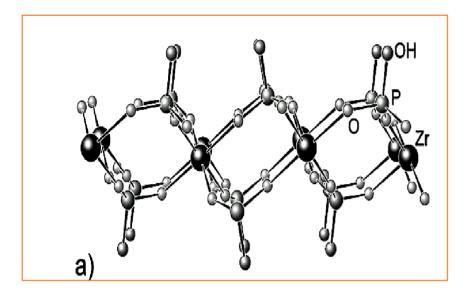
Polybenzimidazole (PBI)

Sulfonated polystyrene

Sulfonated polysulfone (SPSF)

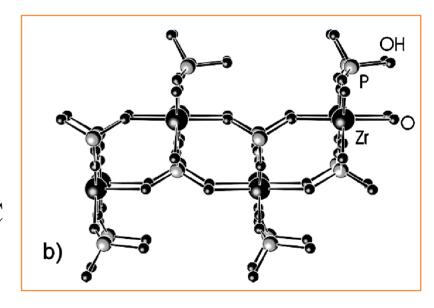
Sulfonated polyetheretherketone (SPEEK)

Oxides (Silica, titania & Zirconia)


Inorganic proton conductors (zirconium phosphates, heteropolyacids, metal hydrogen sulfate)

Requirement - Stability under fuel cell operating conditions

Effect of adding an inorganic component to a polymer membrane


- > Thermodynamic changes due to hygroscopic nature
- Changes in capillary forces and the vapour liquid equilibrium as a result of changes in the pore properties
- Surface charge interactions between the composite species
- Changes the morphology of the membrane
- Membrane architecture is possible
- Membrane casting conditions allowed

 α -Zr(HPO₄)₂·H₂O

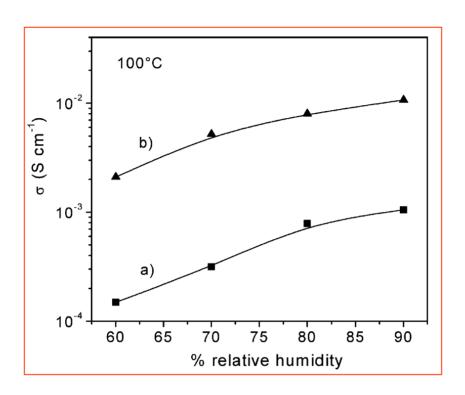
- > Exhibits H⁺ conductivity upto 300 °C
- > Transport mechanism is dominated by surface transport than bulk

Zirconium phosphates

 $\gamma (ZrPO_4[O_2P(OH)_2] \cdot nH_2O)$

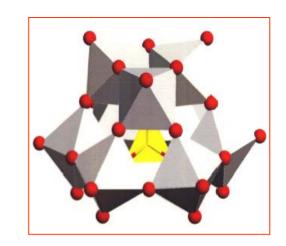
Attempts to enhance the proton conductivity

- Intercalation of functional groups (zirconium phosphate sulfophenylenphosphonate)
 - \checkmark HPO₄ groups of the α-type Zr(HPO₄)₂.nH₂O and the O₂P(OH)₂ groups of γ -type ZrPO₄O₃P(OH)₂.nH₂O are replaced with O₃POR or O₂PR'R- groups
 - ✓ R and R' are organic moieties containing a proton-generating function such as -COOH, -PO₃H, -SO₃H, or NH₃
- \triangleright Composites α -ZrP membranes
- External surface area maximization (mechanical and colloidal synthesis)
- Internal surface area maximization (sol-gel synthesis and pillaring)

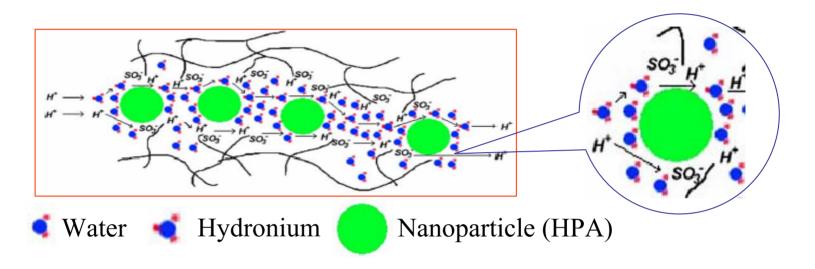

Intercalation of functional groups

Layered ZrP and phosphonates	σ (S cm ⁻¹) at 100°C, 95% RH
α -Zr(O ₃ P-OH) ₂ . H ₂ O *	1.8×10^{-5}
γ -ZrPO ₄ [O ₂ P(OH) ₂]. 2H ₂ O*	2×10^{-4}
$Zr(O_3P-OH)_2$. nH_2O ¶	$1-5 \times 10^{-3}$
$Zr(O_3P-OH)_{1.5}(O_3P-C_6H_4SO_3H)_{0.5}$ ¶	$0.9-1.1 \times 10^{-2}$
$Zr(O_3P-OH)(O_3P-C_6H_4SO_3H) nH_2O $ §	$0.8-1.1 \times 10^{-1}$

^{*} Crystalline; § Semicrystal: ¶ Amorphous


Composites \alpha-ZrP membranes

- (a) s-PEK membrane (thickness 50 μm)
- (b) s-PEK filled with 35 wt% of $Zr(O_3P-OH)(O_3P-C_6H_4SO_3H).nH_2O$


Heteropolyacids - $H_3PM_{12}O_{40}$ (cluster species)

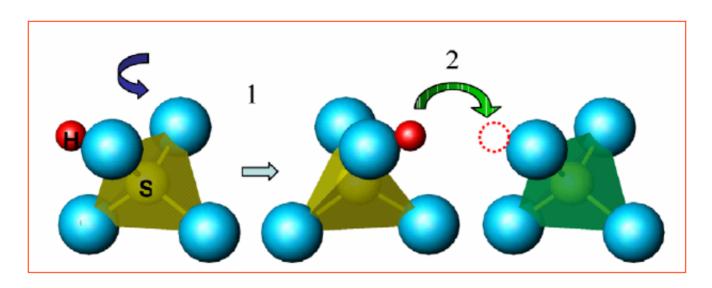
- Exhibit high proton conductivities;
 - **0.18 S cm⁻¹** for H₃PW₁₂O₄₀.29H₂O
 - **0.17 S cm⁻¹** for H₃PMo₁₂O₄₀.29H₂O
- ➤ Thermally stable at temperatures of interest, < 200 °C
- ➤ Greater water uptake, but decreased tensile strength than Nafion 117
- ➤ Water soluble need to be immobilized

Proton transport in polymer/nano particle composite membranes

- Increases the swelling of the membranes at lower relative humidity
- ➤ Increases the resistance to fuel crossover
- Increases the proton transport through the water phase and reduces methanol permeability

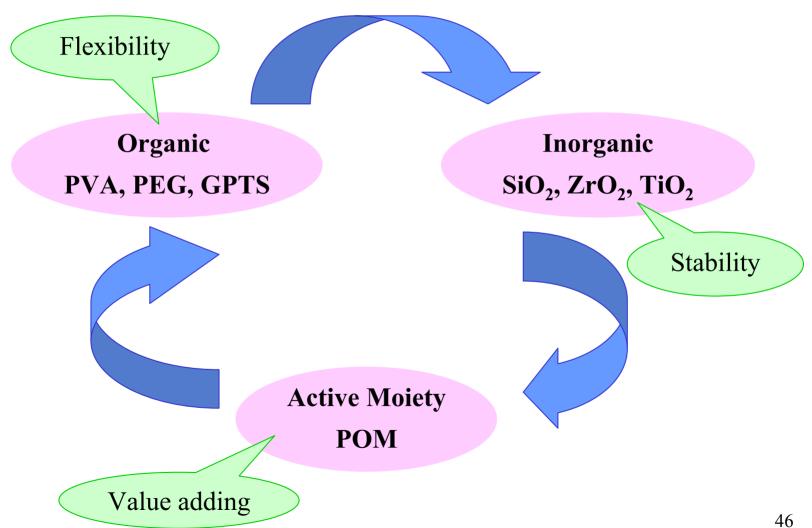
Hydrogen sulphates, MHSO₄

M - Rb, Cs, or NH_4^+

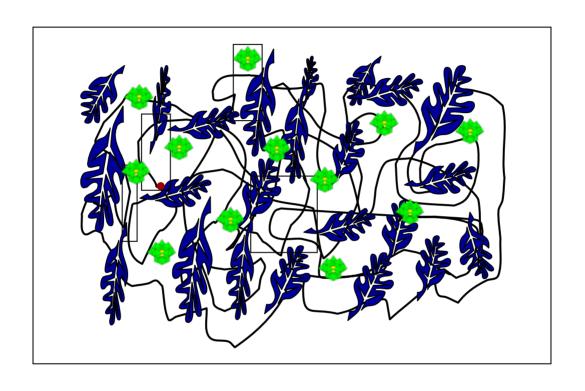

- ➤ H-bonded solid acids with disordered phases show high conductivity
- Upon slight heating changes to disordered structure
- ➤ Proton transport is due to reorientation of SO₄ groups in the disordered structure

Drawbacks

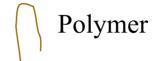
- Water soluble
- Poor mechanical strength
- Volume expansion at raised temperatures
- ➤ SO₄ reduced under H₂ atm


Proton transport mechanism in CsHSO₄

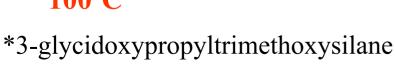
- > CsHSO₄ consist of oxyanions, linked together through hydrogen bonds
- At 141°C it undergoes a "superprotonic" phase change (from monoclinic to tetragonal structure)
- \triangleright Undergoes rapid reorientation time scale 10^{-11} sec
- Proton conductivity 10⁻² S cm⁻¹



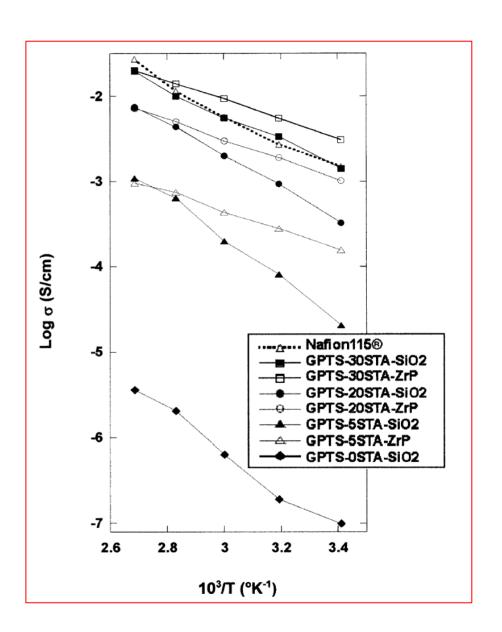
Hybrid Organic Inorganic Composite membranes



Conceptual representation of Hybrid Composite

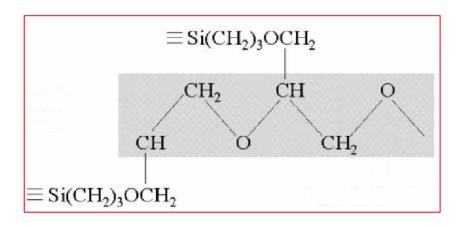


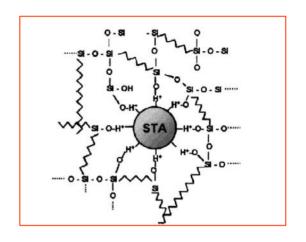
Characteristics of Hybrid Inorganic-Organic Composites

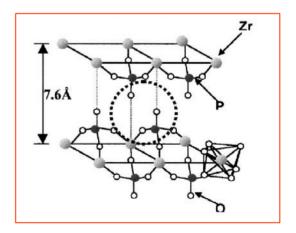

- ➤ Hybrid membranes Isotropic, flexible, amorphous nanocomposite materials
- Material properties can be widely controlled
- Thermal stability can be improved
- The composite is flexible and homogeneous

Systems investigated

- ➤ GPTS*-STA[#]-SiO₂
- ➤ GPTS-STA-ZrP
- ► GPTS–SiO₂, H⁺ conductivity $1 \times 10^{-7} - 3.6 \times 10^{-6} \text{ S cm}^{-1}$ at $20 - 100^{\circ}\text{C}$
- Arr GPTS−SiO₂ with 30 wt% STA, H⁺ conductivity 1.4 x 10⁻³ − 1.9 x 10⁻² S cm⁻¹ at 20 − 100°C
- ➤ GPTS–ZrP 30 wt% STA, H⁺ conductivity 2 x 10⁻² S cm⁻¹ at 100°C




silicotungstic acid



- Inorganic additives enhanced thermal stability and water uptake
- The proton conducting path is through the pseudo-polyethylene oxide network

Challenges ahead for the development of membranes for DMFC

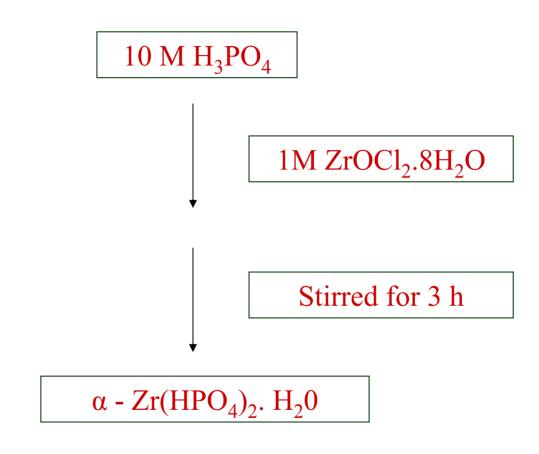
- Membranes with controlled methanol permeability represents a primary goal
- Nafion Instability at T > 80°C & RH < 100%, diffusion of other species and cost ($\sim 1000 \text{ }\$/\text{m}^2$)
- Alternative membranes sulfonated polysulfones (PSU), polybenzimidazole (PBI), sulfonated polyetherketones (SPEK), & sulfonated polyetherketones (SPEK)
- > Sulfonation of these polymers leads to the formation of water-soluble polymers at high sulfonation levels
- > The procedure and the reaction conditions are sometimes extreme
- Compromise needs to balance the hydrophilicity and the hydrophobicity

Why Hybrid Organic-Inorganic Composites?

- Hybrid organic—inorganic composites show controllable physical properties (thermal & mechanical) by combining the properties of both organic polymers and inorganic compounds
- Composite membranes Proton conductivity of polymer electrolyte membranes can be considerably improved by incorporating fast proton conductors
- Fast proton conductors Zirconium phosphate, Titanium phosphate, Calcium phosphate, Heteropolyacids, Boron phosphate (BPO₄)
- The strong interaction between the organic polymer and inorganic mineral is expected to result in a hybrid with markedly improved properties

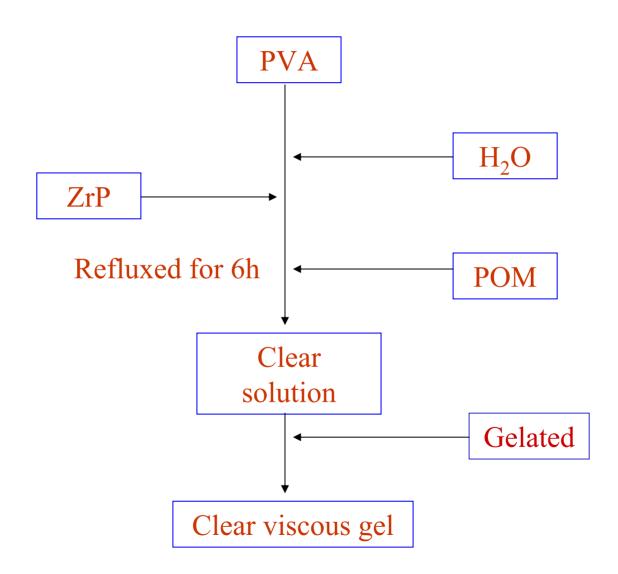
Objective

- To develop a simple and controllable fabrication method
- To develop self-humidifying membrane
- To develop cost effective membrane with appreciable conductivity and thermal and mechanical stability



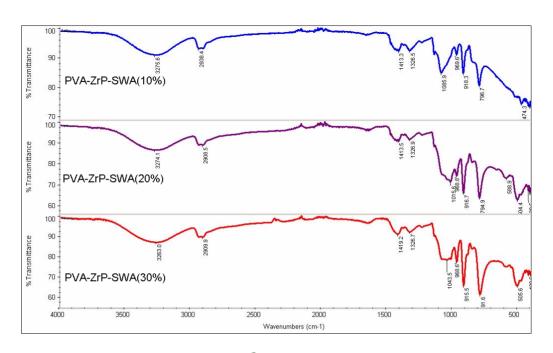
PVA-ZrP-SWA (10,20 & 30%) composite membranes

- PVA is cost effective polymer
- HPAs are generally water-soluble
- Composite matrix reduces the leaching of HPA
- - Zirconium phosphate suppress crack formation
 - mitigates HPA solubility
 - contributes to protonic conduction


Preparation of Zirconium phosphate

Dried at 95°C for 2 h and stored at 100 % RH

Preparation of PVA-ZrP-SWA composite



×

Cu K_a XRD patterns of composite membranes and its components for comparison

- \triangleright 2 $\theta = 20^{\circ}$ corresponds to the (101) plane of PVA
- \triangleright 2 θ = 20 to 40° overlap of the diffraction lines of ZrP and SWA
- ➤ Absence of any sharp diffraction line uniform distribution.

FT-IR spectra of composite membranes

- Characteristic bands of PVA 3260 cm⁻¹ and 2900 cm⁻¹ represent O–H stretching and –CH₂ stretching; 1420 cm⁻¹ is for –CH₃ bending
- Characteristics of ZrP 500 cm⁻¹ and 1050 cm⁻¹ are due to Zr-O and P-O₄ asymmetric stretching; 969 cm⁻¹ is due to P-OH asymmetric stretching
- ▶ Band of W-Ob-W blue shift from 779 to 790 cm⁻¹; W-O_t bond red shifted from 926 to 918 cm⁻¹

TGA analysis of composite membranes in a temperature range from 50 to 800 °C

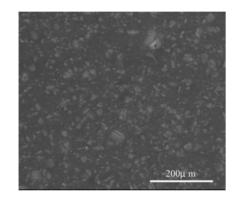
- At 100 °C loss of absorbed water molecules
- At 200-300 °C decomposition of polyvinyl alcohol
- >300 °C decomposition of silicotungstic acid to respective metal oxides combined with loss due to phase transition

Water uptake, swelling and IEC values for different hybrid membranes with a 250 μ m thickness

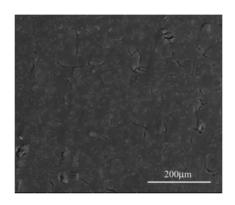
Membrane	Water uptake (wt %)	Swelling (%)	IEC(meq/g)
PVA-ZrP-SWA(10%)	204	90	0.902
PVA-ZrP-SWA(20%)	388	170	0.958
PVA-ZrP-SWA(30%)	482	230	1.07

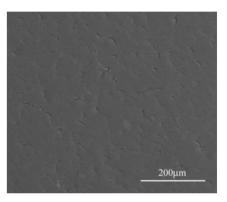
$$IEC = \frac{\mathbf{V} \times \mathbf{M}}{\mathbf{W}_{dry}}$$

IEC - Ion-exchange capacity (meq g^{-1}),


V - Added titrant volume at the equivalent point (ml),

M - Molar concentration of the titrant &


 $W_{\rm drv}$ -The dry mass of the sample (g)

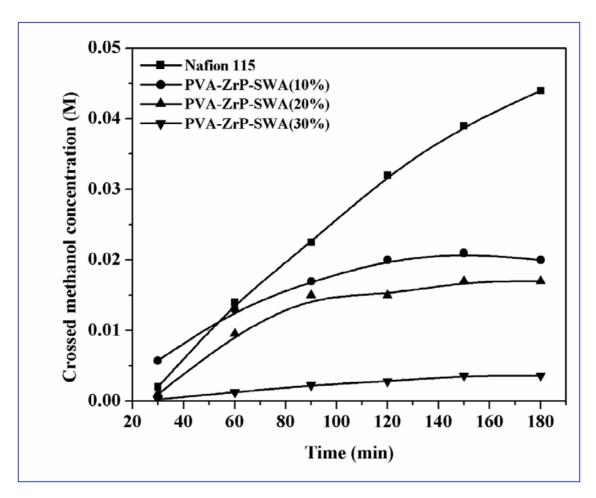

Surface morphology

PVA-ZrP-SWA(10%)

PVA-ZrP-SWA(20%)

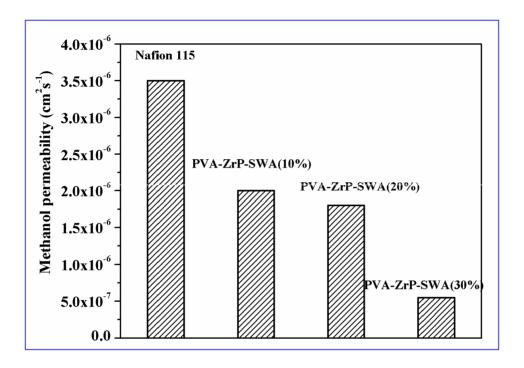
PVA-ZrP-SWA(30%)

Proton conductivity at 60 % RH as a function of temperature


Frequency: 10 Hz to 1 MHz

Amplitude: 5 mV

at 60 % RH

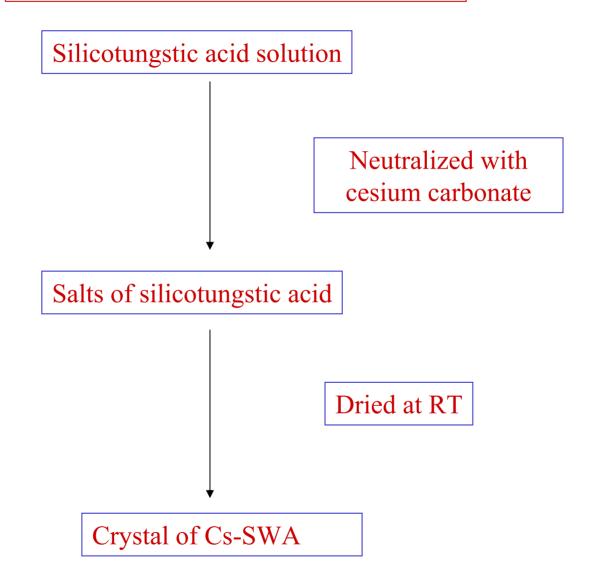


Methanol cross over studies

Concentration of crossed methanol as a function of crossover time

Methanol permeability of hybrid membranes compared with Nafion 115

PVA-ZrP-CsHPA (Cs salt of SWA)


composite membranes

HPA solubility

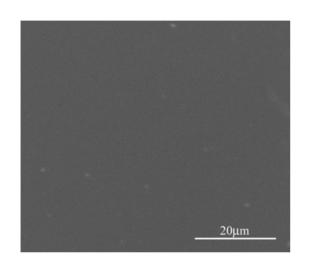
- ✓ forming composites
- ✓ ion exchanging protons of HPA with larger cations like Cs⁺, NH₄⁺, Rb⁺ and Tl⁺

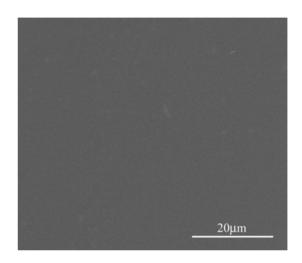
Preparation of salts of silicotungstic acid

Water uptake, swelling and IEC values for PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes with a 180 μ m thickness compared with Nafion 115

Membrane	Water uptake (%)	Swelling (%)	IEC (meq/g)
PVA-ZrP-Cs ₁ SWA	260	100	3.2
PVA-ZrP-Cs ₂ SWA	140	85	3
Nafion®115	22	12	0.9

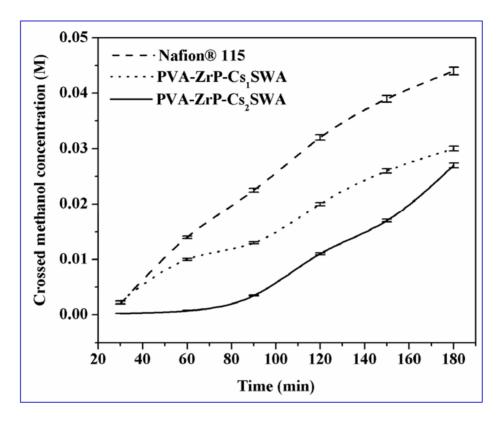
Cu K a XRD patterns of PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes

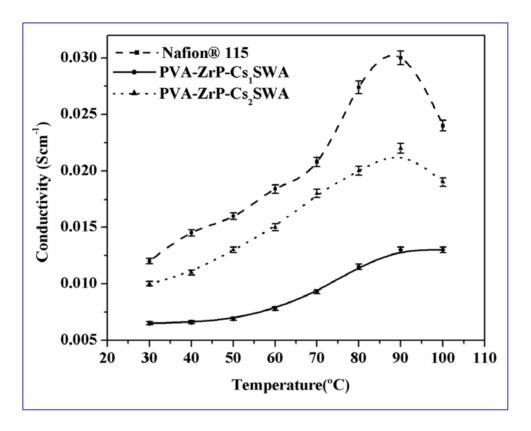

The broad hump in the 2θ range 20 to 35 is due to the presence of PVA and zirconium phosphate

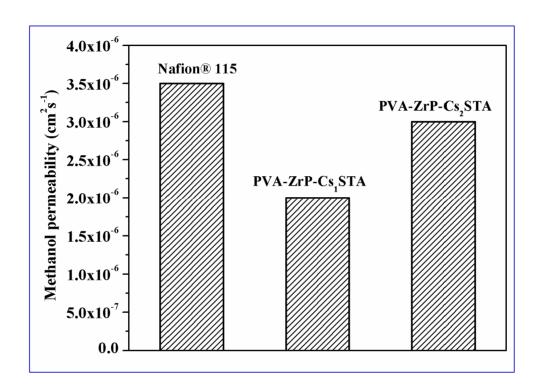


Assignments of main absorption bands for PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes

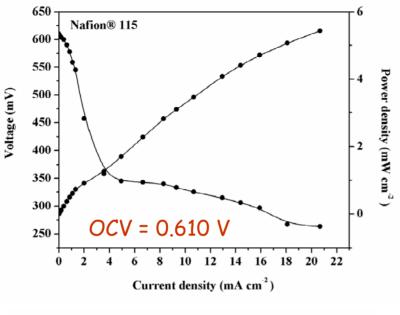
Vibration frequency (cm ⁻¹)		Bond Assignment	
PVA-ZrP-Cs ₁ SWA	PVA-ZrP-Cs ₂ SWA		
981 cm ⁻¹	969 cm ⁻¹	W=O _t stretching	
917 cm ⁻¹	916 cm ⁻¹	X-O stretching	
876 cm ⁻¹	-	corner sharing W-O _b -W	
744 cm ⁻¹	793 cm ⁻¹	edge sharing W-O _b -W	
3274 cm ⁻¹	3257 cm ⁻¹	O-H stretching	
2906 cm ⁻¹	2907 cm ⁻¹	-CH ₂ stretching	
1426 cm ⁻¹	1413 cm ⁻¹	-CH ₃ bending	
504 cm ⁻¹	525 cm ⁻¹	Zr-O symmetric stretching	
1018 cm ⁻¹	1085 cm ⁻¹	P-O ₄ symmetric stretching	

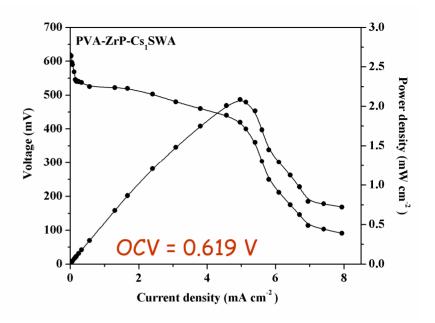


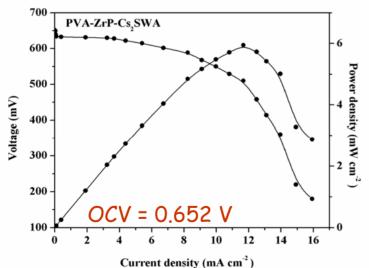

Scanning electron micrographs of PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes


Concentration of crossed methanol as a function of crossover time

Proton conductivity at 50 % RH as a function of temperature for PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA membranes compared with Nafion® 115 at 100% RH






Methanol permeability of PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes compared with Nafion® 115

Comparison of conductivity and permeability for various membranes

Membrane	RH (%)	Temperature (°C)	Conductivity (Scm ⁻¹)	Permeability (cm ² s ⁻¹)	References
PVA-ZrP-Cs ₁ SWA	50	100	0.013	2 x 10 ⁻⁶	J. Power Sources (2006, Inpress)
PVA-ZrP-Cs ₂ SWA	50	100	0.02	3 x 10 ⁻⁶	n .
Nafion® 115	100	90	0.03	3.5 x 10 ⁻⁶	n .
Nafion®115/Cs+,NH4+, Rb+ and Tl+ modified PTA	35	120	0.016	1	J. Membr. Sci., 217 (2003) 5
SPEK/ZP/ZrO ₂ (70/20/10 wt %)	100	70	2.3 x 10 ⁻³	-	Solid State Ionics, 162–163 (2003) 269-275.
PVA/PWA/SiO ₂	-	-	0.004-0.017	10 ⁻⁷ to 10 ⁻⁸	Solid State Ionics, 171 (2004) 121-127
PEG/SiO ₂ /SWA	100	80	0.01	10 ⁻⁵ to 10 ⁻⁶	J. Power Sources, 139 (2005) 141-151
PEG/SiO ₂ /PWA	-	-	10 ⁻⁵ to 10 ⁻³	10 ⁻⁶ to10 ⁻⁷	J. Membr. Sci., 254 (2005) 197-205
PVA-SiO ₂ -SWA	100	100	4.13 x 10 ⁻³	-	J. Membr. Sci., 275 (2006) 105-109
SPEEK/PWA	100	100	1.7 x 10 ⁻²	-	J. Membr. Sci., 254 (2005) 197-205

Passive cell DMFC

Electrode area = 2 x 3 cm² catalyst loading = 6 mg/cm² 4 M CH₃OH

Polarization and power density curves for passive DMFC cell with Nafion® 115, PVA-ZrP-Cs₁SWA and PVA-ZrP-Cs₂SWA hybrid membranes as proton conducting electrolyte at 273 K and at atmospheric pressure

The second secon

Conclusions

- ✓ Composite membranes with polyvinyl alcohol as organic matrix and zirconium phosphate and silicotungstic acid as inorganic components were prepared by a simple method
- ✓ Water uptake, IEC and proton conductivity increased with silicotungstic acid content.
- ✓ Though number of reports are available in literature on stabilizing the HPA in membrane matrix, a combined approach of composite formation with salts of HPA was investigated.
- ✓ These composite membranes exhibited reduced methanol crossover compared to Nafion 115
- \checkmark At 50 % RH, the protonic conductivity of the hybrid membranes was in the range of 10^{-3} to 10^{-2} S cm⁻¹
- ✓ The open circuit voltage (OCV) for the cell with PVA–ZrP–Cs₂STA hybrid membrane is 0.652 V and that for PVA–ZrP–Cs₁STA hybrid membrane is 0.619 V which is higher compared to the cell with Nafion® 115 (0.610 V) indicating reduced methanol crossover.
- Though they exhibit little lower proton conductivity it appears as promising materials due to its reduced methanol crossover.

Thank you all for your kind attention