National Seminar on Challenges in Fuel Cell Technology: India's Perspective

Challenges in Solid Oxide Fuel Cell Technology

Dr. R. N. Basu

Fuel Cell & Battery Section Central Glass & Ceramic Research Institute Kolkata

December 1-2, 2006 IIT Delhi

Outline

***** SOFC

- Anode-supported Planar for IT-SOFC
- CGCRI's Current Activities
- Challenges
- Summary

Advantage of Solid Oxide Fuel Cell

• Environment Friendly

No NOx,SOx and particulate emissionsQuiet

- High operation temperature (650-800°C)
- Fuel to electricity efficiency ~ 35-40% (without recycling); With recycle heat ~ 60%

- All solid state
- Modularity
- Multifuel Capability
- Low in maintenance costs

	AFC/ PEMFC	PAFC	MCFC	SOFC
temperature	low	\rightarrow	high	
materials	noble	\rightarrow	less noble	
gas	ultra pure gas	\rightarrow	less pure gas	
costs	high	\rightarrow	decreasing	
stage of development	high	\rightarrow	decreasing	

Development of Planar IT-SOFC Technology

CGCRI Approach

Operating Temperature: 700-800°C

- Thin electrolyte reduces internal resistance and operating temperature
- Sealing materials less stringent at between 700 and 800°C
- Use of metal alloy (Ferritic Steel) as interconnect
- Cost-effective technology

LSM – Sr-substituted LaMnO₃; YSZ – 8mol% yttria stabilized ZrO₂

State-of-the-art MaterialsElectrolyte: $ZrO_2 + 8mol\% Y_2O_3$ (YSZ)Cathode: $La_{0.65}Sr_{0.35}MnO_3$ (LSM)Anode: 40vol% Ni + 60vol% YSZ (Ni-YSZ)Interconnect: $La_{0.70}Ca_{0.30}CrO_3$ (LCR) / Ferritic Steel

Fabrication...

SOFC PROCESSING TECHNIQUES

SOFC Designs	Cathode (LSM)	Electrolyte (YSZ)	Anode (NiO-YSZ)	Interconnect (LCR / Ferritic Steel)
Cathode- supported Tubular	Extrusion	EVD/Slurry- coating/EPD/ Thermal Spray	Slurry- coating/EPD/ Thermal Spray	Slurry- coating/EPD/ Thermal Spray
Anode- supported Planar	Wet-powder spraying/ Screen printing	Vacuum slip casting/Tape- calendering/Slurry coating/EPD/ Tape casting	Tape casting/ Warm pressing	Precise Machining / Welding
Metal- supported Planar	Plasma spraying/ Screen printing	Plasma spraying/ Tape casting	Plasma spraying/ Screen printing	Precise Machining / Welding

SOFC Single Cell Fabrication

Flat Half Cells (5 cm x 5 cm)

Single Cells (5 cm x 5 cm)

CGCRI Developed Anode Supported Cells

10 cm x 10 cm x 1.5 mm (Half cell)

10 cm x 10 cm x 1.5 mm (Single cell)

LSM – Sr-substituted LaMnO₃; YSZ – 8mol% yttria stabilized ZrO₂

Electrochemical Performance

CGCRI's Processing Techniques...

Simple
Inexpensive
Up-scalable

CGCRI's Proposed SOFC Stack Design

Total Power: 250W Cell size: 10 cm x 10 cm No. of cells: 6 Current Density: 0.5A/cm² Sealant: Glass-ceramics Interconnect: SS 430 Fuel : H₂ Oxidant : Air Temperature : 800°C

Target : March 2007

Accomplishments (2004 - till date)

- Large scale (Kg-level) powder preparation of the SOFC cell components
- 20 μm thin fully dense YSZ (8mol% yttria stabilized ZrO₂) electrolyte on porous anode (NiO-YSZ) substrate
- Microstructural studies and He-leak test confirms gastightness in sintered YSZ film
- 5 cm x 5 cm x 1.5 mm Developed and Performance tested
- 10 cm x 10 cm x 1.5mm Initiated (Present Activity)
 - Designing of SOFC stack Initiated (Present Activity)

Project: CSIR-NMITLI

CGCRI SOFC Programme

• Complete Electrical and Electrochemical characterization of 50 x 50 cells

• Fabrication of 10 x 10 cells

 Complete Electrical characterization of 10 x 10 cells

MARCH 06

• Complete Electrochemical characterization of 10 x 10 cells

• Fabrication of multiple stack with internal manifold

SEPT 06

Fully characterized 250W stack

MARCH 07

Fully characterized 500W stack Fabrication of 1 kW stack

SEPT 07

JUNE 07

5 x 5 single cell

DEC. 05

Major Facilities at FCB, CGCRI

Challenges....

Planar (IT SOFC)

Glass Sealing

Cell Degradation

Materials, Fabrication and System Integration
 Cost Reduction

Why Sealants?...

In planar SOFC, fuel gas and air must be kept separate from each other to prevent decreased efficiency in producing electric energy as well as direct combustion and overheating

Schematic drawing of sealing and contact layers within the stack: CA = contact layer anode (Ni-mesh); E = electrolyte; C = cathode; CC = contact layer cathode (Basu R.N., 2006)

SOFC SEALS

Functions

- SOFC seals prevent mixing of fuel and oxidant within stack
- SOFC seals prevent leaking of fuel and oxidant from stack
- SOFC seals electrically isolate cells in stack
- SOFC seals may provide mechanical bonding of components

Requirements

While fulfilling the above functions, seal materials must remain:

- structurally stable
- chemically compatible with other stack components
- inexpensive

SOFC Seal Requirements

Functional requirements and materials selection parameters

Mechanical

Hermetic (or near hermetic)

Minimal CTE mismatch (or ability to yield or deform to mitigate CTE mismatch stresses)

Acceptable bonding strength (or deformation under compressive loading)

- Thermal cycle stability
- Vibration and shock resistance (for mobile applications)

Long-term chemical stability under simultaneous oxidizing/wet fuel environments

Long-term chemical compatibility with respect to the adjacent sealing surface materials

Resistance to hydrogen embrittlement / corrosion

Electrical ·Non-conductive

Fabrication ·Low cost

High reliability with respect to forming a hermetic seal
Sealing conditions compatible with other stack components

Typical glass-based SOFC sealing compositions

Mica glass ceramics Commercially available micas Alkali silicate glasses Na₂O-CaO-SiO₂ Li₂O-ZnO-Al₂O₃-SiO₂ MgO-ZnO-SiO₂

Alkali earth borosilicate glasses SrO-La₂O₃-Al₂O₃-B₂O₃-SiO₂ Alkali earth aluminosilicate glasses MgO-Al₂O₃-SiO₂ CaO-Al₂O₃-SiO₂

Typical DTA plot for the sealing glass (CGCRI)

Typical thermal expansion behavior of glass-sealant

Materials with dramatically different thermal expansion coefficients

Tg values should be well within the range and are as low as possible to minimize the stress produced as the structure cools to room temperature

Application of Glass-based Sealants in Stack

CGCRI-Developed Glass Sealants

Cathode Functional Layer (CFL)

Triple phase boundary (tpb)

Microstructure of CFL

Electrolyte

0.63 W/cm²

0.52 W/cm²

0.39 W/cm²

0.35 W/cm²

Microstructure of AFL

State-of-the-art MaterialsElectrolyte: $ZrO_2 + 8mol\% Y_2O_3$ (YSZ)Cathode: $La_{0.65}Sr_{0.35}MnO_3$ (LSM)Anode: 40vol% Ni + 60vol% YSZ (Ni-YSZ)Interconnect: $La_{0.70}Ca_{0.30}CrO_3$ (LCR) / Ferritic Steel

CATHODE POISINING

Stack Degradation

Problem

Reduces the active sites at the tpb (cathode poisoning) - Cell degrading at 700-800°C

INTERCONNECT Cr ALLOY

Cathode Protective Layer

ASR value depends on the particular composition of the steel used

R.N. Basu et al., J. Solid State Electrochem., 7, 416-20 (2003) and an International Patent

Planar Design...

Suitable Sealants (Thermal cyclability is a major issue)

Supply of special steel (SS 430)

Limited to distributed power generation (5-10kW and its multiplication) Niche Area

System integration at least with 5x5kW SOFC Stack

Tubular Design...

CVD/EVD extremely sophisticated and costly (Repeatability is a major issue)

Handling long-length tube / masking for interconnect (LCR) coating at high temperature

> High temperature operation (>950C) and low power density

Tubular Design

Westinghouse Tubes

Siemens Westinghouse 1.5mts. LSM Tubes

Electrochemical Vapour Deposition (EVD)

ZrCl₄ + YCl₃

Porous Ceramic Support

ZrCl₄ + YCl₃

Step 1 (CVD) + Step 2 (EVD)

 $Air + H_2O$

- To overcome materials/fabrication related issues including scaling-up issues
- For anode-supported IT-SOFC we must have our own Glass-based sealant
- Ferritic steel-based technology, our own stack and gas-manifold design including up-gradation
- Up-scaling and System Integration (BHEL)
- Modeling and simulation (IIT-B)

National Seminar on Challenges in Fuel Cell Technology: India's Perspective

Thank You

December 1-2, 2006 IIT Delhi

SOFC Working Principle

When a current (I), passes through the cell, the cell voltage V is given by:

 $V = E_r - IR - \eta_A - \eta_F$ (1)

Where, R = Electrical Resistance of the cell

 η_A and η_F = Polarization voltage losses at the air and fuel side respectively.

$$E_r = \frac{RT}{4F} \ln\left(\frac{pO_{2(c)}}{pO_{2(a)}}\right)$$