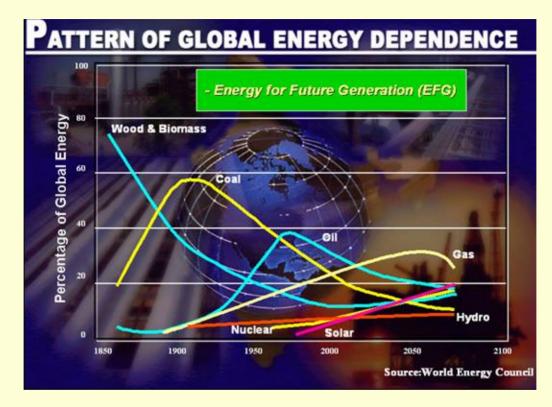
Solid Oxide Fuel Cell Technology Development in BARC

B. P. Sharma Associate Director Materials Group (S) BARC


Solid Oxide Fuel Cell Technology Development in BARC

Earth at Night More information available at: http://antwrp.gsfc.nasa.gov/apod/ap001127.html

NASA Photograph

Astronomy Picture of the Day 2000 November 27 tp://antwrp.gsfc.nasa.gov/apod/astropix.html

B. P. Sharma, A. K. Suri, S. K. Mitra, P. Ragunathan, P. K. Sinha, John T. John, and A. Ghosh

Future energy systems

□Solar

□Hydrogen-based

Nuclean Fuel Cell Technology -India's Prosepectives

Outline of the Presentation Hydrogen as future energy carrier

Production of hydrogen

Hydrogen storage

Direct conversion of hydrogen energy through solid oxide fuel cell

Materials Cell Design Fabrication Techniques

Complete Hydrogen Cycle

Hydrogen Fuel: Technological Challenges -Production and delivering hydrogen at low cost **Pyrolysis, Electrolysis, Photolysis** -Storage system (Compact, light wt., safe, efficient, low cost) Pressurized Gas, liquid, Solid Absorbents -Efficient conversion Fuel Cells (Direct Conversion of Chemical Energy to *electrical energy*)

Materials Design Safety

Challanges in Fuel Cell Technology -India's Prosepectives

Production of Hydrogen

Challanges in Fuel Cell Technology -India's Prosepectives

Hydrogen from Water

Hydrogen produced from water alone can serve the purposes of an ideal, sustainable and environment friendly clean energy economy

Prospective water based hydrogen production techniques are:

- 1) Electrochemical production (Water electrolysis)
- 2) Electrothermal water decomposition (Steam electrolysis)
- 3) Thermochemical water splitting (Thermo chemical cycles)

Hydrogen Production by Water Electrolysis

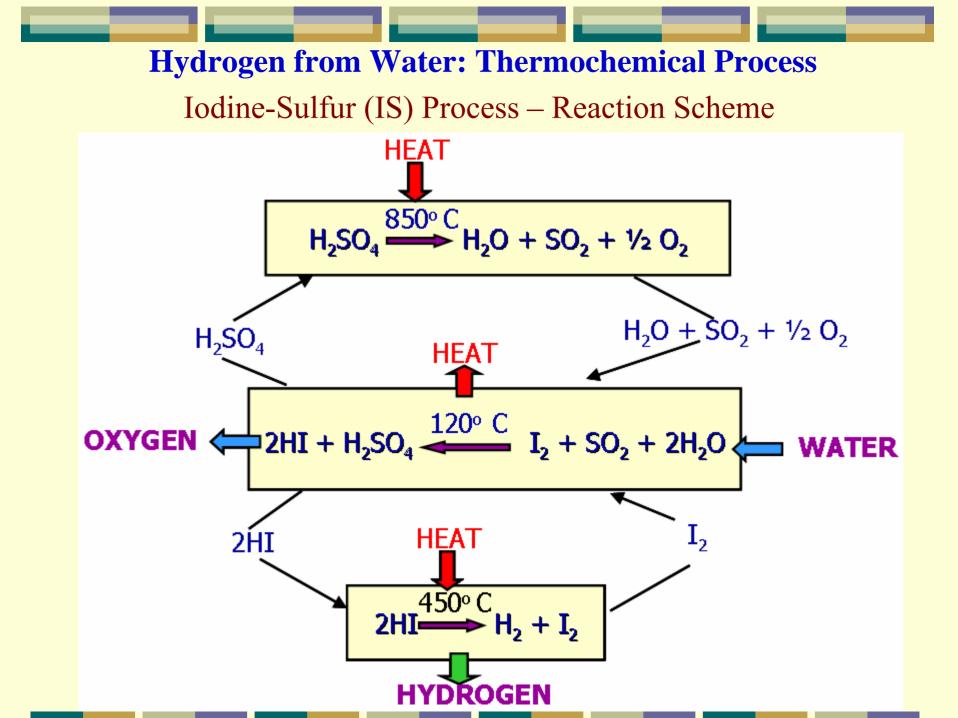
- Alkaline Water Electrolyser: 10 Nm³/h capacity is developed by BARC: Technology is available for production
- Alkaline Water Electrolyser of 30 Nm³/h is being developed (Time frame: 2005-08)
- BARC is also developing Solid Polymer Electrolyte (SPE) Water Electrolyser (Time frame: (2005- 08)
- BARC is also working on High Temperature Steam Electrolyser: Experimental studies with single tube cell are planned during 2005 - 08 and with multitube cell are planned in 2008 –12

HIGH CURRENT DENSITY COMPACT ELECTROLYSER

Compact electrolyser of filter press type

A 40-cell electrolysis module (weighing 900 kg) incorporating Porous Nickel Electrode operates at a high current density of 4500 Am⁻² which is much higher than conventional cells in the market (1500 Am⁻² or below)

• The electrolyser operates at 55° C and 0.16 MPa to produce 10 Nm³/h of hydrogen



HYDROGEN FROM WATER

Comparison Of Thermo Chemical Processes

	I-S Process	Ca-Br Process	Cu-Cl Process
Efficiency (%)	57	40	41
Operating temperature	950° C	760° C	550° C
Process Streams	Liquid & gas	Solid & gas	Solid, liquid & gas
Development stage	Fully flow sheeted	Fully flow sheeted	R&D stage
Demonstration	Pre pilot plant	Pilot plant	Not demonstrated
Corrosion	High	High	low
Capital Cost	Low	High	NA

Challanges in Fuel Cell Technology -India's Prosepectives

Hydrogen Storage

Challanges in Fuel Cell Technology -India's Prosepectives

Hydrogen storage

• High-pressure storage:

heavy and bulky vessels

• Liquefied hydrogen:

attractive weight and volume

requires energy to liquefy

the storage system has potential risks

Solid Absorbents

Absorption under ambient conditionsMetal hydridesof Temp and PressureComplex HydridesDesorption occurs at elevated Temp

Metal Hydrides

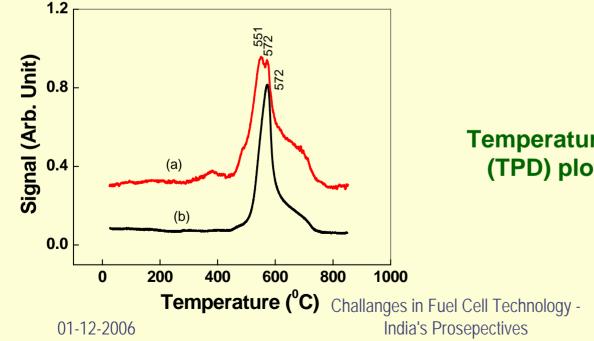
- Hydrogen is distributed compactly throughout the metal lattice.
- Metal hydrides, therefore, represent an exciting method of storing hydrogen.
- They are inherently safer then compressed gas or liquid hydrogen
- They have higher hydrogen storage capacity. In fact, certain hydrides can store more than twice the amount of hydrogen that can be stored in the same volume of liquid hydrogen.
- The key to practical use of metal hydrides is their ability to both absorb and release same quantity of hydrogen many times without deterioration.

Hydrogen Storage Capacity

Storage media	Hydrogen storage By weight (%)	Energy density By weight (cal/g)	Energy Density By volume (cal/ml)
Gaseous H ₂ Liquid H ₂ MgH ₂	100 100 7.6	33,900 33,900	271 2373 3423
Mg ₂ NiH ₄	3.3	2373 1071	2745
VH ₂ FeTiH ₂	3.8 1.9	701 593	3227 3254
LaNi ₅ H ₆	1.4	464	3017

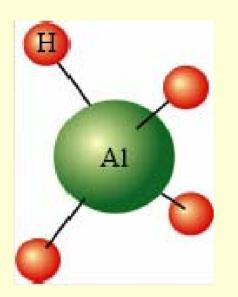
The standard set by US Department of Energy (DOE) requires

A system-weight efficiency (the ratio of stored hydrogen weight to system weight) of 6.5-wt % of hydrogen and a volumetric density of 62 kg H₂/m³ Challanges in Fuel Cell Technology -01-12-2006 **India's Prosepectives**



Hydrogen Storage in TiH₂

Ti sponge absorbs hydrogen at room temperature below one atmospheric pressure forming TiH₂


Ti-hydride desorbs hydrogen at around 534° C

These properties of titanium sponge are ideally suitable for a getter material for handling and storage of hydrogen and its isotopes

Temperature programmed desorption (TPD) plots of (a) TiH_x and (b) TiD_x

Complex Aluminum Hydrides

Examples	Capacity* (Wt%)
Na(AIH ₄)	5.6
Li(AIH ₄)	7.9
Zr(AIH ₄) ₂	3.9
Mg(AIH ₄) ₂	7.0

* Reversible Theoretical Capacity

Challanges in Fuel Cell Technology -India's Prosepectives

Hydrogen Storage in Carbon Nano Structures

Hydrogen storage in carbon nanostructures is a very attractive topic owing to the low density of carbon and its high potential storage capacities.

Challenges:

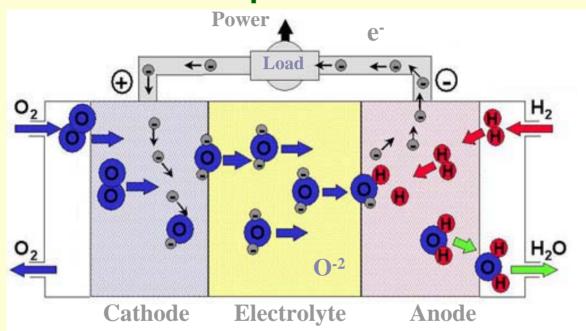
- **1.** The mass production of carbon nanotubes at a reasonable cost.
- 2. Purification and surface functionalisation of carbon nanotubes.
- **3.** Understanding the adsorption/desorption mechanisms and the volumetric capacity of carbon nanostructures.

Direct Conversion of Hydrogen Energy

Solid Oxide Fuel cell

Direct Conversion of Chemical Energy to Electrical Energy

... Carnot Cycle is not the limitation


Challanges in Fuel Cell Technology -India's Prosepectives

Comparison of different Fuel Cells

	PAFC	MCFC	SOFC	PEMFC
Electrolyte	Phosphoric Acid	Molten Carbonate Salt	Ceramic	Polymer
Operating temperature	190°C	650°C	800-1000°C	80°C
Charge Carrier	H^{+}	CO ₃ -2	O-2	H^{+}
Fuels	Hydrogen (H ₂) Reformate	H ₂ /CO/ Reformate	H ₂ /CO ₂ /CH ₄ Reformate	H ₂ Reformate
Reforming	External	External/ Internal	External/ Internal	External
Prime Cell component	Graphite-based	Stainless steel	Ceramic	Carbon based
01-12-2006	Onalia	India's Prosepectives	-9 <u>7</u>	21

Solid Oxide Fuel Cell (SOFC)

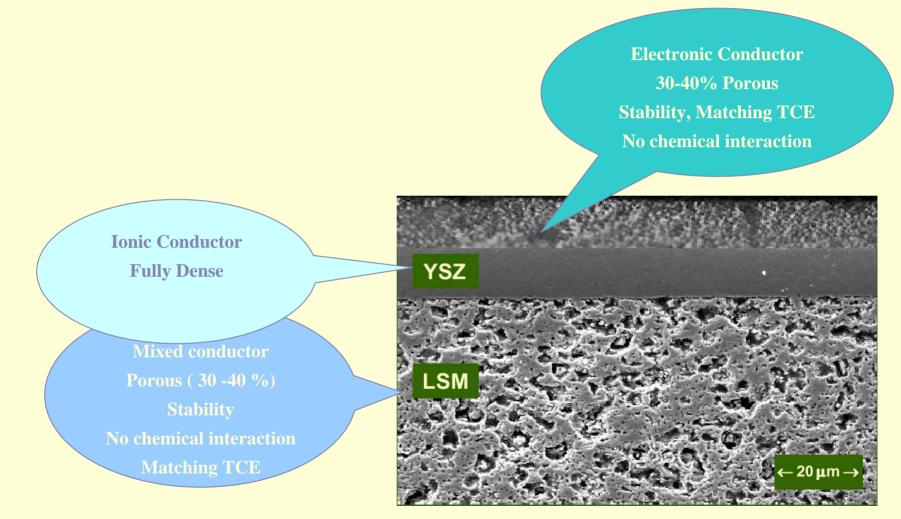
Fuel cell utilizes hydrocarbon/hydrogen as fuel which reacts electrochemically with oxygen Principle of SOFC

Cathodic Reaction : $\frac{1}{2}O_2 + 2e^- \longrightarrow O^{2-}$ Anodic Reaction : $H_2 + O^{2-} \longrightarrow H_2O + 2e^-$ Challanges in Fuel Cell Technology -

India's Prosepectives

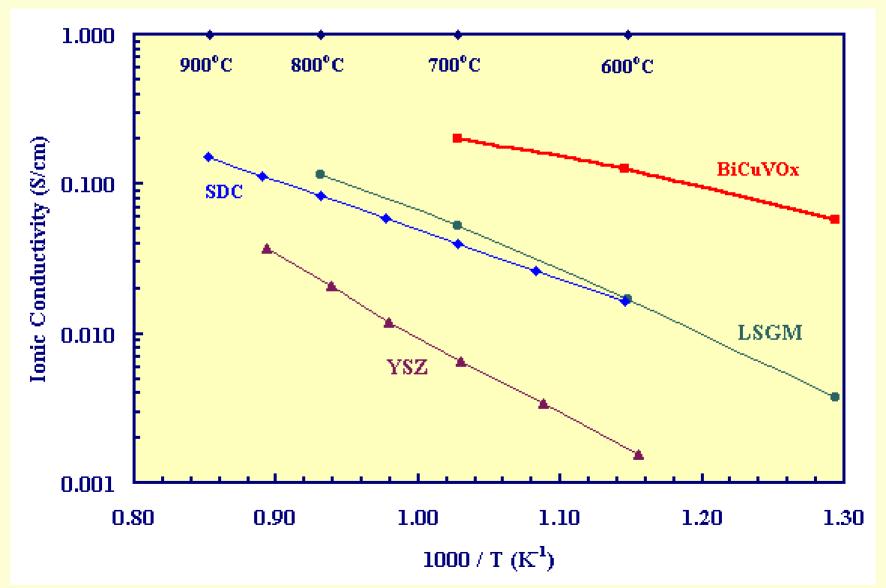
01-12-2006

22

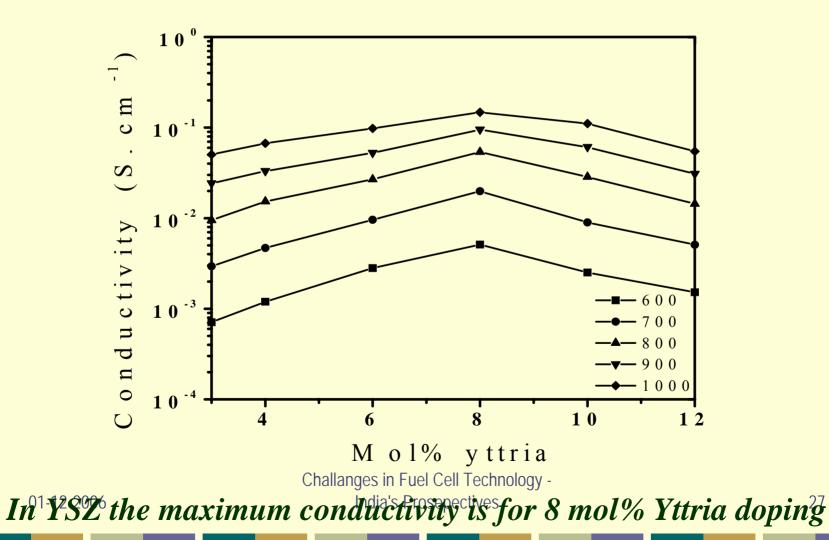

Salient Features of SOFC

- Highly efficient electric power generation system (can be as high as 70-80%)
- Effective utilization high temperature waste heat
- Direct reforming of gaseous fuel in 1000° C operating SOFC
- Environmental friendly power generation
- All ceramic component---- A Challenge in Materials and Manufacturing Technology

Target: Low cost of SOFC system by achieving


- High power density (0.5 W/cm²)
- Improved durability
- Low material and manufacturing cost

Microstructural Requirements


Challanges in Fuel Cell Technology -India's Prosepectives

Ionic Conductivity of different Electrolyte

Zirconia based	Ceria based	Lanthanum oxide based	Bismuth oxide based
Excellent Stability in oxidizing and reducing environment Excellent Mechanical stability (3YSZ) Well studied material	Good compatibility with cathode Materials	Good compatibility with cathode Materials High Conductivity	High Conductivity
Lower Ionic Conductivity	Electronic conduction at low pO ₂ Poor mechanical strength	Ga evaporation at low pO ₂ Formation of stable secondary phases Incompatible with NiO	Thermodynamic instability in reducing atmosphere Volatilization of Bi ₂ O ₃ High corrosion activity Poor mechanical
01-12-2006		el Eglore mechanical p stpength	strength 26

Total conductivity of YSZ at different temperatures as a function of yttria content

Fuel Cell Development at BARC The Fuel Cell Development Program at BARC aims at

- Technology Development and Demonstration for 5 kW tubular SOFC and 1 kW Planar Multi-cell PEMFC systems complete with fuel generator and power conditioner
- Setting up of facilities and infrastructure for fabrication/ integration of fuel cell components and other subsystems, specially thin ceramic films for SOFC and Membranes and MEA (Membrane Electrode Assembly) for PEMFC
- Modular Cell design for standardization and Scale up

State-of-the-art SOFC

Bench mark properties for component materials

Cathode Composition Porosity Conductivity TEC Dimensions

1.

2.

Electrolyte Composition Porosity Conductivity TEC Dimensions

- : LSM (La_{0.9}Sr_{0.1}MnO₃)
- : 40% (pore size 20-50 $\mu\text{m})$
- : 100 S/cm at 1000^o C
- : 10 12 ppm/^O C
- : ID-14mm, Wall -2mm, L-160mm
- : YSZ [(ZrO₂)_{0.92}(Y₂O₃)_{0.08}]
- : Nil, permeability should be zero
- : Ionic ~ 0.1S/cm
- : 10.5 ppm/^O C
- : Film thickness ~ 50 $\mu m,$ L~125mm

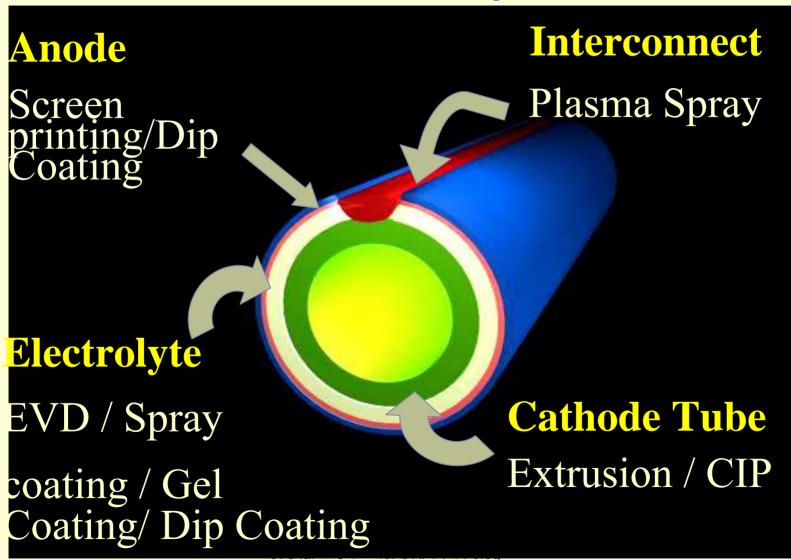
State-of-the-art SOFC Bench mark properties for compositions

- 3. Anode Composition Porosity Conductivity TEC Dimensions
- 4. Interconnect Composition Porosity Conductivity TEC Dimensions

- : Ni-YSZ cermet (Ni- 60% by wt)
- : 40% (pore size 20-50 μm)
- : 1000-1500 S/cm
- : 10 12 ppm/^oC
- : OD- 18.1 mm, t~ 100 µm, L~125 mm
- : LCM [La_{0.95}Mg_{0.05}(CrO₃)] : Nil, permeability should be zero : 5-10 S/cm at 1000^o C : 10-12 ppm/^o C : W- 5mm, L- 125mm, t~100 μm

SOFC: Designs

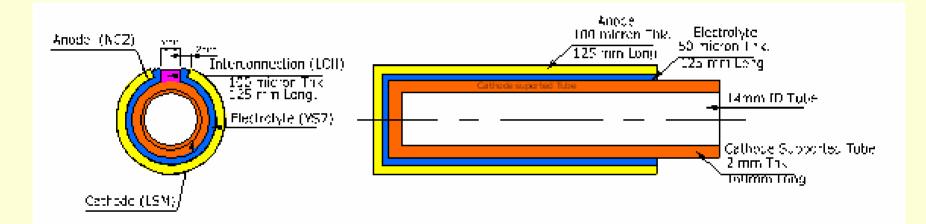
1. Tubular Design


• Pioneered by Siemens- Westinghouse

2. Planar Design

- Conventional 'electrolyte supported' concept
- Cathode supported design
- Newer Anode supported concept

3. Monolithic design


SOFC Development

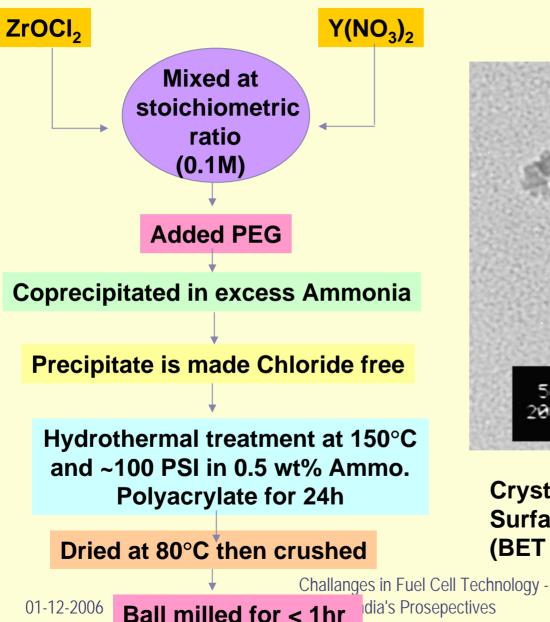
01-12-2006

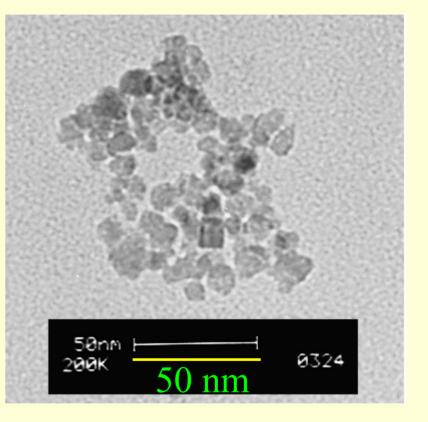
India's Prosepectives

Cell Dimension and Design of Tubular SOFC at BARC

Single Tube Cell

HWD/SKM/pillai 27.3.02

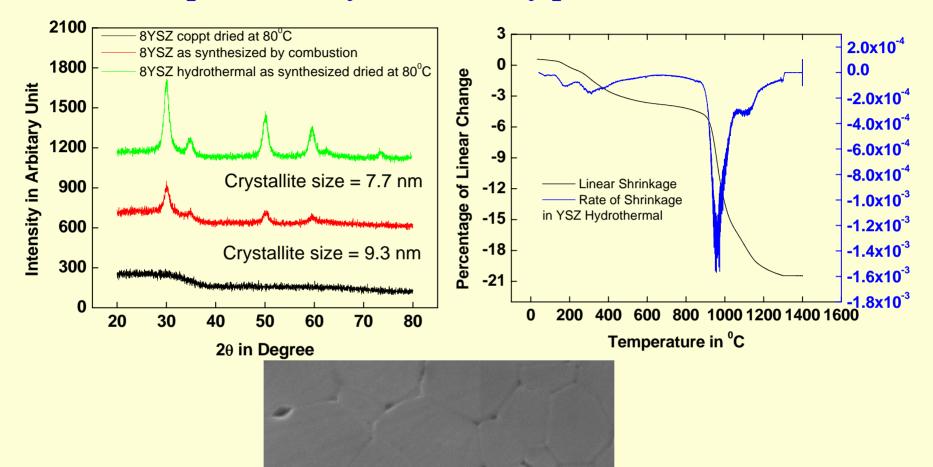

Challanges in Fuel Cell Technology -India's Prosepectives


Powder Preparation

Solution synthesis route a promising approach

- Citrate gel
- Oxalate precipitation
- Hydrothermal Synthesis
- Combustion Synthesis
- Spray drying

Synthesis of 8YSZ by Hydrothermal Technique



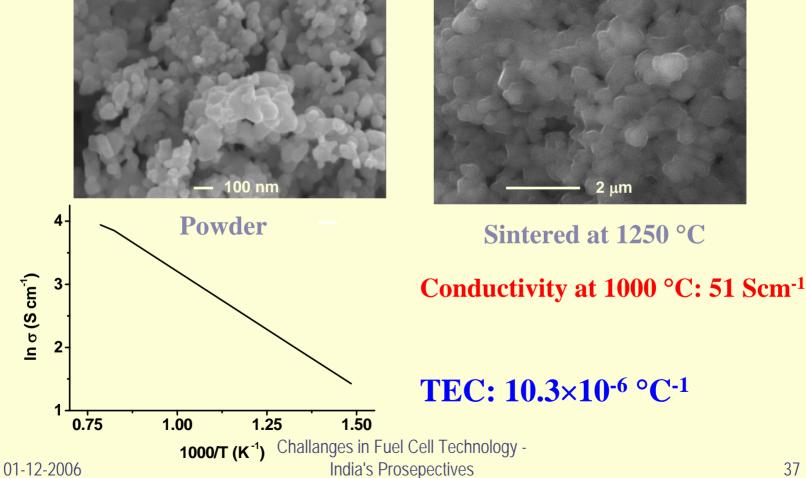
Crystallite Size = 4 to 6 nm Surface Area = 166 m²/gm (BET Technique)

dia's Prosepectives

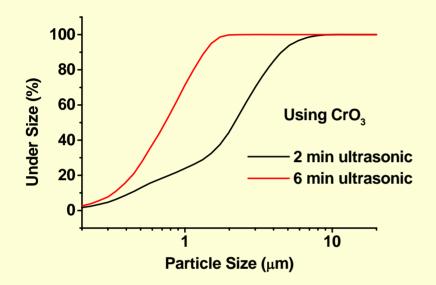
Properties of Hydrothermally produced 8YSZ

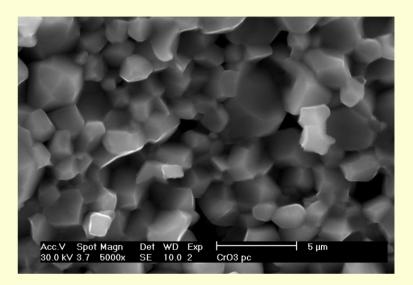
Acc.V Spot Magn

30.0 kV 3.0 12000x


Det WD Exp

2 um


V-YSZHYD1300


Sintered at 1300°C

Low temperature sintering of nano-crystalline La(Ca)CrO₃(LCR) interconnect prepared through controlled gel combustion processes EDTA-nitrate combustion synthesis of La_{0.70}Ca_{0.30}CrO₃

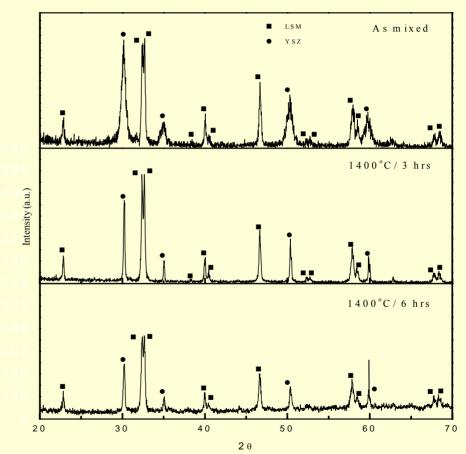
Glycine-nitrate combustion synthesis of LCR interconnect

Sintered at 1200 °C (Fractured surface)

Lowest sintering temperature

ever reported

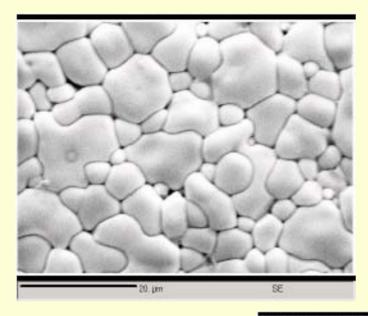
Conductivity at 1000 °C: 58 Scm⁻¹

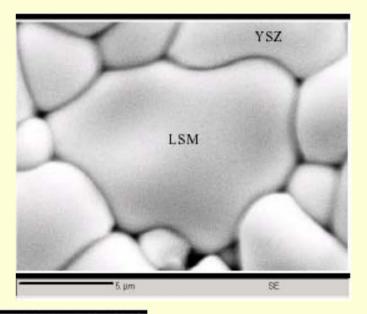

Challanges in Fuel Cell Technology -India's Prosepectives

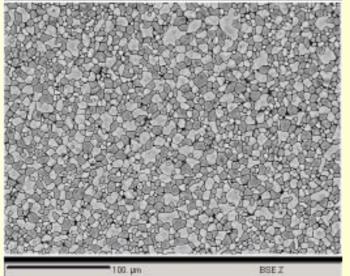
Chemical compatibility of LSM with YSZ

Powder mixture compact

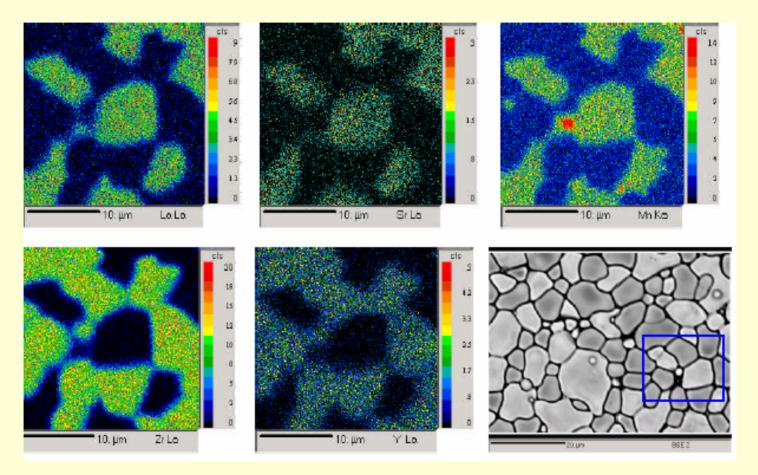
- Phase analysis
- X-ray maps


Temperature range 1000 – 1400° C



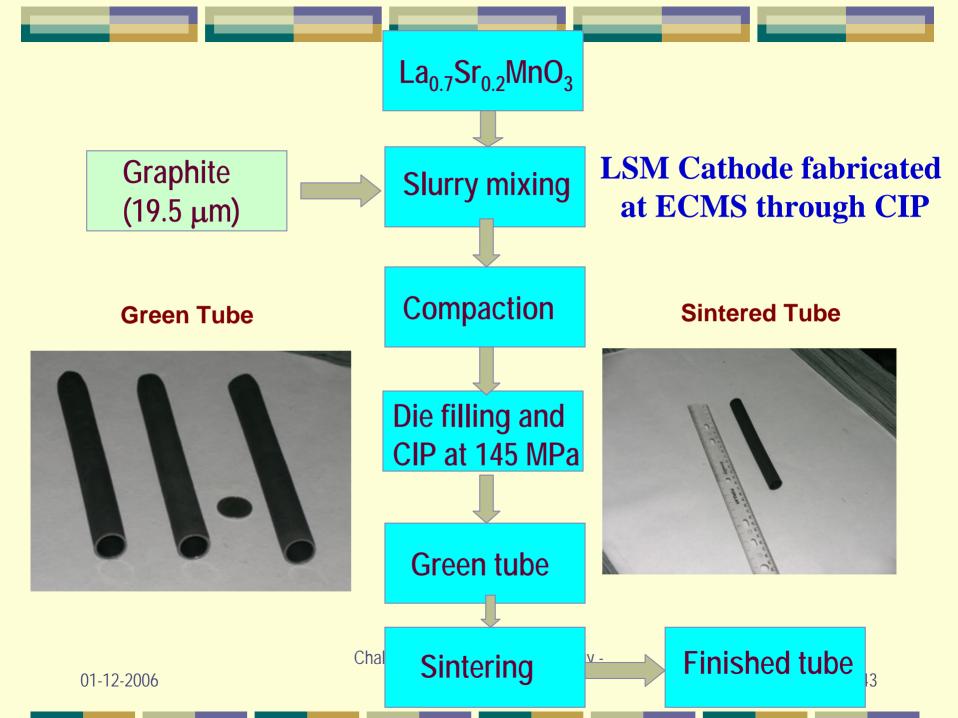

No reaction products even at 1400° C

Challanges in Fuel Cell Technology -India's Prosepectives

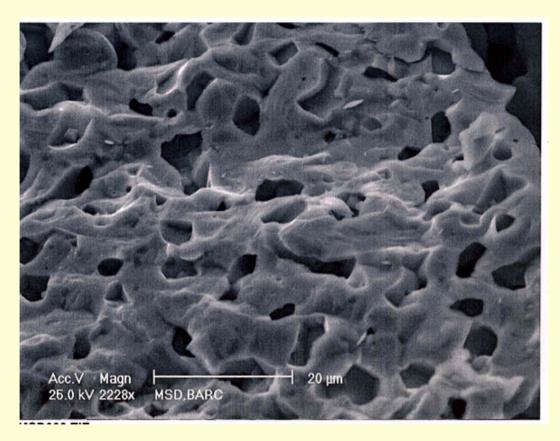

Microstructural study of YSZ-LSM: Chemical Compatibility

Electron Microprobe Micro analysis of YSZ-LSM

Sharp interface between YSZ and LSM Challanges in Fuel Cell Technology -India's Prosepectives

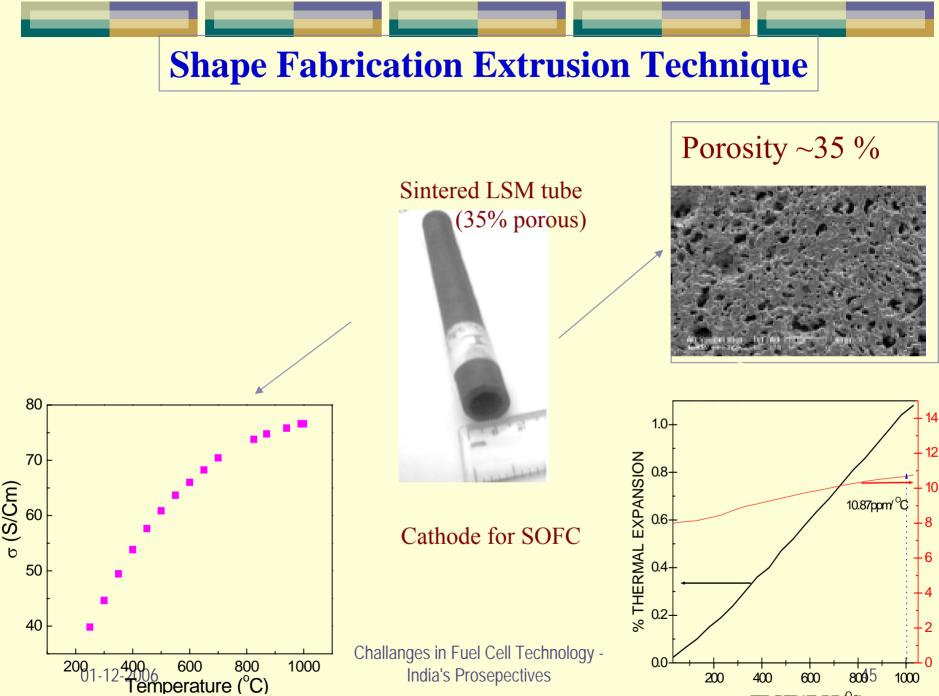

Shape Forming

Fabrication of support tube (tubular SOFC)


Extrusion Cold Isostatic Press

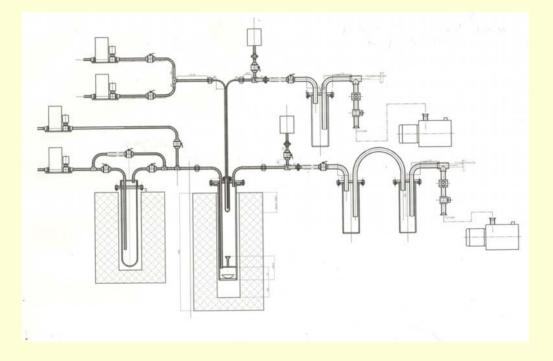
Fabrication of thin/thick films

Tape casting Vacuum slip casting


Microstructure of Sintered Porous LSM tube

Pore size 5-15 µm

Graphite was added as the pore former


Challanges in Fuel Cell Technology -India's Prosepectives

TEMPERATURE (^OC)

α (cm.cm

Schematic diagram of the CVD system

For coating of LSM tube by YSZ

Challanges in Fuel Cell Technology -India's Prosepectives

CVD process

Gas stream I

 $\begin{array}{rcl} ZrCl_4 \ + \ H_2O \ \rightarrow \ ZrO_2 \ + \ 2HCl \\ 2YCl_3 \ + 3H_2O \ \rightarrow \ Y_2O_3 \ + \ 6HCl \ at \ 1000\mathchar` 1300^{o}C \end{array}$

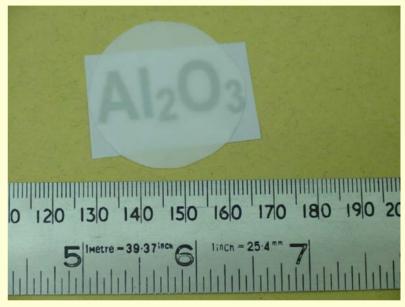
Gas stream II $CO_2 + H_2 \rightarrow H_2O + CO$

Electrochemical Reaction 2YCl₃ + 3 O²⁻ +3H₂ \rightarrow Y₂O₃ +6HCl +6 e⁻ ZrCl₄ +2O²⁻ +2H₂ \rightarrow ZrO₂ + 4HCl +4e⁻

Fraction of Y_2O_3 in ZrO_2 is decided by the composition of the vapor.

 Independent control on the temperature of ZrCl₄ and YCl₃ baths. ZrCl₄ between 150 - 185⁰C YCl₃ between 550 - 650⁰C
Independent gas steams

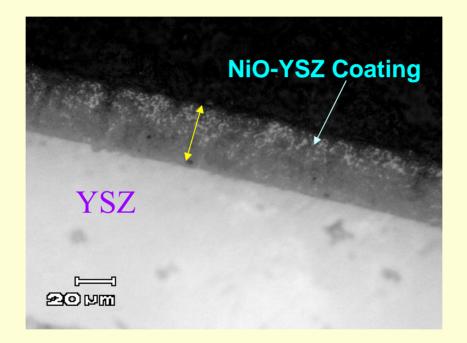
Optimization of pressure to get coating at the outer surface.

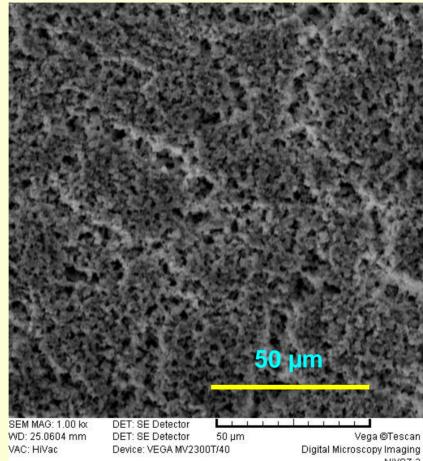

R

EVD Setup for depositing YSZ electrolyte film on porous LSM cathode tube

Sintered ceramic tapes

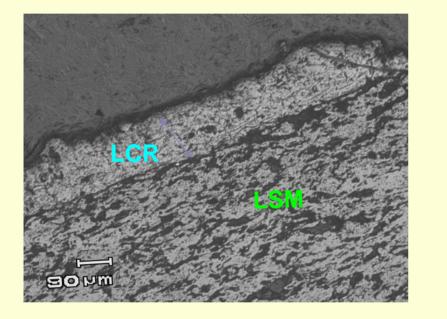
Flexing of sintered 20 um thick electrolyte sheet

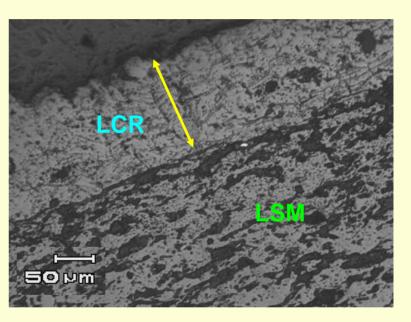

01-12-


3YSZ flexible ceramic tapes (Corning corporation, USA)

Challanges in Fuel Cell Technology -India's Prosepectives

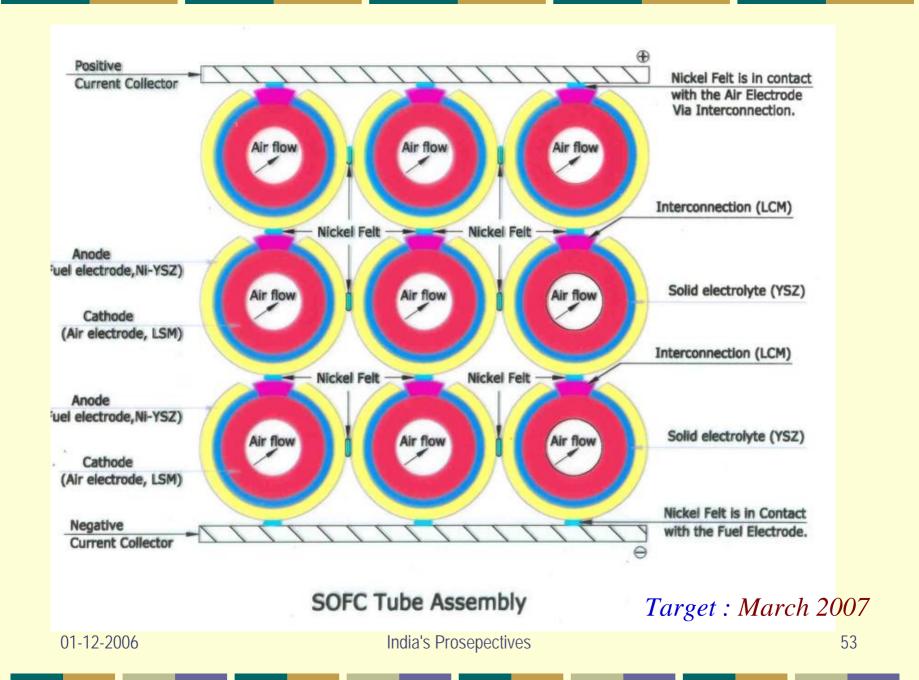
Cross sectional view of NiO-YSZ coating on YSZ tube




Morphology of Ni – YSZ coating

Microscopy Imaging NiYSZ-3 Shovit

LCR Coating (Plasma Spray) on Porous LSM



01-12-2006

Challanges in Fuel Cell Technology -India's Prosepectives

52

Electrical Characterization Facility for SOFC

SOFC Single cell Self supporting YSZ electrolyte 20mm dia 700 µm thick cathode and anode are applied by brush coating
Pt grid was used on the electrode contacts

Open Circuit Voltage 0.8 V was obtained at 1000 °C.

01-12-2006

Challanges in Fuel Cell Technology -India's Prosepectives

Summary

BARC Activity on Fuel Cell Programme

- BARC has taken up development of "Compact High Temperature Reactor"
- The heat generated in the reactor may be tapped and converted to electricity and hydrogen
- Solid Oxide Fuel Cell will play a pivotal role in conversion of this hydrogen energy to electrical energy

Thank You

bpsharma@barc.gov.in

Hydrogen : The Future Fuel

- Clean energy

No air-pollution

Minimum green house gas emission

- High energy density

- Compatible with efficient fuel cells
- Long term energy security/ diverse resources
- Can serve all sectors of economy

....the first car driven by a child born today could be powered by hydrogen and pollution free.

Challanges in Fuel Cell Tors President, Jan. 28, 2003

Overall cell reaction is simply the oxidation of fuel. Open circuit voltage "E" is expressed as:

$$E = \frac{RT}{4F} \ln \left\{ \frac{P_{O_2}(\text{oxidant})}{P_{O_2}(\text{fuel})} \right\}$$

When a current is drawn from the cell, cell voltage V is:

$$V = E - IR - \eta_A - \eta_F$$

Challanges in Fuel Cell Technology -India's Prosepectives

Fuel Cell components

- ✓ Cathode
- ✓ Anode
- ✓ Interconnect (for a stack)
- ✓ Seals

Requirements for the electrolyte

- Ionically conductive oxygen ion transport no. ~ 1
- Chemically stable (at high temperatures as well as in reducing and oxidizing environments
- Gas tight/free of porosity
- Uniformly thin layer (to minimize ohmic losses)
- Thermal expansion that match

Different Electrolytes

Zirconia electrolytes (8YSZ,3YSZ,ScSZ,CaSZ etc.)

Ceria electrolytes (GDC, SDC, YDC, CDC etc.)

Lanthanum based electrolytes LSGM $La_xSr_{(1-x)}Ga_yMg_{(1-y)}O_3$ LaAlO₃-based $La_{1-x}Ca_xAlO_3$, $La_{1-x}Ba_xAlO_3$

Bismuth oxide-based $Bi_2V_{0.9}Cu_{0.1}O_{5.5-\delta}$, $(Bi_2O_3)_x(Nb_2O_5)_{1-x}$

Pyrochlorores-based YZr_2O_7 , $Gd_2Ti_2O_7$

Barium brownmillerites

BaZrO₃, Ba₂In₂O₅, Ba₃In_xAO_y (A = Ti, Zr, Ce, Hf), Ba₃Sc₂ZrO₈

Composite Electrolyte: Doped ceria + Molten Salt ???

Requirements for the cathode

- High electronic conductivity
- Chemically compatible with neighboring cell component (usually the electrolyte)
- Should be porous
- Stable in an oxidizing environment
- Large triple phase boundary
- Catalyze the dissociation of oxygen
- Adhesion to electrolyte surface
- Thermal expansion coefficient similar to other SOFC materials Challanges in Fuel Cell Technology -India's Prosepectives 61

Different Cathode Materials

Lanthanum cathodes

LSM $La_xSr_{(1-x)}MnO_3$ LSF $La_xSr_{(1-x)}FeO_3$ Gadolinium cathodes

GSC $Gd_xSr_{(1-x)}CoO_3$

Yittria cathodes

YSCF $Y_{(1-x)}Sr_xCo_yFe_{(1-y)}O_3$

Strontium cathodes

SSC $Sm_xSr_{(1-x)}CoO_3$

Challanges in Fuel Cell Technology -India's Prosepectives

Requirements for the anode

- Electrically conductive
- High electro-catalytic activity
- Large triple phase boundary
- Stable in a reducing environment
- Can be made thin enough to avoid mass transfer losses, but thick enough to provide area and distribute current
- Thermal expansion coefficient similar neighboring cell component
- Chemically compatible with neighboring cell component
- Fine particle size
- Able to provide direct internal reforming (if applicable)
- Toplerant to sulfur in fuels (if applicable) -

Requirements for the interconnect

- Stable under high temperature oxidizing and reducing environments
- Very high electrical conductivity
- High density with "no open porosity"
- Strong and high creep resistances for planar configurations
- Good thermal conductivity
- Phase stability under temperature range
- Resistant to sulfur poisoning, oxidation and carburization
- Low materials and fabrication cost
- Matching thermal expansion for other components India's Prosepectives

Interconnect

Ceramic Interconnect for High temperature SOFC (High material cost, sintering difficulties) e.g Doped Lanthanum Chormites and doped Yttrium chromites

Metallic Interconnects

(easy fabrication, high electrical and thermal conductivity) High chrome alloys $(Cr_5Fe_1Y_2O_3)$ Ferritic stainless steel for low temperature SOFC Iron super alloys Nickel super alloys

Critical Issues

Chromium evaporation (in Cr based interconnects)

Requirements for the sealing materials

- Electrically insulating
- Thermal expansion compatibility with other cell components
- Chemically and physically stable at high temperatures
- Gastight
- Chemically compatible with other components
- Provide high mechanical bonding strength
- Low cost

Materials

Glass ceramic materials – SrO-La₂O₃-Al₂O₃-SiO₂ Mostly are under Intellectual Property Rights

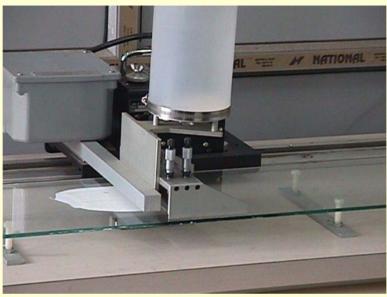
Cell Design

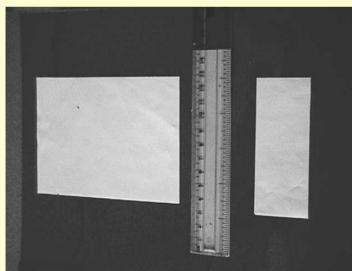
Different Concepts

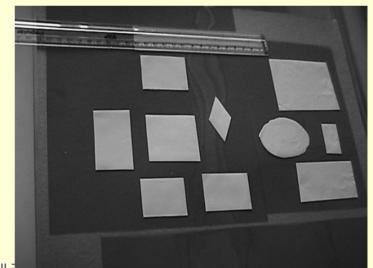
Driven by

Cell efficiency Fabrication Technology of the component Cost of the Material Sealing Material Technology

> Challanges in Fuel Cell Technology -India's Prosepectives


Materials Processing :


Powder Preparation Stable Slurry Shape Forming Thin coating Sintering


Tape Casting

- Tape casting is a method for producing thin, ceramic tapes by doctor-blade process
- For tape-casting, first 'Slip' of ceramic powders is prepared. The slip is generally a fluid based on organic solvents
- A typical slip composition contains:
 - Powder
 - Dispersant (Acetic acid, Oleic acid etc.)
 - Solvent (Ethanol, MEK, TCE etc.)
 - Plastisizer (PEG, phthalates etc.)
 - Binder (PVB, PVA etc.)

Tape-casting Facility at ECMS, Vashi Complex, BARC

01-12-2006

Greem Ceramic tapes

Thin/thick Coating

Slurry Coating Dip coating Electrophoretic deposition Screen printing Spray Coating Vapour deposition **Chemical vapour Deposition Electrochemical vapor Deposition Reactive Magnetron Sputtering RF** sputtering **Plasma Spraying**