Catalytic and electrochemical exploitation of polyoxometalates

Outline

- **4** Introduction to polyoxometalates (POMs)
- **Exploitation of POMs for catalytic processes**
- **Synthesis of bio-degradable polymer, Poly lactic acid (PLA)**
- **4** Synthesis of Methoxy methyl chloride (MOM-Cl)
- **Exploitation of POMs for the synthesis of carbon supported metal nanoparticles**
- **POMs as redox switch metal nanoparticle- conducting polymer nanocomposites**
- **4** Application of POM stabilized carbon supported metal nanoparticles
- **Ru/STA-C** for electrochemical supercapcitor applications
- **Pt/STA-C and Pt-Ru/STA-C for electrocatalytic metahanol oxdation reaction**
- **Pt/STA-C for oxygen reduction reaction**

Preparation of POM stabilized metal nanoparticles

Synthesis of metal nanoparticles

Reduction of metal salts

- Alcohol reduction
- Borohydride reduction
- Citrate reduction
- Polyol process
- **D** Photolytic reduction
- **D** Thermal decomposition
- **Electrolysis of bulk metals**

Often needs stabilizing agent to prevent agglomeration

Advantages of reduced POMs as suitable reducing agents for the synthesis of metal nanoparticles

4 Redox potentials can be tuned finely to match that of many metal ions

Reduction of POMs

- Photochemically
- **Co** γ-radiolysis
- Electrolytically
- With reducing reagents

- **4** The reduced and oxidized forms are stable in a large pH domain
- **4** Transfer electrons efficiently
- **4** POMs are insensitive to dioxygen No storage problems
- **4** Stabilizes the nanoparticles efficiently
- **4** Adsorbs strongly on the metal nanoparticles

Potential scale for polyoxometalates and metals

Formation of colloidal carbon nanoparticles using POM

H₃PMo₁₂O₄₀ Solution

TEM Image

SEM image

Chemistry of Materials, 16, 2004, 2984-2986

Controlled synthesis of CNTs using POM

TEM images (a and b) of CNTs and HRTEM image of the CNTs

Journal of American Chemical Society, 127, 2005, 6534-6535

Synthesis of metal nanoparticles supported on carbon nanostructures using POMs

Synthesis of Pt nanoparticles stabilized by POMs

Synthesis of Pt nanoparticles supported on carbon using POMs

The strategy has been extended for the synthesis of

- > 20% Pt-Ru/STA-C
- **> 20% Ru/STA-C**
- **> 20% Pd/STA-C**

Synthesis of 20% Pt/STA-C

Using the above strategy 20% Pt-Ru/STA-C, 20% Ru/STA-C, 20% Pd/STA-C, 20% were prepared

TEM Analysis and Particle size distributions of 20% Pt/STA-C and 20% Pt-Ru/STA-C

- (a) Pt/STA-C
- (b) PtRu/STA-C
- (c) Particle size distribution from (a)
- (d) Particle size distribution from (b)

HRTEM and EDX Analysis of Pt/STA-C and Pt-Ru/STA-C

(a) & (b) HRTEM of Pt/STA-C
(c) HRTEM of Pt-Ru/STA-C
(d) EDX of Pt-Ru/STA-C

TEM and HRTEM Images of 20% Pd/STA-C

TEM and HRTEM Images of 20% Ru/STA-C

Synthesis of metal nanoparticles embedded conducting polymer-polyoxometalate nanocomposites

Conducting polymer nanocomposites

Conducting polymer – Metal nanoparticle composites

4 Photovoltaic cells

4 Memory devices

4 Protective coatings against corrosion

4 Supercapacitors

4 Catalysis

Conducting polymer – Polyoxometalate composites

4Supercapacitors

4Catalysis

Metal nanoparticles – Conducting polymer – Polyoxometalate composites Further extends composite applications

Synthesis of Conducting polymer-metal nanoparticle Composites

Chemical methods:

4 Reduction of metal salts dissolved in a polymer matrix

4 Incorporation of preformed nanoparticles during polymerization of monomers Electrochemical methods:

- **4** Incorporation of metal nanoparticles during the electro-synthesis of the polymer
- **4** Electrodeposition of metal nanoparticles on preformed polymer electrodes

Creation of ideal reaction conditions for the simultaneous reactions (polymerization and nanoparticle formation) is a challenge POM mediated synthesis of conducting polymer- metal nanoparticle composites

Schematic representation

- **I** Formation of reduced PMo₁₂ during polymeriztion of aniline
- **II** Electron transfer from reduced PMo₁₂ to metal ions

UV-Vis and XRD analysis of Ag-PAni-PMo₁₂ and Au-PAni-PMo₁₂ composites

- (a) 10 mM PMo₁₂
- (b) Mixuture of 5mM PMo₁₂ and 20µl of aniline
- (c) After addition of 10 mM AgNO₃
- (d) After adition of 10 mM HAuCl₄

- (a) Ag-PANi-PMo₁₂
- (b) Au-PANi-PMo₁₂

FTIR analysis of Ag-PAni-PMo₁₂ and Au-PAni-PMo₁₂ composites

PANI

1575 cm⁻¹ deformation mode of benzene rings
1488 cm-1 deformation of quinonoid rings
1248 and 1147 cm⁻¹ : C = N str of 2° amine
POM

1060 cm⁻¹ : P-O bond

955 cm⁻¹: Mo=O terminal bond

876 cm⁻¹: vertex Mo-O-Mo bond

800 cm⁻¹ : Mo-O-Mo bond

SEM images of Ag-PAni-PMo₁₂ and Au-PAni-PMo₁₂ composites

(a) & (b) Ag-Pani-PMo₁₂; (c) & (d) Au-PAni-PMo₁₂

TEM images of Ag-PAni-PMo₁₂ and Au-PAni-PMo₁₂ composites

(a) & (b) Ag-Pani-PMo₁₂; (c) & (d) Au-PAni-PMo₁₂

HRTEM analysis - Formation of core –shell nanoparticles

- (a) Ag-PANi-PMo₁₂
- (b) Au-PANi-PMo₁₂

- Demonstrates a simple method for Ag and Au nanoparticles embedded in PAni-PMo₁₂ nanocomposite
- PMo₁₂ has served dual role (oxidizing agent and reducing agent) in the formation of nanocomposite
- The synthesized nanocomposites have core-shell structure with metal nanoparticles being the core and polymer as the shell

Ru/STA-C for electrochemical supercapacitor applications

Electrochemical supercapacitors

- **4** Store or release energy very quickly
- **Withstand a large number of charge/discharge cycle**
- **4** Operate over a wide range of temperatures
- **4** High market value in memory protection devices
- **4** Low-emission electric vehicles

Metal oxides – Attractive materials for supercapacitors

- **4** Low resistance
- **4** Charging and discharging facilitated by multiple redox states Faradaic process
- **4** High specific capacitance

Electrochemical supercapacitors

- **4** Store or release energy very quickly
- **Withstand a large number of charge/discharge cycle**
- **4** Operate over a wide range of temperatures
- **4** High market value in memory protection devices
- **4** Low-emission electric vehicles

Metal oxides – Attractive materials for supercapacitors

- **4** Low resistance
- **4** Charging and discharging facilitated by multiple redox states Faradaic process
- **4** High specific capacitance

High specific capacitance by RuO₂

- **4** The highest capacitance experimentally reported for RuO₂ is 768 F g⁻¹
- **4** Good electrochemical cyclability
- **4** Provides facile transport pathways for both protons and electrons
- **4** Total specific capacitance per Ru Expensive
- **Effective utilization of Ru with lower loadings is needed**
- **Employing RuO**₂ nanoparticles

Polyoxometalates

- High proton conductivity
- Fast and reversible multi-electron transfer
- Provides additional redox centers

Ru/STA-C for supercapacitor applications

- Preparation of Ru/STA-C composite using silicotungstic acid (STA) as reducing agent
- Variation of Ruthenium loading from 10 40 % (wt%)
- Fabrication of electrochemical supercapacitor electrode
- Cyclic Voltammetry studies of Ru/STA-C
- Charge-Discharge characteristics of Ru-STAC using chronopotentiometry
- Comparison of the activities and stabilities of 10% Ru-SiW₁₂/C, 20% Ru-SiW₁₂/C and 40% Ru-SiW₁₂/C has been done in comparison with STA free Ru/C composites

Preparation of Ru/STA-C and Ru/C composites

Overlay of cyclic voltammograms of RuO₂/STA-C with different RuO₂ loadings

Charge accumulation with increase in RuO₂ percentage

Charge-discharge profiles of vulcan carbon and RuO₂/STA-C composites

Comparison of Charge-discharge curves of 20% RuO₂/STA-C and 20% RuO₂/C for 40 cylces

Electrolyte : $1M H_2SO_4$ Applied current : $3 mAcm^{-2}$ Potential range : 0.0 - 0.7 V

Comparison of specific capacitance

Specific Capacitance C (F g⁻¹)= I x dt / m x dV

- I = Current density in mAcm⁻²
- dV = Potential in V
- dt = Time in s
- m = Weight of the active material in g

S.No	Amount of Ru loaded Wt%	Specific capacitance (F/g)
1	0%(only Vulcan XC72R)	23
2	10% RuO ₂ /STA-C	325
3	20% RuO ₂ /STA-C	453
4	20% RuO ₂ /C	109
4	40% RuO ₂ /STA-C	557
Specific capacitance Vs Cycle number for RuO₂/STA-C and RuO₂/C

- > A simple and efficient method has been developed for the preparation of Ru/POM-C based composite electrode for electrochemical supercapacitor applications
- Presence of polyoxometalate along with RuO₂ in the composite has showed better performance for supercapacitor electrode applications
- > Specific capacitance can be increased by altering the ruthenium percentage in the composites
- > In this attempt we have improved the performance by reducing the loading of Ru

Application of POM containing carbon supported metal nanoparticles In Fuel cells as electrocatalysts

Direct methanol Fuel cells

Anode Reaction :	$CH_3OH + H_2O \longrightarrow CO_2 + 6H^+ + 6e^-$
Cathode Reaction :	$3/2 O_2 + 6 H^+ + 6e^- \longrightarrow 3 H_2O$
Overall Cell Reaction :	$CH_3OH + 3/2 O_2 \longrightarrow CO_2 + 2 H_2O$

CO adsorption –Shortcomings:

- > Inhibits further methanol adsorption
- Induces large overpotential
- > Requires large currents for CO electro-oxidation to make Pt sites free from CO

> Modification of Pt is necessary to enhance the activity

Can POMs enhance the catalytic activity of noble metals in fuel cell electrodes ?

- **4** Stable at elevated temperatures
- **Highly stable in acidic environments**
- **4** Provides similar environment as that of WO₃ around Pt active sites
- **Exhibits Oxophilic nature Activates H₂O molecules and adsorbs OH**
- **4** Act as mixed electron/proton conductors
- POMs on carbon supported gold nanoparticles served as an efficient CO oxidation catalyst

 $CO_{(g)} + H_2O_{(l)} + PMo_{12}O_{40}^{3-} \rightarrow CO_{2(g)} + 2H^{+}_{(aq)} + PMo_{12}O_{40}^{5-}_{(aq)}$

W. B. Kim, T. Voitl, G. J. Rodriguez-Rivera, J. A. Dumesic., Science, 305, (2004) 1280-1283

H. Nakajima and I. Honma, Electrochemical and solid state latters, 7 (6), (2004) A135- A137

Objective

Development of anode electrocatalyst for DMFC inorder to 1. Improve activity 2. Reduce loading of high cost Pt 3. Increase stebility Development of promoters for reducing CO poisoning Introduction of promoter (STA) into Pt/C electrocatalyst catalyst

POM containing and POM free Pt/C and Pt-Ru/C carbon electrocatalysts for CH₃OH oxidation

- Preparation of POM electrocatalysts
- 20% Pt/STA-C and 20% PtRu/STA-C using H₄SiW₁₂O₄₀ (STA)
- ***** Preparation of POM free 20%Pt/C and 20%Pt-Ru/C by H₂ reduction method
- * Comparison of the electrocatalytic methanol oxidation activities of
 - (i) 20% Pt/C (reduced by H_{2})
 - (ii) 20% Pt/STA-C (reduced by POM)
- ***** Comparison of the electrocatalytic methanol oxidation activities of
 - (i) 20% PtRu/C (reduced by H_2)
 - (ii) 20% PtRu/STA-C (reduced by POM)
 - (iii) 20% PtRu/C (J. M) Johnson Matthey (Commercial Catalyst)

20% Pt/C

20% Pt-Ru/C

FTIR and XRD analysis of the composite electrocatalysts

Shift in the band frequencies confirms -chemisorption of POMs on carbon surface

Frequency (ပ) cm ⁻¹	H ₄ SiW ₁₂ O ₄ 0	PtRu/STA- C	Pt/STA-C
(W=O _t)	980	955	957
(Si-O)	926	911	924
(W-O _e -W)	784	798	798

Peak broadening in POM reduced Pt/STA-C and PtRu/STA-C confirms the reduction in particle size

- (a) Pt/C & (c) PtRu/C (H₂ reduction method)
- (b) Pt/STA-C & (d) PtRu/STA-C (POM reduction method)
- (e) PtRu/C (J. M) commercial

TEM and HRTEM analysis of all the composites

TEM images

HRTEM images

(a) & (b) Pt/STA-C (c)& (d)PtRu/STA-C

- (a) Pt/STA-C (b) PtRu/STA-C ---- Fine distribution of particles
- (c) & (d) particle distribution from (a) & (b)

(e) Pt/C (f) PtRu/C (H₂ reduction method) --- Agglomaration of particles

Electrochemical active surface area of Pt

(A) Overlay of cyclic voltammograms of Pt/STA- C and Pt/C (H₂ reduction method)

(B) Overlay of cyclic voltammograms of PtRu/STA- C, PtRu/C (J. M) and PtRu/C)

Electrolyte : 1M H₂SO₄ ; Scan rate: 25mV /s

Improvement in the H adsorption desorption in thr case of STA containing systems confirms the imcrease of electrochemical active surface area

Electrode fabrication

- > Three-electrode set up using Pt disk (1cm X 1cm) as counter electrode
- > Ag/AgCl/ (sat KCl) as the and reference electrode
- **Glassy carbon coated with electrode material as working electrode**
- The electrolyte used was 1 M H₂SO₄ at room temperature and geometrical area of electrode = 0.07cm²

- > 10 mg of 20%Pt/STA-C or 20% Pt/C has been dispersed in 300µL H₂O by sonication
- > 10 μL has been coated on GC (0.07 cm2)and dried in an oven at 70° C
- > 5 μL of Nafion as a binder and dried at room temperature

Comparison of methanol oxidation activity using Cyclic voltammetry

A. Cyclic voltammetric curves overlay of Pt/STA-C and Pt/C

B. Cyclic Voltammetric curves overlay of PtRu/STA-C, PtRu/C (J.M) and PtRu/C

Electrolyte : 1M H₂SO₄, 1 M CH₃OH ; Scan rate: 25mV /s

Comparison of methanol oxidation activity at 0.75 V using Chronoamperometry

A. Chronoamperometric curves overlay of Pt/STA-C and Pt/C

B. Chronoamperometric curves overlay of PtRu/STA-C, PtRu/C (J.M) and PtRu/C

Electrolyte : 1M H₂SO₄, 1 M CH₃OH

Effect of POM on Pt/C and Pt-Ru/C towards methanol oxidation

Catalyst	EAS ^a (m ² g ⁻¹)	Onset Potential (V)	$I_{\rm f}/I_{\rm b}$	Mass Activity (mAmg ⁻¹ Pt)	Specific Activity (mAcm ⁻² Pt)
Pt/C	23.3	0.31	0.80	191	0.81
Pt/STA-C	33.0	0.21	1.11	370	1.12
Pt-Ru/C	17.2	0.21	0.91	204	1.18
Pt-Ru/STA-C	25.6	0.17	1.05	503	1.96
Pt-Ru/C (J.M)	22.5	0.17	0.95	271	1.20

I_f/I_b – ratio of forward to reverse peak current - corresponds to tolerance of the catalyst towards CO poisoning

- > Higher I_f/I_b value better tolerance for CO poisoning
- \succ Electrocatalysts reduced by STA showed higher I_f/I_b value
- Onset potential values suggests that the STA reduced catalysts are superior in activity than catalysts prepared by H₂ reduction method
- > Both the current density and mass specific activities are higher for STA reduced catalysts
- > This can be attributed to the higher electroactive surface area of the STA reduced catalyst
- By chronoamperometry studies it is revealed that the staility of the STA reduced catalyst is higher than H₂ reduced catalyst

Role of Silicotungstic acid (STA)

- ***** Acted as reducing agent to form metal nanoparticles
- ***** Modified the carbon structure into nanometer regime
- The excellent redox properties, and the high electron/proton conductivity of H₄SiW₁₂O₄₀ (STA) can increase the conductivity of the electrode and promote electron-transfer reactions
- ***** The oxidation of CO by H₄SiW₁₂O₄₀ may diminish the poison of catalysts
- ***** Possible explanation:

Having in mind that $H_4SiW_{12}O_{40}$ highly symmetrical ensemble reminiscent of its parent metal oxide (WO3), STA has been found to provide similar environment of WO_3 /hydrogen bronze matrices

Enhancement of activity of oxygen reduction reaction by Pt/STA-C electrocatalyst

Oxygen reduction reaction (ORR)

$$O_2 \rightarrow O_2_{ad} \rightleftharpoons H_2O_2_{ad} \rightarrow H_2O_2$$

Indirect pathway

 $O_2 + Pt \rightarrow Pt-O_2$ Pt- $O_2 + H^+ + 1e^- \rightarrow Pt-HO_2$ Pt-HO₂ + Pt → Pt-OH + Pt-O

 $Pt-OH + Pt-O + 3H^{+} + 3e^{-} \rightarrow 2 Pt + 2 H_2O$

4 Pt based catalysts are best employed to have high activity

4 Formation of H₂O₂ intermediate – Sluggish the performance of Pt

Activating role of WO₃ in ORR

Interacts with Pt via hydrogen spill over and forms highly conductive tungsten oxide bronzes (H_xWO₃)

$$Pt-H + WO_3 \rightarrow Pt + H_xWO3$$

- > Tungsten bronzes are highly reactive towards reduction of H_2O_2 intermediate
- Bronzes leads to an increase in overall matrix conductivity (3 orders of increment)
- Facilitate electron transfer to three dimensionally dispersed Pt particles
- > Pt/WO₃ shows appreciable activity towards hydrogen evolution
- Provides of charge (electron and proton) propagation

Anlogously W based nanomaterials compounds which can form tungsten bronzes in acidic media improves the efficiency of Pt nanoparticles towards O₂ reduction reaction

P. J. Kulesza and B. Grzybowaska, M. A. Malik and M. T. Galkowski, J. Electrochem. Soc., 144, 1997, 1911

- POMs can be viewed as nanostructure of parent metal oxides (WO₃) organized around heterogroup (silicate or phosphate)
- **Capable of transfer electrons coupled with high reductive reactivity (reduces H₂O₂ effiently)**
- > Inhers super-acid properties provides mobility of protons at the lectrocatalytic interface
- > Forms electroactive adsorbates on platinum surfaces
- Chemisorb strongly on carbon surfaces

Due to the synergetic effect of Pt and POM, enhanced activity towards O₂ reduction can be achieved

- 1. Preparation of 20% Pt/STA-C using STA as reducing agent
- 2. Preparation of STA free 20% Pt/C using H₂ reduction method
- 3. Electrochemical O₂ reduction using 20% Pt/STA-C and 20% Pt/C
- 4. Comparison of the activities of
 (i) 20% Pt/C reduced by H₂
 (ii) 20% Pt/C reduced by POM

Electrochemical measurements were carried out using CHI660 electrochemical workstation

- Three-electrode set up using Pt wire counter electrode
- > Ag/AgCl/ (sat KCl) as the and reference electrode
- Glassy carbon coated with electrode material as working electrode
- The electrolyte used was 0.5 M H₂SO₄ at room temperature and geometrical area of electrode = 0.07cm²
- > 10 mg of 20%Pt/STA-C or 20% Pt/C has been dispersed in 300µL H₂O by sonication
- > 10 μL has been coated on GC (0.07 cm2)and dried in an oven at 70° C
- > 5 μL of Nafion as a binder and dried at room temperature

ORR activity for Pt/STA-C by linear sweep voltammetry

Electrolyte : $0.5M H_2SO_4$; Scan rate: 5mV / s

ORR activity for Pt/C by linear sweep voltammetry

Electrolyte : $0.5M H_2SO_4$; Scan rate: 5mV / s

Comparison of ORR activity for STA free and STA containing Pt/C

S.No	Current density at 0.7V in O ₂ atmosphere (mA/cm ²)	Current density at 0.7V in Ar atmosphere (mA/cm ²)	Electrocatalytic activity at 0.7V (mA/cm ²)
20%Pt/STA-C	2.47	0.27	2.20
20%Pt/C	1.36	0.60	0.76

Efficient H₂O₂ reduction on Pt/STA-C

Electrolyte : $0.5M H_2SO_4$; Scan rate: 25mV / s

- > STA modified electrodes have improved the electrocatalytic activity of Pt nanoparticles
- The excellent reduction ability of STA containing electrodes towards H₂O₂ could be the primary reason for high catalytic activity

Conclusions

Synthesis of metal nanoparticles using POMs as Photocatalysts and stabilizers

Efficient e- transfer from POM to metal ions

- $POM + S \rightarrow POM(e^{-}) + S_{ca}$ (1)
- $POM(e^{-}) + M^{n+} \rightarrow POM + M^{0}_{coll}$ (2)
- $2[SiW_{12}O_{40}]^{4-} + (CH_3)_2CHOH \xrightarrow{h_{12}} 2[SiW_{12}O_{40}]^{3-} + (CH_3)_2C=O + 2H^{+}$ (3)
- $n[\mathrm{SiW}_{12}\mathrm{O}_{40}]^{5-} + \mathrm{M}^{n+} \to n[\mathrm{SiW}_{12}\mathrm{O}_{40}]^{4-} + \mathrm{M}^{0}$ (4)

S = propan-2-ol

 $\lambda > 320$ nm

- $M^{n+} = Ag^+, Pd^{2+}, Au^{3+}, and Pt^{4+}$
- Characteristic absorption of the one-electron reduced, blue POM, $[SiW_{12}O_{40}]^{5-}$ at 730 nm

Absorption spectra of metal nanoparticles (Åg, Au, Pd, Pt) in solution

[SiW₁₂O₄₀]⁴⁻/[SiW₁₂O₄₀]⁵⁻ (0.057 V vs. NHE) Ag⁺/Ag⁰ (0.799 V vs. NHE) AuCl₄⁻/Au⁰ (0.99 V vs. NHE) Pd²⁺/Pd⁰ (0.987 V vs. NHE) PtCl₆²⁻/Pt⁰ (0.725 V vs. NHE)

Angew. Chem. Int. Ed. 2002, 41(11), 1911

Diameter of keggin type POM = 1.2 nm can be considered spherical
Transition metal substitution in addenda atom

PTW ₁₁ O ₄₀ ⁿ⁻	E (V) Vs. Ag/AgCl
PW ₁₂ O ₄₀ ³⁻	-0.035
PFe(III)W ₁₁ O ₄₀ ⁶⁻	+0.039
PV(V)W ₁₁ O ₄₀ ⁴⁻	+0.394
PMn(III)W ₁₁ O ₄₀ ⁴⁻	+0.924
PCr(III)W ₁₁ O ₄₀ ⁴⁻	+1.064

РТМо₁₁О₄₀ⁿ⁻	E (V) Vs. Ag/AgCl
PMo ₁₂ O ₄₀ ³⁻	0.340
PVMo ₁₁ O ₄₀ ⁴-	0.510
PV ₂ Mo ₁₀ O ₄₀ ⁵⁻	0.480
PV ₃ Mo ₉ O ₄₀ ⁶⁻	0.476

Standard redox potential vs. NHE $Cr^{3+}/Cr^{2+} = -0.407 \text{ V}$ $W^{6+}/W^{5+} = -0.029 \text{ V}$ $Fe^{3+}/Fe^{2+} = +0.771 \text{ V}$ $Mo^{6+}/Mo^{5+} = 0.482 \text{ V}$ $V^{5+}/V^{4+} = +1.00 \text{ V}$ $Mn^{3+}/Mn^{2+} = 1.541 \text{ V}$

I. A. Weinstock, *Chem. Rev.*, **98** (1998) 113. Athilakshmi and B. Viswanathan, *Indian. J. Chem. B*, **37** (1998) 1186.

