Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel, 2007: ISBN: 978-81-308-0159-9 Editors: Satoshi Kaneco, B. Viswanathan and Hideyuki Katsumata

G. Magesh, B. Viswanathan, R.P. Viswanath and T.K. Varadarajan National Centre for Catalysis Research, Department of Chemistry Indian Institute of Technology, Madras, Chennai 600 036, India

1. Introduction

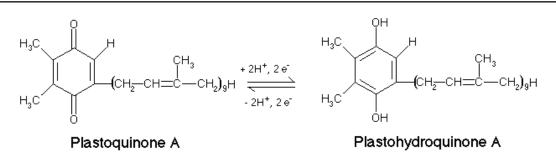
Petroleum and natural gas serve as the primary source of most of the chemicals, reagents solvents and polymers used in various applications. These compounds are obtained by employing various organic transformations (1). The dependence on fossil fuel source can be reduced if one can evolve alternate strategies and raw material inventory as a feed stock for chemicals.

The primary source of life on earth is the sun. Most of the living systems on earth depend on photosynthesis since it is the source of food, fuel and oxygen. The process of photosynthesis occurs not only in plants but also in algae and certain bacteria (2).

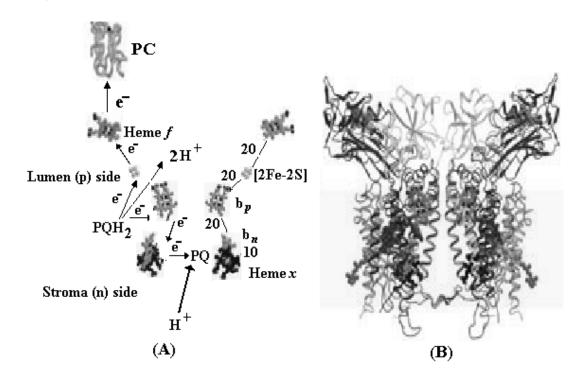
Correspondence/Reprint request: Dr. B. Viswanathan, National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India. E-mail: bviswanathan@hotmail.com

Natural photosynthesis has evolved over a period of three billion years. It involves molecules combining with suitable macromolecules to carry out reactions with required efficiencies. Nature has been successful in synthesizing starch from water and CO_2 . If mankind can synthesize molecules using sunlight as the energy source, it will solve energy and environment related problems. The molecules or compounds include not only molecules like hydrogen from water but also the synthesis of other industrially important chemicals as well (3). It is also the desire to reduce carbondioxide levels using photoelectrochemical means. There are plants which can convert CO_2 to hydrocarbons.

Most of the reactions involve electron transfer or redox chemistry. For this to take place, the donor and acceptor levels of the species should be energetically and symmetrically matched to each other. Nature appears to adapt to this situation by appropriate manipulation of the species. This can be understood in the example of activation of dinitrogen by the enzyme nitrogenase. This is due to the ability of the nitrogenase to perturb the orbitals of dinitrogen such that the LUMO of N_2 will become suitable for electron transfer which subsequently destabilizes N_2 and makes it reactive.


1.1 Photosynthesis

Photosynthesis can be represented by the equation:


$$6CO_2 + 6H_2O + Energy \longrightarrow C_6H_{12}O_6 + 6O_2$$

The process of photosynthesis is driven by light induced generation of sufficiently stabilized cation-anion radical pairs in multiple protein complexes located in and around an organized membrane called thylakoid membrane. Photosynthesis system contains photosystem I (PS I) and photosystem II (PS II) which are incorporated in suitable positions in a thylakoid membrane. These two photosystems are so well aligned and operating in series to carry out the transfer of hydrogen from water to CO_2 to produce carbohydrates. Cleavage of water to molecular oxygen takes place in PS II where plastoquinone (PQ) gets converted to plastohydroquinone or plastoquinol (PQH₂). Thus PS II can be called as light driven plastoquinone A (PQH₂) is shown in Fig.1.

The formed PQH₂ diffuses through the thylakoid membrane and gets reoxidised to PQ by the cytochrome complex and gets transferred back to PS II. The cytochrome b_6f complex which is now in reduced form reduces the plastocyanin. The cytochrome b_6f complex thus serves as very important bridge for transfer of hydrogen from PS II to PS I. The reduced plastocyanin diffuses to the PS I where it reduces the NADP⁺ to NADPH. The NADPH then serves as the hydrogen source for the CO₂ reduction. Fig. 2 shows the structure and process involved in the cytochrome b_6f complex.

Figure 1. Reduction of plastoquinone A to plastohydroquinone A (Figure taken from ref. 4).

Figure 2. (A) Redox groups and electron/proton transfer pathways in the cytochrome b_6f complex (B) Structure of cytochrome b_6f complex (Figure taken from ref. 5)

The anisotropic incorporation of PS I, PS II and cytochrome b_6f complex into the thylakoid membrane are important for energy conversion. The photosynthesis route shows the complex redox process involved in the various steps. All these processes are achieved only because of the various reduction potentials evolved by the complex protein based complexes present in the system.

2. Photoelectrochemistry

Photoelectrochemistry involves compounds having an energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The condition for a compound to be able to get activated by light is that the energy gap between LUMO and HOMO should be equal to that of the energy of the light used. Those compounds which satisfy the condition mentioned above are called photocatalysts. The reactions carried out by the photocatalysts are classified into two categories namely homogeneous and heterogeneous photocatalysis.

2.1. Photocatalysis

Photocatalysis involves the excitation of electrons from the valence band or HOMO to the conduction band or LUMO on exposing the catalyst to the radiation. This leads to the formation of highly reactive electrons and holes in the conduction band and valence band respectively. Various processes involved in semiconductor photocatalysis are shown in fig.3. The electrons are capable of carrying out reduction reactions and holes can carry out oxidation reactions.

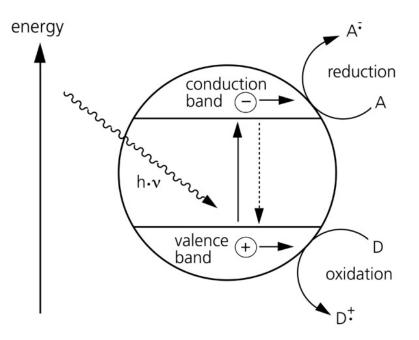


Figure 3. Process involved in semiconductor photocatalysis (Fig. taken from ref. 6).

These electrons and holes can be exploited by a variety of means. The various ways of exploiting them are

- (i) for producing electricity
- (ii) for decomposing or removing pollutants
- (iii) for the synthesis and production of useful chemicals

2.1.2. Importance of position of energy levels

The ability of a photocatalyst to carry out a particular reaction depends on the position of the energy levels of the catalyst as well as the substrate. For a compound to carry out the reduction reaction, the potential of conduction band or LUMO should be more negative than that of the potential required for the reduction reaction. For a compound to be able to carry out the oxidation reaction the potential of the valence band or the HOMO should be more positive than the potential required for the oxidation reaction. Let us consider the reaction of the photocatalytic splitting of water as an example. The following are the two reactions involved.

$$2 H^{+} + 2 e^{-} \longrightarrow H_{2}$$
(1)

$$H_2O \longrightarrow 0.5 O_2 + 2 H^+ + 2e^-$$
(2)

The oxidation reaction leading to oxygen evolution mentioned in equation (2) will take place at a potential +1.23 V where as the reduction reaction leading to the hydrogen evolution will take place at 0.00 V. The reduction reaction mentioned in equation (1) will happen only if potential of conduction band of photocatalyst is more negative than 0.00 V. Likewise the oxidation reaction mentioned in equation (2) will happen only if potential of valence band of photocatalyst is more positive than +1.23 V.

Accordingly, depending on the positions of CB and VB, the systems can be classified by OR (both reactions possible), O type (only oxidation is feasible) R type (reduction reaction alone takes place) and X type (neither reaction can occur).

2.1.3. Choice of the photocatalyst

Fig. 4 shows the band position and bandgap of various semiconductor photocatalysts. Among them, WO_3 and Fe_2O_3 cannot carry out the photosplitting of water since their conduction band potentials are less negative than the hydrogen evolution potential. All the given catalysts can carryout the oxygen evolution reaction. But out of them, only a few were studied for water splitting reaction because of other problems like photocorrosion, cost, higher bandgap and stability.

Another important parameter to be taken into account while choosing the photocatalyst is the percentage of ionic character of the cation-anion bond. A system which has higher percentage ionic character (>40%) will have higher band gap and will not be able to absorb light in the visible region. A catalyst which has a percentage ionic character between 20-30% with suitable positions of the valence and conduction band potentials with respect to the reaction under consideration will be successful for carrying out the reaction (7).

It is important to mention that the commercial success of a photocatalyst depends on its ability to function by utilizing the visible light. This is because of the composition of sunlight which has 46 % visible radiation, 47 % IR

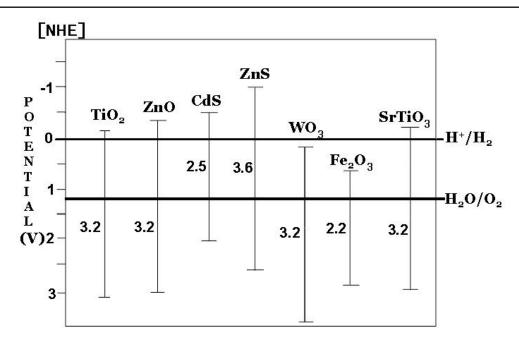


Figure 4. Band positions of various semiconductor photocatalysts.

radiation and only 7 % UV radiation (8). But TiO_2 which is the most efficient and stable photocatalyst available can function only by using the UV light. So, research has been focused on finding a photocatalyst or modifying the available catalysts so that they can function by absorbing light in the visible region.

3. Photocatalytic chemical production

Photocatalytic synthesis of compounds can be carried out by utilizing the electrons and holes created. So, the reaction should be either a reduction or oxidation or a combination of both. As previously stated for a reaction to take place the potential of the energy levels of the catalyst and the reactant should be suitable for the electron transfer to take place. The photocatalytic splitting of water has received considerable attention and the literature is extensive on this aspect. Hence this will not be taken up in this presentation.

3.1. Photocatalytic oxidation

Conventional oxidizing agents used in organic synthesis like potassium dichromate, potassium permanganate, various acids and peroxides are toxic in nature. These oxidizing agents are difficult to handle and release dangerous fumes and gases during the reactions. If one can carry out oxidation reactions using solar irradiation, it will be an environment friendly process. This has led to many attempts to carry out oxidation reactions photocatalytically (9).

Photocatalytic oxidation has been widely used for process like the decontamination of water and air. However, the application of photocatalytic oxidation for the synthesis of compounds of commercial importance alone will be considered in this section. Photocatalytic oxidation was carried out as early as 1964 where oxidation of 2-propanol to acetone was carried out using ZnO and TiO₂(10).

3.1.1. Oxidation of alcohols

Oxidation of various alcohols to their aldehydes and ketones is an integral part of organic synthesis. There are various reagents used for this purpose and their separation after the oxidation is a difficult task. Photocatalytic oxidation by using semiconductors will be an easier method since the task of separation of the catalyst is not there (11). One more advantage of photcatalytic oxidation is that the products will be free from solvent.

Photocatalytic dehydrogenation of 2-propanol has attracted general interests from the energy-storing viewpoint ($\Delta H^0 = 69.9 \text{ kJ mol}^{-1}$, $\Delta G^0 = 25.0 \text{ kJ mol}^{-1}$). There is no theoretical limit on the quantum efficiency for the photocatalytic dehydrogenation of 2-propanol in the liquid phase, since this reaction becomes exergonic ($\Delta G < 0$) due to the spontaneous evolution of product hydrogen (12).

Reaction studied	Catalyst used	Reaction conditions	Ref
Various benzylic and	Molecular iodine	Liquid phase	9
allylic alcohols to		Room temperature	
acetones and ketones			
Benzyl alcohol to	9-phenyl-10-	Liquid phase	11
benzaldehyde	methylacridinium ion	Room temperature	
2-propanol to acetone	TiO ₂ (110)	Vapor phase 350 K	13
	$(Bu_4N)_4[W_{10}O_{32}]$	Liquid phase	14
	(Tetrabutyl ammonium	Room temperature	
	decatungstate)		
	Cis-[Rh ₂ Cl ₂ (CO) ₂ (dpm) ₂	Liquid phase	15
	dpm-bis(diphenylphosphino)	Room temperature	
	methane		
Reaction studied	Catalyst used	Reaction	Ref
		conditions	
2-propanol to acetone	(Dioctadecyldimethylammon	Liquid phase	16
	ium) ₄ [W ₁₀ O ₃₂]	Room temperature	
	Ag dispersed on TiO ₂	Liquid phase	17
		Room temperature	
	Pt dispersed on brookite	Liquid phase	18
	TiO ₂	Room temperature	
	Trans-[IrCl ₂ (SnCl ₃) ₄] ³⁻	Liquid phase	19
		Room temperature	

Table 1. Various photocatalytic oxidation reactions, catalysts and reaction conditions.

Table 1. Continued

Townsoldobuds	1	Room temperature	1
Methanol to formaldehyde	Silica coated CdS	Liquid phase	32
formaldehyde	9:1:	Room temperature	20
Methanol to	Rutile phase of $TiO_2(110)$	Liquid phase	31
Ethanol to acetaldehyde	Pd dispersed on CdS	Liquid phase 323 K	30
benzaldehyde	$[Bu_4N]_4[S_2W_{18}O_{62}]$	Room temperature	
Benzyl alcohol to	[Hex ₄ N] ₄ [S ₂ Mo ₁₈ O ₆₂]	Liquid phase	29
ivacion suuru	Cataryst used	conditions	
Reaction studied	Catalyst used	Reaction	Ref
benzoin to various oxidation products			
4,4'-Dimethoxyhydro			
benzoin and			
4,4'-dichlorohydro			
Hydrobenzoin,			
4-Chlorobenzhydrol,			
Benzhydrol,		-	
1-Phenylethanol		Room temperature	
Benzylalcohol,	TiO ₂ (anatase)	Liquid phase	28
R-aliphatic			
where Ar- Aromatic			
alcohols (ArCH(OH)R)	$H_3PW_{12}O_{40}$	Room temperature	
Aromatic secondary	Silica encapsulated	Liquid phase	27
Propargyl alcohol to propargyl aldehyde			
Allyl alcohol to acrolein			
ketones.			
Secondary alcohols to			
n-propanol to aldehydes.	, SiW_{12}^{4-} , FeW_{12}^{5-} , $H_2W_{12}^{6-}$)	Room temperature	
Methanol, ethanol and	Heteropolytungstates (PW ₁₂ ³⁻	Liquid phase	26
-		_	
Ethanol to acetaldehyde		Room temperature	
2-propanol to acetone	$TiO_2 + Ultrasonication$	Liquid phase	25
Ethanol to acetaldehyde	-	Room temperature	
2-propanol to acetone	5 wt % Pt dispersed on TiO ₂	Liquid phase	24
) rhodium(III)	Room temperature	
	Chloro(tetraphenylporphyrinato	Liquid phase	23
		Room temperature	
	Pt dispersed on TiO ₂	Liquid phase	22
		Room temperature	21
) rhodium(III) [RhCl(CO)(PPh ₃) ₂]	Room temperature Liquid phase	21
	Chloro(tetraphenylporphyrinato	Liquid phase	20

Table 1. Continued

Methanol to formaldehyde	$\begin{array}{c} Cis-Rh_2Cl_2(CO)_2(dpm)_2\\ Pd_2Cl_2(dpm)_2 \end{array}$	Liquid phase Room temperature	33
Methanol to formaldehyde	$\left[\operatorname{IrH}(\operatorname{SnCl}_3)_5\right]^3$ -	Liquid phase	34
Ethanol to acetaldehyde Methanol to HCHO	Pt dispersed on CdS	Liquid phase Room temperature	35
Ethanol to acetaldehyde	Titanium tetraisopropoxide, Titanium tetraethoxide	Hg lamp Liquid phase Room temperature	36
Ethanol to acetaldehyde	Pt dispersed over CdS	Liquid phase Room temperature	37
n-Octanol to n-Octanal	TiO ₂	Liquid phase Room temperature	38
Ethanol to acetaldehyde	CuCl ₂ in HCl	Liquid phase Room temperature	39
Dehydrogenation of cyclohexanol	Chloro(tetraphenyl porphyrinato) Rh(III) complex	500 W lamp	40
Dehydrogenation of methanol	cis-[Rh ₂ Cl ₂ (CO) ₂ (dpm) ₂]	400 W Hg lamp	41

The presence of surface hydroxyl groups increases the oxidation reaction and the oxygen vacancies were found to play an important role in the oxidation of 2-propanol to acetone using TiO_2 . Reaction in vapor phase is limited upto 350 K above which thermal desorption takes place (13). A list of photocatalytic oxidation reactions studied so for are given in Table 1.

The dehydrogenation of 2-propanol using $cis-[Rh_2Cl_2(CO)_2(dpm)_2]$ was found to give acetone, pinacol and cyclohexanol where the yield of acetone was found to be maximum at 312 nm. In Table 2 the yield of various products at different wavelengths of irradiation are given (15).

Table 2. Yields of photocatalytic oxidation products of 2-propanol using cis- $[Rh_2Cl_2(CO)_2(dpm)_2]$ as catalyst (Ref. 15).

Wavelength (nm)	260	286	312	338	364	390	414	440
Acetone yield (µmol)	258	754	945	344	45.9	11.5	8.4	5.6
Pinacol yield (µmol)	Trace	6.6	7.9	Trace	0.00	0.00	0.00	0.00
Cyclohexanol yield	0.08	0.59	1.17	0.15	0.00	0.00	0.00	0.00
(µmol)								

Benzylic and allylic alcohols are oxidized to aldehydes and ketones using iodine as the photocatalyst. The oxidation of the substrates was found to be dependent on the solvent used (9). Various products formed by the oxidation of allylic and benzylic alcohols by molecular iodine and their yields are given in Table 3.

Table 3. Products and yields during the photocatalytic oxidation of allylic and benzylic alcohols using molecular iodine (Ref. 9).

Substrate	Product	Irradiation time (h)	Yield
C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	5	88
p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	3	92
o-MeOC ₆ H ₄ CH ₂ OH	o-MeOC ₆ H ₄ CHO	3	90
m-MeOC ₆ H ₄ CH ₂ OH	m-MeOC ₆ H ₄ CHO	3	88
2,4-(MeO) ₂ C ₆ H ₃ CH ₂ OH	2,4-(MeO) ₂ C ₆ H ₃ CHO	2	96
3,4,5-(MeO) ₃ C ₆ H ₂ CH ₂ OH	3,4,5-(MeO) ₃ C ₆ H ₂ CHO	2	95
p-ClC ₆ H ₄ CH ₂ OH	p-ClC ₆ H ₄ CHO	6	85
$2,4-Cl_2C_6H_3CH_2OH$	2,4-Cl ₂ C ₆ H ₃ CHO	6	85
CHrOH	CHO	4	75
OH		2.5	95
OH OH		3	90
C ₆ H ₅ CH=CHCH ₂ OH	C ₆ H ₅ CH=CHCHO	6	85
p-MeC ₆ H ₄ CHOHCH ₃	p-MeC ₆ H ₄ COCH ₃	2	94
Substrate	Product	Irradiation time (h)	Yield
p-NO ₂ C ₆ H ₄ CHOHCH ₃	p-NO ₂ C ₆ H ₄ COCH ₃	5	80
p-ClC ₆ H ₄ CHOHC ₆ H ₅	p-ClC ₆ H ₄ COC ₆ H ₅	3.5	84
p-NO ₂ C ₆ H ₄ CHOHC ₆ H ₅	p-NO ₂ C ₆ H ₄ COC ₆ H ₅	4.5	77
(p-FC ₆ H ₄) ₂ CHOH	(p-FC ₆ H ₄) ₂ CO	7	78
p-MeC ₆ H ₄ CHOHCH ₂ OH	p-MeC ₆ H ₄ COCH ₂ OH	6	78
p-ClC ₆ H ₄ CHOHCH ₂ OH	p-ClC ₆ H ₄ COCH ₂ OH	6	75
p-NO ₂ C ₆ H ₄ CHOHCH ₂ OH	p-NO ₂ C ₆ H ₄ COCH ₂ OH	8	50

3.1.2. Methane to methanol

Methane forms a major part of the natural gas. Methane can be used directly as the fuel. But most of the wells are located off-shore or in remote places in the land. The transportation of methane containing natural gas is a difficult because of the difficulty in compressing methane and it is not economically favourable. Because of this limitation, in many cases the natural gas containing methane is burned (flaring) at the oil wells. This leads to an enormous loss of energy. Methane is also produced as a by-product of coal gasification, either in a stand-alone process or as part of the direct or indirect liquefaction of coal. Depending on the gasifier design and operating conditions, up to 18% of the total gaseous product may be methane.

One of the solutions to this problem lies in converting methane to methanol or anyother liquid products which can be transported easily. Methanol may be used directly as a fuel or may be converted to other valuable products like other transportation fuels, fuel additives, or chemicals. At present, the direct oxidation of methane to methanol suffers from low methane conversion and poor methanol selectivity. A process for the direct oxidation of methane to methanol, in high yield and with high selectivity, is desirable (42).

Conversion and utilization of CO_2 as well as CH_4 are important in the field of C1 chemistry. However, there is no practical technique for such conversion. Direct synthesis of oxygenated compounds from CO_2 and CH_4 has been studied to a limited extent. Photocatalytic conversion may be a promising method for direct conversion CH_4 and CO_2 together to oxygenated compounds. Synthesis of oxygenates over the coupled semiconductor $Cu/CdS-TiO_2/SiO_2$ from gaseous CH_4 and CO_2 by UV irradiation at low temperature was reported by Shi et al (46). The limited data available in literature are summarized in Table 4.

Table 4. Various catalysts and reactions conditions for the conversion of methane to methanol.

Catalyst	Reaction conditions	Ref.
La/WO ₃	Hg lamp	42, 43
WO ₃	Visible light laser	44
WO ₃ , TiO ₂ (rutile) and NiO	UV laser	45
Methane + CO ₂ giving CH ₃ COOH, CH ₃ CH ₃ ,	473 K	46
CH ₃ COCH ₃ , CO	125 W Hg lamp	
Catalysts: (i) SiO ₂		
(ii) TiO_2/SiO_2		
(iii) CdS–TiO ₂ /SiO ₂		
(iv) Cu/CdS–TiO ₂ /SiO ₂		

3.1.3. Photocatalytic dehydrogenation reactions

Selective oxidation of hydrocarbons by O_2 (Table 5) is an important goal for economic, environmental, and scientific reasons (47, 48, 49, 50)

3.1.4. Benzene to phenol

Phenol is considered as one of the most important industrial chemicals due to its wide usage as a disinfectant, a precursor to phenolic resins, a reagent in chemical analysis, and a preservative. In order to meet this high demand, phenol is being produced over 5 X 10^6 ton/yr globally. The current manufacturing process of phenol starts from benzene and consists of three steps (so-called cumene process): benzene alkylation to cumene (isopropylbenzene), cumene oxidation to cumene hydroperoxide, and decomposition of the latter to phenol and acetone. However, this multistage process has a low overall yield (less than 5%), requires high energy, and accompanies the generation of undesirable by-products such as acetophenone, 2-phenylpropan-2-ol, and α -methylstyrene. The development of alternative synthetic processes of phenol that are more efficient and environmentally benign is highly desirable. The ability to make phenol from hydrocarbons like benzene by photocatalytic means will be desirable for economic and environmental points of view (53). The attempts in this direction are summarized in Table 6.

Reaction	Catalyst	Reaction conditions	Ref.
Dehydrogenation of	RhCl(CO)(PR ₃) where	400 W Hg lamp	51
alkane	$PR_3 = PMe_3, PPh_3,$		
	PEtPh ₂ , PEt ₂ Ph, PEt ₃		
Cyclohexane to benzene	MoO _x /TiO ₂	40 W fluorescent lamp	52

Reaction	Catalyst	Reaction conditions	Irradiation source	Ref.
Benzene to phenol,	1. TiO ₂ -P 25 in presence of	Liquid	450 W Xe	53
hydroquinone and	Fe^{3+} and $\mathrm{H}_2\mathrm{O}_2$	phase	lamp	
catechol	2. Pt dispersed TiO ₂ - P25		(λ>300 nm	
	3. Surface fluorinated TiO_2		using cutoff	
	4. Polyoxometalate		filter)	
Benzene to phenol	UO ₂ ²⁺	Liquid	Flash lamp	54
Toluene to		phase	pumped dye	
benzaldehyde,		Room	laser	
benzylalcohol and		temperature		
cresols		_		

Table 6. Catalysts and reaction conditions in the oxidation of benzene to phenol.

3.1.5. Oxidation of cyclohexane

Conversion of cyclohexane to benzene is of industrial significance because of the variety of applications of benzene compared to only a few applications of cyclohexane. Cyclohexane has been widely used in the synthesis of nylon-66 (55). Cyclohexane oxygenation is an important commercial reaction, as the resultant products, alcohol and ketone, are precursors in the syntheses of adipic acid, which is in turn an intermediate in the production of nylon (56). The available data are given in Table 7.

Table 7. Catalysts and products for the oxidation of cyclohexane carried out in liquid phase at room temperature.

Reaction	Catalyst used	Irradiation source	Ref.
Cyclohexane to cyclohexanone, cyclohexanol	$\begin{array}{l} (n\mathrm{Bu}_4\mathrm{N})_4\mathrm{W}_{10}\mathrm{O}_{32}, \ (\mathrm{Et}_4\mathrm{N})_4\mathrm{W}_{10}\mathrm{O}_{32}, \\ (\mathrm{Et}_3\mathrm{NH})_4\mathrm{W}_{10}\mathrm{O}_{32}, \ (\mathrm{Me}_4\mathrm{N})_4\mathrm{W}_{10}\mathrm{O}_{32}, \\ (\mathrm{NH}_4)_4\mathrm{W}_{10}\mathrm{O}_{32}, \ \mathrm{and} \ \mathrm{Na}_4\mathrm{W}_{10}\mathrm{O}_{32} \\ \mathrm{dispersed} \ \mathrm{on} \ \mathrm{SiO}_2 \end{array}$	400 W Hg lamp	56
Cyclohexane to cyclohexanone and cyclohexanol Cyclododecane to cyclododecanol	(n-Bu ₄) ₄ W ₁₀ O ₃₂	400 W Hg lamp $\lambda >$ 300 nm	57
1. Cyclohexene to cyclohex-2-en-1-one and epoxide 2. Cyclooctene to epoxides	Iron(III) <i>meso</i> -tetrakis (2,6dichlorophenyl)porphyrin	$\lambda > 350 \text{ nm}$	58
Cyclohexane to cyclohexanone	TiO ₂	$125 \text{ W Hg lamp} \\ \lambda = 350 \text{ nm}$	59

3.1.6. Oxidation of light alkanes to oxygenated products

Gas-phase selective oxidation of light alkanes is important for the usage of natural gas and liquefied petroleum gas. However, selective conversion to partial oxidative products is difficult due to the low chemical reactivity of light alkanes. One of the candidates for the selective oxidation is photooxidation of hydrocarbons over heterogeneous photocatalysts (60). The catalytic dehydrogenation of lower paraffins, olefins and alkylaromatic hydrocarbons has the highest throughputs in the chemical industry. The main interest is devoted to the dehydrogenation of n-butane to butenes and butadiene, which are precursor molecules for manufacturing synthetic rubber (61). The relevant data are given in Table 8.

3.1.7. Oxidation of cyclic hydrocarbons present in petroleum

There are various cyclic and aromatic hydrocarbons present in petroleum. Petroleum contributes in a major way for the fine chemicals and other chemical

Reaction	Catalyst used	Reaction conditions	Irradiation source	Ref.
Ethane to acetaldehyde	MoO ₃ dispersed on SiO ₂	Liquid phase 463 K	75 W Hg lamp	60
Propane to CH ₃ CHO, CH ₃ CH ₂ CHO, CH ₃ COCH ₃	Na, K and Rb loaded on V ₂ O ₅ dispersed over SiO ₂	Gas phase 323 K	300 W Xe lamp	62
Isobutene to acetone	Tin oxide immobilized on silica	Liquid phase Room temperature	$\lambda > 310 \text{ nm}$	63
Propane to acetone and propanaldehyde	MoO ₃ dispersed on SiO ₂	Liquid phase Room temperature	1000 W Xe $lamp$ $\lambda > 280 \text{ nm}$	64
Propane to acetone and propionaldehyde	Rb dispersed on V ₂ O ₅ supported on SiO ₂	Vapor phase 333 K	$300 \text{ W Xe} \\ \text{lamp} \\ \lambda > 300 \text{ nm}$	65

Table 8. Reaction products, catalyst and conditions for the oxidation of various lighter alkanes.

Table 9. Products and catalysts for the oxidation of cyclic and aromatic hydrocarbons carried out in the liquid phase at room temperature.

Reaction	Catalyst used	Irradiation	Ref.
		source	
1.Toluene to benzaldehyde and benzyl	UO_2^{2+}	275 W	47
alcohol		Tungsten-	
2. Oxidation of cumene. benzyl alcohol		Halogen	
and benzaldehyde		lamp	
Substituted aromatic compounds to	Polycrystalline	125 W Hg	67
hydroxylated aromatics	TiO ₂	lamp	
4-substituted toluenes	TiO ₂ , TiO ₂ /HY ₁₅	125 W Hg	68
Substituent = H, CH_3 , C_2H_5 , i- C_3H_7 , t-	zeolite and	lamp	
C ₄ H ₉ to substitute aryl aldehydes	TiO ₂ /HY ₂₀ zeolite	$\lambda > 330 \text{ nm}$	
ketones and acids	composites		
Naphthalene to 2-formyl	TiO ₂	500 W Hg	69
cinnamaldehyde		lamp	
Cyclopentene to cyclopenten-2-en-1-	TiO ₂	250 W Hg	70
one, cyclopentenylhydroperoxide,		lamp	
6-oxabicyclo[3.1.0]hexane,		-	
Penta-1,4-dial			
Hexene-1 to acetaldehyde,	Titanium stearate	Hg lamp	71
propionaldehyde, butyraldehyde	(liquid)		

industry. The compounds which are used are mainly the oxidation products of these aromatic and cyclic compounds. Therefore, a highly selective and environment friendly photocatalytic route for the conversion of these hydrocarbons to oxygenated compounds is desirable. Catalytic selective oxidative dehydrogenation (ODH) of cycloalkane has been the subject of many studies due to the importance of refining and reforming process in the petroleum industry, but there are very few practical processes for converting alkanes (refer to Table 9) directly to more valuable products (66).

In the Table 10, the corresponding data for the oxidation of aromatic compounds are given.

Table 10. Average yields in hydroxylated species, om p average ratios (during the first 45 min of irradiation) for various substituted aromatic compounds using TiO₂ (Ref. 67).

Substrate	Conversion (%)	Total yield of OH derivatives	o:m:p ratio
Phenol	~70	~75	54.5 : 00.5 : 45.0
Phenylamine	~40	~50	49.7 : 00.0 : 50.3
N-phenylacetamide	~50	~60	20.0:03.0:77.0
Nitrobenzene	~50	~20	29.0:34.0:37.0
Cyanobenzene	~60	~30	45.0 : 30.0 : 25.0
1-phenylethanone	~55	~30	38.5 : 21.0 : 40.5

3.1.8. Other oxidation reactions

There are various other oxidation reactions of importance in synthetic organic chemistry which can be carried out by photocatalytic means and are listed in Tables 11 and 12.

3.2. Photocatalytic reductions

3.2.1. Reduction of CO₂

The reaction which is closest in resemblance to that of the natural photosynthesis is the reduction of CO_2 by photocatalytic means. This reaction is even called as artificial photosynthesis. The ability to synthesize chemicals by reducing CO_2 not only helps as a great source of energy but also helps in reducing CO_2 in the atmosphere which is known for its green house effect.

During the past decade there has been considerable interest in the development of artificial photosynthetic systems which convert light energy into chemicals and fuel (80, 81). Many studies devoted on the light-induced splitting of H_2O into H_2 and O_2 . The photochemical activation and reduction of carbon dioxide is the other major goal of artificial photosynthesis (82). Reduction of CO_2 to formate (83-85), formaldehyde (86), carbon monoxide (87) and methane (88-91) has been reported using homogeneous catalysis (83, 91), a semiconductor particulate system (85) and an enzyme-catalysed coupled system.

 CO_2 has been reduced to a variety of chemicals of synthetic importance and usage in fine chemicals and other industries. The products of CO_2

Reaction	Catalyst used	Irradiation source	Ref
Aldimines to nitrones	TiO ₂	6 W Hg lamp $\lambda > 350 \text{ nm}$	72
Oxidation of various hydrocarbons, phosphines, sulfides and olefins	Bis-iron(III)-µ- oxo Pacman Porphyrin	Visible light $\lambda = 425 \text{ nm}$	73
Oxidation reaction of PhX(CH ₂) ₄ OH	TiO ₂	24 W Hg lamp 350 ± 10 nm	74
 Tetraphenylethylene to dioxetane of tetraphenylethylene Oxidation of substituted stilbenes to alcohols 	9-mesityl-10- methylacridinium ion	500 W Xe lamp + $\lambda > 430$ nm cutoff filter	75
Oxidation of triphenylphosphine, tri- <i>p</i> -tolylarsine, triphenylstibine, and triphenylbismuthine.	TiO ₂	$\begin{array}{c} 400 \text{ W} \\ \lambda = 350 \text{ nm} \end{array}$	76
Benzhydrol to benzophenone	TiO ₂	$250 \text{ W Hg lamp} \\ \lambda > 350 \text{ nm}$	77
 Decarboxylation of phenylaceticacid and phenyloxyacetic acid to toluene and anisole respectively Arylthioaceticacid to sulphinylaceticacid 	TiO ₂	125 W Hg lamp $\lambda > 350$ nm	78
Diphenylsulfides to aromatic aldehydes and sulfoxides	TiO ₂	$\lambda > 350 \text{ nm}$	79

Table 11. Catalysts and reaction conditions for various photocatalytic oxidation reactions carried out in liquid phase at room temperature.

Table 12. Products, Turn over number (TON) and selectivity of the photocatalytic oxidation of various hydrocarbons using Bis-iron(III)--oxo Pacman Porphyrin (Ref. 73).

Substrate	Product	TON	Selectivity (%)
Fluorene	Fluorenone	284 ± 34	100
Dihydroanthracene	Anthracene	235 ± 37	100
Diphenylmethane	Benzophenone	160 ± 25	100
Diphenylmethane	Acetophenone	143 ± 10	55
Cumene	Cumyl alcohol	116 ± 14	45
Toluene	Benzaldehyde	76 ± 11	100

reduction can also be used as a fuel directly. A considerable amount of CO has been found in all the reduction reactions of CO_2 . The relevant data are given in Tables 13 and 14.

Table 13. Products, catalysts	and reaction conditions	for the photocatalytic reduction
of CO ₂ .		

Product	Catalyst	Irradiation source	Ref.
Formate and	Pt-CdS-RuO ₂	250 W Xe lamp	92
formaldehyde			
Formate	1. Pd\RuO ₂ \TiO ₂	450 W Xe lamp	93
	2. $Pd\TiO_2$		
	3. TiO ₂		
CO	1. $[Ru\{bpyC_3bpyRe(CO)_3Cl\}_3]^2+$	Hg lamp	94
	2.	$\lambda > 500 \text{ nm}$	
	$[(dmb)_2Ru(bpyC_3bpy)Re(CO)_3Cl]^2$		
CH ₄ , CH ₃ OH	Ti containing porous silica	100 W Hg lamp	95
., -		323 K	
Acetic acid,	TiO ₂	4.5 kW Xe lamp	96
Methanol		1-25 atm pressure	
		293 K	
Formate and CO	TiO ₂ embedded on SiO ₂ matrix	500 W Hg lamp	97
Methanol	Cu dispersed over TiO ₂	Hg lamp	98
		$\lambda = 254 \text{ or } 365 \text{ nm}$	
Product	Catalyst	Irradiation source	Ref.
СО	$[\text{Re(bpy)(CO)}_3{P(OEt)}_3]^+$	500 W Hg lamp	99
	bpy –2,2`-bipyridine		
СО	[fac-Re(bpy)(CO) ₃ Cl] (bpy = $2,2$ `-	500 W Hg lamp	100
	bipyridine)	25 atm pressure	
Ethyl alcohol	1. SiC	500 W Xe lamp	101
	2. Pd/ZnSe		
	3. Pd/Pt/ZnSe		
	4. Pd/Rh/ZnSe		
Formate and CO	ZrO_2	500 W Hg lamp	102
		673 K	
CO	$[\text{Re}(4,4)^{-}X_{2}^{-}$	500 W Hg lamp	103
	bipyridine)(CO) ₃ PR ₃] ⁺ (X= CH ₃ ,	$\lambda = 365 \text{ nm}$	
	H, CF_3 ;		
	$PR_3 = Phosphorus Ligands)$		1.0.4
НСООН, СН ₃ ОН	Ag coated TiO ₂ embedded in Nafion	990 W Xe lamp	104
CH ₃ OH	Cu dispersed over TiO ₂	Hg lamp	105,
		$\lambda = 350 \text{ nm}$	106
Formic acid,	RuO ₂ dispersed over TiO ₂	75 W Hg lamp	107
formaldehyde and	Nb dispersed over TiO ₂	318 K	
methanol	V ₂ O ₅ doped TiO ₂		
	Cr doped TiO ₂		

Table 13. Continued

Methanol, formaldehyde	Cu/TiO ₂	500 W Xe lamp 313 K	108
CO, carbonate	[Re(I)(CO) ₃ (bpy)(py)] ⁺ (bpy-2,2'- bipyridine ; py-pyridine) Encapsulated on NaY zeolite and Al- MCM41 molecular sieves	$\frac{300 \text{ W Xe lamp}}{\lambda > 350 \text{ nm}}$	109
СО	 1.[Ru(bpy)₃]²⁺ immobilized on cation exchange polymer 2. [Co(bpy)₂]²⁺ 	Xe lamp	110
Formic acid, formaldehyde and methanol	1.Rh dispersed over TiO ₂ 2. W doped TiO ₂	500 W Xe lamp	111
CO, methane	Pt, Ru, Rh, Ag and Cu dispersed over TiO ₂ , CdS, SiC and SrTiO ₃	Not given	112
CO and formate	TiO ₂	500 W Hg lamp Cutoff filter for $\lambda > 300 \text{ nm}$	113
Methane	TiO ₂ pellets	Three 1.5 W Hg lamps	114
Methane, ethylene	Cu loaded TiO ₂	450 W Xe lamp	115
Methane and acetic acid	Pd, Rh, Pt, Au, Cu and Ru deposited over TiO ₂	500 W Hg lamp ($\lambda > 310$ nm)	116
Product	Catalyst	Irradiation source	Ref.
Methane	TiO ₂ (anatase)	$\lambda = 350 \text{ nm}$	117
СО	$[fac-Re(bpy)(CO)_3(4-Xpy)]^+ [bpy = 2,2`-bipyridine, py= pyridine, X = tert-Bu, Me, H, MeCO, CN]$	500 W Hg lamp + Cutoff filter for $\lambda = 350$ nm	118
HCOOH, HCHO, CH ₃ OH, C ₂ H ₅ OH, CH ₃ CHO	Cu, Pd, Fe and Pt dispersed over SiC	500 W Xe lamp	119
CH4. CH3OH, CO	TiO ₂ anchored on Vycor® glass	75 W Hg lamp (Filter for $\lambda > 280$ nm) 274 K and 323 K	120, 121
Methanol	Cu ⁰ , CuO, Cu ₂ O dispersed over TiO ₂	Six 10 W Hg lamps	122
СО	MgO	500W Hg lamp	123
Formate and CO	CdS surface modified with thiol compounds	$500 \text{ W Hg lamp} + \lambda$ > 300 nm cutoff filter	124
Formic acid	TiO ₂	Xe lamp 64 atm pressure	125
Formic acid	TiO ₂	990 W Xe lamp 89 atm pressure 308 K	126

Table 13. Continued

CH ₄ , CH ₃ OH	Ti-β Zeolite	100 W Hg lamp	127
		$(\lambda > 250 \text{ nm})$	
		323 K	
Methane and	TiO ₂ incorporated on MCM-41	Hg lamp	128
methanol	and MCM-48	$(\lambda > 280 \text{ nm})$	
		328 K	
Methanol, methane	Pt/TiO ₂ anchored on Y-zeolite	75 W Hg lamp	129
		$(\lambda > 280 \text{ nm})$	
		328 K	
Methane	Degussa P25 TiO ₂	Xe lamp	130
		28 atm pressure	
CH4 and CH3OH	TiO ₂ supported on ZSM-5 and Y-	75 W Hg lamp	131
	Zeolite	(Filter to give light	
		of $\lambda > 280$ nm)	
		273-323 K	
CO	Ru(II)(bipy) ₃	250 W Tungsten	132
	Re(CO) ₃ (bipy)Cl	halogen lamp	
Formate	ZnS	Hg lamp	133
		$(\lambda = 280 \text{ nm})$	
Formate	$[\text{Re(bipy)(CO)}_3(\text{PPh}_3)]^+$	500 W Hg lamp	134
СО	Rh dispersed over TiO ₂	500 W Hg lamp	135
Product	Catalyst	Irradiation source	Ref.
Formic acid and	Hydroxo-oxobis(8-	100 Quartz-iodine	136
formaldehyde	quinolyloxo)vanadium(V)	lamp	
Formic acid	Cobalt(II) phthalocyanine and	500 W Tungsten	137
Forme acid		<u> </u>	10.
Formic acid	Zinc (II) phthalocyanine adsorbed	Halogen lamp	101
	on Nafion membrane	Halogen lamp	
Formate,		<u> </u>	138
Formate, formaldehyde and	on Nafion membrane	Halogen lamp	
Formate, formaldehyde and methanol	on Nafion membrane ZnS and CdS supported over SiO ₂	Halogen lamp 150 W Hg lamp	138
Formate, formaldehyde and methanol CO	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂	Halogen lamp 150 W Hg lamp 500 W Hg lamp	138
Formate, formaldehyde and methanol CO Methanol,	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded K ₂ Ti ₆ O ₁₃ combined with	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp	138
Formate, formaldehyde and methanol CO Methanol, formaldehyde and	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂	Halogen lamp 150 W Hg lamp 500 W Hg lamp	138
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid	on Nafion membrane ZnS and CdS supported over SiO_2 Zr O_2 Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp	138 139 140
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded K ₂ Ti ₆ O ₁₃ combined with	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz-	138
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded K ₂ Ti ₆ O ₁₃ combined with Cu/ZnO	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp	138 139 140
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and formaldehyde	on Nafion membrane ZnS and CdS supported over SiO_2 Zr O_2 Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm	138 139 140 141
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded K ₂ Ti ₆ O ₁₃ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp	138 139 140
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and formaldehyde Methane	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate (K_7 [PTi ₂ $W_{10}O_{40}$]6H ₂ O)	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm 500 W Hg lamp	138 139 140 141 142
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and formaldehyde	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded K ₂ Ti ₆ O ₁₃ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm	138 139 140 141
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid and formic acid and formaldehyde Methane Methanol	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate (K_7 [PTi ₂ W ₁₀ O ₄₀]6H ₂ O) TiO ₂ and Cu dispersed over TiO ₂	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm 500 W Hg lamp 254 nm	138 139 140 141 142 143
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and formaldehyde Methane Methane,	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate (K_7 [PTi ₂ $W_{10}O_{40}$]6H ₂ O) TiO ₂ and Cu dispersed over TiO ₂ Pt dispersed on $K_2Ti_6O_{13}$	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm 500 W Hg lamp	138 139 140 141 142
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid Formic acid and formaldehyde Methane Methane, formaldehyde,	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate ($K_7[PTi_2W_{10}O_{40}]6H_2O$) TiO ₂ and Cu dispersed over TiO ₂ Pt dispersed on $K_2Ti_6O_{13}$ combined with Fe-Cu-K dispersed	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm 500 W Hg lamp 254 nm	138 139 140 141 142 143
Formate, formaldehyde and methanol CO Methanol, formaldehyde and formic acid and formic acid and formaldehyde Methane Methane	on Nafion membrane ZnS and CdS supported over SiO ₂ ZrO ₂ Pt loaded $K_2Ti_6O_{13}$ combined with Cu/ZnO n-Bi ₂ S ₃ and n-CdS Dititanodecatungstophosphate (K_7 [PTi ₂ $W_{10}O_{40}$]6H ₂ O) TiO ₂ and Cu dispersed over TiO ₂ Pt dispersed on $K_2Ti_6O_{13}$	Halogen lamp 150 W Hg lamp 500 W Hg lamp Sunlight, Xe lamp and Hg lamp 100 W quartz- iodine lamp 350-1000 nm 500 W Hg lamp 254 nm	138 139 140 141 142 143

ethanol			
Formate and CO	Cobalt and Iron phthalocyanin	300 W Xe lamp	145
Methanol and methane	TiO ₂ supported on Y-zeolite, MCM-41 and MCM-48	Hg lamp ($\lambda > 280$ nm) 328 K	146
Formic acid, formaldehyde, methanol, glyoxalic acid, acetaldehyde and acetic acid	CdS. ZnO, SiC, BaTiO ₃ and SrTiO ₃	Hg lamp	147
Formate and CO	ZnS	500 W Hg lamp ($\lambda > 290$ nm using filter)	148
СО	[6,61-Bi(5,7-dimethyl-1,4,8,11- tetraazacyclotetradecane)]dinickel(II) Triflate	460 W Hg lamp ($\lambda > 390$ nm using filter)	149
CH ₄ , CH ₃ OH and CO	TiO ₂ containing mesoporous silica	100 W Hg lamp 323 K	150
СО	$\begin{aligned} & \text{Ru(bpy)}_2(\text{bpy-}\text{L}_{10}\text{M})^{4+} \\ & (\text{bpy} = 2,2'\text{-bipyridine, bpy-}\text{L}_{10}\text{=} \\ & 1\text{-}(2,2'\text{-bipyridin-}6\text{-ylmethyl})\text{-} \\ & 1,4,8,11\text{-tetraazacyclotetradecane,} \\ & \text{M} = \text{H}_2, \text{Ni}) \end{aligned}$	Not mentioned	151

Table 13. Continued

Table 14. Products formed by the photocatalytic reduction of CO_2 using metal dispersed TiO₂ (Ref. 116).

Catalyst	Amount of products formed (10 ⁻⁸ mol)				
	CH ₄	C ₂ H ₆	CH ₃ OH	HCOOH	CH ₃ COOH
TiO ₂	0.7	0.1	<1	<0.5	<1
Pd-TiO ₂	24.7	1.4	<1	<0.5	<1
Rh-TiO ₂	10	0.9	<1	<0.5	5.0
Pt-TiO ₂	5.0	<0.1	<1	<0.5	<1
Au-TiO ₂	3.3	0.6	<1	<0.5	<2.8
Cu-TiO ₂	1.9	0.2	<1	0.6	4.1
Ru-TiO ₂	0.6	<0.1	<1	<0.5	2.0

3.2.2. Photocatalytic reduction of carbonate

When CO_2 present in the atmosphere dissolves in water it is mostly present in the formation of carbonate. Therefore it is appropriate to study the photocatalytic reduction of carbonate to form various chemicals. The results involving the photocatalytic reduction of carbonate species to organic chemicals are given in Table 15.

Product(s)	Catalyst	Reaction conditions	Ref.
Methanol	MoS ₂ , ZnTe or CdSe, Degussa P25-TiO ₂	125 W Hg lamp	152
Methanol and methane	TiO ₂	$15 \text{ W lamp} \\ (\lambda = 365 \text{ nm})$	153
CH₃OH, HCHO, HCOO ⁻	Cr and Mg doped TiO ₂	125 W Hg lamp	154
НСООН, НСНО, СН ₃ ОН	SrFeO ₃	450 W Hg lamp or sunlight	155
Bicarbonate, acetate and propionate	MnS	450 W Hg lamp	156

 Table 15. Products, catalyst and reaction conditions for photocatalytic reduction of carbonate.

3.2.3. Photocatalytic reduction of N₂ to NH₃

Reduction of dinitrogen to ammonia is of great industrial significance. This is because of the wide usage of ammonia in various industries. Ammonia is used in industries like fertilizer, fine chemical synthesis, nylon industries and in the production of nitric acid.

Photocatalytic synthesis of ammonia using sunlight as the source of energy and atmospheric nitrogen will be an environment friendly process. This process becomes even more important because of the high temperature and pressure conditions required in the only industrial ammonia production process – Haber's process. The reaction requires conditions like 400 °C and 200 atmospheric pressure. The data pertaining to the photocatalytic reduction of N₂ to ammonia are given in Table 16.

Ranjit et al studied the photocatlytic reduction of N_2 to NH_3 using Ru, Rh, Pt and Pd dispersed over TiO_2 . The activity with different metal dispersed on TiO_2 follows the order Ru > Rh > Pd > Pt. This is in correlation with the electron affinity values. Metals having higher electron affinity trap the electrons effectively reducing recombination. Also the metal-hydrogen bond strength follows the same order with Ru having the highest strength. A metal capable of holding hydrogen reduces hydrogen evolution so that the adsorbed hydrogen can react with nitrogen (163).

3.2.4. Photocatalytic reduction of other nitrogen containing compounds

In recent years, intensive agricultural activities, especially excessive use of man-made nitrogenous substances made the removal of nitrate ions from drinking water more attractive. High concentration of nitrate ions in drinking water is deleterious to human beings, because they can be converted into carcinogenic nitrosamine and other *N*-nitroso compounds during nitrate degradation process. These nitroso compounds lead to so-called "blue baby

Catalyst	Reaction conditions	Ref.
TiO ₂ . SrTiO ₃ , CdS, GaP	100 W Hg lamp	157
[WH4(dpmp)4] and [WH4(trifos)(PPh3)]	30 W Hg lamp	158
Where		
$dpmp = Ph_2PCH_3,$		
$Triflos = Ph_2PCH_2CH_2P(Ph)CH_2CH_2PPh_2$		
Mesoporous tantalum oxide(Ta_2O_5) and Fe^{3+}	450 W lamp	159
doped Ta ₂ O ₅		
Fe ₂ Ti ₂ O ₇	$(\lambda > 320 \text{ nm})$ and	160,
	$(\lambda > 455 \text{ nm})$	161
Pt dispersed over CdS combined with	250 W Xe lamp	162
$[Ru(HEDTA)N_2]^{-}, [Ru(HEDTA)]_2N_2^{-}$	$(\lambda = 505 \text{ nm})$	
Ru, Rh, Pd, Pt dispersed over TiO ₂	150 W Xe lamp	163
Pt and RuO ₂ dispersed over CdS in presence of	250 W Xe lamp	164
various acetato complexes $[Ru(EDTA)N_2]^2$	$(\lambda = 505 \text{ nm using filter})$	
Fe, Ru and Os dispersed over TiO ₂	400 W Hg lamp	165
Fe(III) and Ti(IV) hydrous oxides	100 W Tungsten lamp (IR	166
	and UV light filtered off)	
Ce and V dispersed TiO ₂	400 W Hg lamp	167
Ferric oxide intercalated on montmorillonite	125 W Hg lamp	168
clay		
$Ru^{II}(bipy)_3^{2+}$ adsorbed	250 W Xe lamp	169
on Pt/TiO ₂ /RuO ₂ surface in presence of Ru(II)-	$(\lambda = 510$ nm using filter)	
EDTA complex and ascorbic acid		
$Pt/CdS/RuO_2$ or	250 W Xe lamp	170
Pt /CdS-Ag ₂ S/RuO ₂ in a solution of	$(\lambda = 505 \text{ nm using filter})$	
K[Ru(EDTA-H)Cl] ₂ H ₂ O		
Vanadium (III) substituted hydrous ferric oxide	400 W Hg lamp	171
Hydrous oxides of samarium(III) and europium(III)	400 W Hg lamp	172
Chromium oxide-TiO ₂	160 W lamp	173

Table 16. Catalysts and conditions for the reduction of dinitrogen to ammonia.

Photocatalytic reduction of N_2 to ammonia was carried out with Pt and RuO₂ dispersed over CdS in the presence of various acetate complexes which are given below.

1. $[Ru(EDTA)N_2]^2$ (EDTA = ethylenediaminetetraacetato ion),

2. [Ru(HEDTA)N₂]⁻ (HEDTA= N-hydroxyethylethylenediamine-N,N',N'-triacetato ion),

3. $[Ru(PDTA)N_2]^{2-}$ (PDTA = 1,3-propylenediaminetetraacetato ion),

4. $[Ru(CDTA)N_2]^{2-}$ (CDTA = cyclohexanediaminetetraacetato ion),

5. $[Ru(H_2DTPA)N_2]^-(H_2DTPA = dianion dimethylenetriaminepentaacetic acid)$

6. [Ru(HIMDA)N₂ (HIMDA, N-hydroxyethyliminodiacetato ion).

The catalytic activity for N₂ reduction with variation in the above complexes follows the order 1 > 2 > 3 > 4 > 5 > 6 (164).

syndrome - a condition in which blood's capacity for oxygen transport is reduced, resulting in bluish skin discoloration in infants" (174). The reduction of nitrate is of interest as a means of mimicking reduction of nitrogen oxyanion substrates in nature and developing novel nitrogen fixation systems (175, 176). The relevant data are given in Table 17.

Reaction	Catalyst	Reaction conditions	Ref.
Nitrate to nitrite and ammonium ion	TiO ₂ , MgTiO ₃ -TiO ₂ Cu/TiO ₂ Cu/MgTiO ₃ -TiO ₂	125 W Hg lamp	174
Nitrate to nitrite	Molybdenum-Flavin system	250 W Tungsten lamp	177
Nitrate to NH ₃	TiO ₂	150 W Hg lamp	178
Nitrate to nitrite, N_2 and NH_3	Co, Ag, Pt, Cu, Ni dispersed over KTaO ₃ , K ₃ Ta ₃ Si ₂ O ₁₃ , BaTa ₂ O ₆ , NaTaO ₃	450 W Hg lamp	179
Nitrite and nitrate to ammonia	Fe^{3+} , Co^{3+} , Co^{2+} , Mg^{2+} doped TiO_2	450 W Xe lamp	180
Nitrite and nitrate to ammonia	TiO ₂	450 W Xe lamp	181
Nitrite and nitrate to ammonia	Ru, Rh, Pt, Pd dispersed over TiO ₂	450 W Xe lamp	182
Reaction	Catalyst	Reaction conditions	Ref.
Nitrite and nitrate to NH ₃	Ru dispersed over TiO ₂	450 W Xe lamp	183
Nitrite and nitrate to NH ₃	ZnS	450 W Xe lamp	184
Nitrite to NH ₃	CdS	450 W Xe lamp	185
Nitrite to NH ₃	$\begin{array}{l} TiO_2(Degussa-P25),\\ TiO_2/Pt, H_4Nb_6O_{17}, H_4Nb_6O_{17}/Pt,\\ TiO_2 \ pillared \ H_4Nb_6O_{17},\\ H_4Nb_6O_{17}/(Pt, \ TiO_2) \end{array}$	100 W Hg lamp ($\lambda > 290$ nm)	186
Nitrate to NH ₃	CdS	150 W Hg/Xe lamp	187
NO ₂ to nitrous acid	TiO ₂ aerosol	4 fluorescent lamp (maximum intensity at $\lambda =$ 365 nm)	188
Nitrate to nitrite, N ₂ and NH ₃	CdS pillared in between layered H ₂ Ti ₄ O ₉ and layered H ₄ Nb ₆ O ₁₇	100 W Hg lamp	189
Nitrate to nitrite and NH ₃	Ni-Cu/TiO ₂	125 W Hg lamp	190

Table 17. Products, catalyst and conditions for the reduction of nitrate, nitrite to NH₃.

3.2.5. Photocatalytic hydrogenation

Hydrogenation of olefins is an important reaction and has applications in Fischer-Tropsch process, preparation of edible oils and in organic synthesis. The results reported in literature are given in Table 18.

Reaction	Catalyst	Reaction conditions	Ref.
Hydrogenation of	Fe(CO) ₅	Laser irradiation	191
1-pentene		351 nm – XeF	
		308 nm – XeCl	
		337 nm – N2	
Hydrogenation of	$H_4Ru_4(CO)_{12}$	450 W Hg lamp ($\lambda > 310$ nm	192,
ethylene		or $\lambda = 366 \pm 20$ nm using	193
		filters)	
Hydrogenation of	Chromium	1-80 atmosphere pressure	194
norbornadiene	hexacarbonyl		
Hydrogenation of	cis-HMn(CO) ₄ PPh ₃	100 W Hg lamp	195
1-octene			
Hydrogenation of	$(\eta^{5}-C_{5}H_{5})_{2}TiR_{2} (R =$	150 W lamp	196
olefins	CH_3 ; $CH_2C_6H_5$; C_6H_5)		
Reaction	Catalyst	Reaction conditions	Ref.
Hydrogenation of	$H_4Ru_4(CO)_{12}$ and	$\lambda = 355 \text{ nm}$	197
alkenes	$H_4Ru_4(CO)_{13}$		
Hydrogenation of	RhH(CO)(PPh ₃) ₃ ,	XeCl excimer laser	198
olefins	RhCl(PPh ₃) ₃ and		
	IrCl(CO)(PPh ₃) ₃		
Hydrogenation of	Pt, Rh, Ni, Pd dispersed	125 W Hg lamp	199
diphenylacetylene	over TiO ₂		
Hydrogenation of	$Rh_4(CO)_{12}$	500 W Hg lamp	200
1,5-			
cyclooctadiene			

Table 18. Products, catalysts and conditions for the reduction of various hydrocarbons.

3.2.6. Reduction of organic nitro compounds to amines

The reduction of various nitro compounds to the corresponding amines plays an important role in synthetic chemistry of various drugs, dyes and polymers. Anilines are very widely present in the drug and dye molecules. The reduction of nitro compounds is also environmentally significant because of the toxic effects of nitro aromatic compounds (201). (refer Table 19).

3.2.7. Other reduction reactions

There are various other reduction reactions which have been carried out by photocatalytic means. A summary is given in Table 20.

Reaction studied	Catalyst used	Reaction conditions	Ref
Nitrobenzene to aniline	Ag	400 W Hg lamp	201
	deposited	$(\lambda > 300 \text{ nm})$	
	on TiO ₂	, ,	
Reduction of	TiO ₂	Metal halide lamp	202
nitrosobenzene, nitrobenzene,	_	-	
2-nitrosotoluene, 2,3,5,6-			
tetramethylnitrosobenzene, 3,5-di-bromo-4-			
nitrosobenzenesulfonate (sodium salt),			
2,4,6-tri-t-butylnitroso-			
benzene, and 2-methyl-2-nitrosopropane			
Reduction of nitro organics like	Degussa	150 W Xe lamp	203,
2-Nitropropane, 2-methyl-2-nitropropane,	P25 TiO ₂		204
nitrobenzene, 4-nitrotoluene, 3-nitrotoluene,			
4-nitrobenzonitrile, 3-nitrobenzonitrile to			
corresponding amines			
p-chloronitrobenzene to p-chloroaniline	TiO ₂	100 W Hg lamp	205
Reduction of nitrobenzene to	TiO ₂ ,	Xe/Hg lamp	206
C ₆ H ₅ N(O)=NC ₆ H ₅ (32 %), C ₆ H ₅ N=NC ₆ H ₅ (21	WO ₃ ,	$(\lambda > 350 \text{ nm using})$	
%), C ₆ H ₅ NH ₂ (15 %), C ₆ H ₅ N(H)C ₆ H ₉ (32 %)	CdS	filter)	
4-nitrophenol to 4-aminophenol	TiO ₂	500 W Hg lamp	207
1 I	-	$(\lambda > 350 \text{ nm})$	

Table 19. Reactions, catalysts and conditions in the reduction of nitro aromatics.

 Table 20. Various photocatalytic reduction reactions, catalysts and reaction conditions.

Reaction studied	Catalyst used	Reaction conditions	Ref.
Bis(2- dipyridyl)disulfide to 2- mercaptopyridine	Ag dispersed over TiO ₂	400 W Hg $lamp$ $(\lambda > 300 \text{ nm})$	208
Reduction of methyl viologen (A redox reagent used in organic synthesis)	$H^+/K_4Nb_6O_{17}$ and $CdS/K_4Nb_6O_{17}$ $K_4Nb_6O_{17}$ is a layered compound	$\frac{(1 - 200 \text{ mm})}{500 \text{ W Xe}}$ $\frac{1}{(\lambda > 420 \text{ nm})}$ $\frac{(\lambda > 420 \text{ nm})}{100000000000000000000000000000000000$	209
Methyl viologen reduction	Ruthenium (II) Poly (Pyridyl) Complexes	300 W Xe lamp	210
Reduction of acetophenone	meso-Tetraphenyl porphyrinatocobalt(II)	180 W halogen lamp $(\lambda > 430 \text{ nm})$ using cutoff filter)	211
Aryl azide monolayers to aryl amine monolayers	CdS quantum dots	400 W lamp with various cutoff filters	212
bis(2-dipyridyl)disulfide to 2-mercaptopyridine	Au and Ag dispersed over TiO ₂	$\lambda > 300 \text{ nm}$	213, 214
Reduction of racemic- [Co(acac) ₃] (Hacac = pentane-2,4- dione)	Helical ruthenium(II) complexes	500 W Xe lamp $(\lambda > 400 \text{ nm})$ 298 K	215

3.3. Production of hydrogen peroxide

Hydrogen peroxide (H_2O_2) plays an important role as oxidizing agent in a variety of pollution control systems (216, 217). It is also used in organic synthesis as Fenton's reagent. It is used as a disinfectant, as propellant and also for production of various peroxides and production of oxyacids. The results reported in literature are given in Table 21.

Table 21. Catalysts and conditions in the photocatalytic production of H_2O_2 .

Reaction	Catalyst used	Conditions	Ref.
O_2 to H_2O_2	tris(2,2`-	500 W Xe lamp	216
	bipyridine) ruthenium(II)	$(\lambda > 420 \text{ nm using cutoff})$	
	complex	filter)	
Water to H_2O_2	TiO ₂	Liquid phase	218
		Room temperature	
		$\lambda > 400 \text{ nm}$	
O_2 to H_2O_2	Ruthenium(II) complex	500 W Tungsten-Halogen	219
	$[Ru(bpy)_3]^{2+}$ incorporated	lamp	
	into Nafion and cellulose		
O_2 to H_2O_2	Metal porphyrins and	500 W Tungsten-Halogen	220
	Fe(II), Co(II) and Zn(II)-	lamp	
	phthalocyanins adsorbed on		
	Nafion		
O_2 to H_2O_2	TiO ₂ -Fluoride system	40 W lamp	221

3.4. Photocatalytic isomerization

There are wide varieties of isomerization reactions (refer Table 22) which can be carried out by photocatalytic means.

3.5. Photocatalytic polymerization

Polymerization is a very important industrial process and the dependence of today's world on polymers is extremely high. Various polymerization reactions have been carried out by photocatalytic means using both homogeneous and heterogeneous catalysts. Photocatalysts have been mostly able to initiate free radical polymerization by using the excited electrons. (refer Table 23).

3.6. Other photocatalytic reactions involving larger molecules

In addition to various reactions classified earlier there are other reactions like condensation, bond cleavage, etc., which can be carried out by photocatalytic means. Details on some of the reactions are given in Table 24.

Reaction	Catalyst	Reaction condition	Ref.
Cis-trans isomerization	anthracene,	150 W Xe lamp	222
of 1-(3,5-di-	9-methylanthracene and		
tertbutylstyryl)pyrene	9,10-dichloroanthracene		
Cis-trans isomerization	1. Acridine as catalyst and	150 W Xe lamp	223
of Z-8-(3,5-ditert-	camphorquinone as		
butylstyryl)fluoranthene	sensitizer		
Z,E-1,6-bisstyryl- 1,3,5-	2. C_{60} as catalyst		
cycloheptatriene			
Norbornadiene to	$[Cu_2L_2(\mu-NBD)],$	500 W Hg lamp	224
quadricyclene	$[Cu_2L'_2(\mu\text{-NBD})],$		
isomerization	$[Cu_2L''_2(\mu-NBD)],$		
	$[Cu_2L'''_2(\mu-NBD)]$, [where		
	L = 2-methyl-8-		
	oxoquinolinato,		
	L' = 2-methyl-5,7-dichloro-		
	8-oxoquinolinato,		
	L'' = 4-oxoacridinato, $L''' =$		
	2-(2-oxo-3,5-di-tert-butyl		
	phenyl)benzotriazole]		
Reaction	Catalyst	Reaction condition	Ref.
Cis-trans isomerization	Diphenyldiselenide	Hg lamp	225
of stilbene		$(\lambda = 436 \text{ nm})$	
1-pentene to 2-pentene	Fe(CO) ₅	Laser irradiation	226
		351 nm – XeF	
		308 nm – XeCl	
		$337 \text{ nm} - \text{N}_2$	
Maleic acid – Fumaric	TiO ₂	4 W fluorescent lamp	227
acid isomerization			
1. 4,4-dimethyl-1-	Platinum(II)	Sixteen 8 W lamps	228
pentene to 4,4-	bis(acetylacetonato) in		
dimethyl-2-pentene	presence of silanes		
2. 1-octene to 2-octene			
Isomerization of	Copper(I) trifluoromethane	$\lambda = 254 \text{ nm}$	229
cyclohexene and methyl	sulphonate		
cyclohexene			
1-pentene to 2-pentene	Ru ₃ (CO) ₁₂	310 or 350 nm	230
Cis-2-butene to trans-2-	TS-1 Zeolite	75 W Hg lamp	231
butene		$(\lambda > 280 \text{ nm})$	
		275 K	
Cis-trans isomerization	CdS or ZnO	250 W Xe lamp	232
of β -carotene and		$(\lambda > 350 \text{ nm using})$	
canthaxanthin		filter)	
Isomerization of cis-2-	Zr-Si binary oxides	Hg lamp	233
butene		$(\lambda > 250 \text{ nm}) 295 \text{ K}$	_

Table 22.	Various	isomeri	zation	reactions,	catalysts	and	reaction	conditions.
Table 22.	various	isomeri	zation	reactions,	catalysis	and	reaction	conditions.

Reaction	Catalyst	Reaction conditions	Ref.
Acrylate polymerization	Fe doped TiO ₂	100 W Hg lamp	234
Polymerization of methylmethacrylate	Chromium thiophene carboxylate	125 W Hg lamp ($\lambda = 440 \text{ nm}$) 303 K	235
Polymerization of N- phenyl-p- phenylenediamine	Tris(2,2`- bipyridyl)ruthenium complex	500 W Xe lamp	236, 237
Reaction	Catalyst	Reaction conditions	Ref.
Polymerization of phenylacetylene	W(CO) ₆ and W(CO) ₆ - TiC1 ₄	Nd ³⁺ :YAG pulsed laser (Quanta-Ray) operating at 532, 355 and 266 nm	238
Polymerization of phenylacetylene	W(CO) ₆ -CH ₃ I system	Nd ³⁺ :YAG pulsed laser (Quanta-Ray) operating at 532, 355 and 266 nm	239
Ring-Opening Polymerization of 1,1,3,3-Tetramethyl-1,3- disilacyclobutane	Pt(acac) ₂	Sixteen 8 W lamps	240
Polymerization of methylmethacrylate	Eosin(dye) sensitized CdS	308-313 K	241, 242

 Table 24. Various photocatalytic reactions, catalysts and reaction conditions.

Reaction	Catalyst	Reaction conditions	Ref.
Dihydropyrazine from ethylenediamine and propylene glycol	TiO ₂ -P 25 and ZnO supported on H-ZSM5, HY, H β and HM zeolites	250 W Hg lamp	243
Synthesis of piperazine from <i>N</i> -(2,3-dihydroxypropyl) ethylenediamine	TiO ₂ , ZnO and CdS supported on H-ZSM5, HY, Hβ zeolites	250 W Hg lamp	244
Tertiary alkyl amines from NH ₃ and alcohol	Pt dispersed over TiO ₂	$\lambda > 300 \text{ nm}$	245
Azobenzene to indazole, 1,2,4- triphenyl-1,2,4-triazolidines	Pt dispersed TiO ₂	500 W Hg lamp	246
Synthesis of urea from CO ₂ and NO ₃ ⁻	TiO ₂ and Cu modified TiO ₂	120 W Hg lamp $(\lambda > 300 \text{ nm})$ using filter	247
N≡N bond cleavage of azobenzene	Pt dipersed TiO ₂	$\begin{array}{c} 400 \text{ W Hg} \\ \text{lamp} \\ (\lambda > 300 \text{ nm} \\ \text{using filter}) \end{array}$	248

Table 24. Continued

Reaction	Catalyst	Reaction conditions	Ref.
Conversion of NAD ⁺ to NADH and dehydrogenation of cinnamyl alcohol	TiO ₂	Fluorescent lamp 298K	249
Conversion of NAD ⁺ to NADH	CdS and TiO ₂	150W Xe lamp $(\lambda > 400$ nm)	250
 (i)Various organic acids + NH₃ to give various amino acids (ii)Photo-Knoop reaction 	$Ru(bpy)_3^{2^+}$, Zinc tetraphenyl porphyrin, dyes and CdS	500W Xe lamp	251
Photocatalytic processing of soyabean oil	Molecular iodine	100 W lamp	252
[4+4] photocycloreversion to give anthracene and [2+2] photocylcloaddition	CdS	$\lambda > 450 \text{ nm}$	253
 (i) Cleavage of anthracene dimer (ii) Cis-trans isomerization of stilbene (iii) hexamethyl(dewar)benzene to hexamethylbenzene 	CdS	840 W Xe lamp	254
Synthesis of L-pipecolonic	Pt dispersed over TiO ₂	Hg lamp	255
acid from L-lysine	Pt, Rh and Pd dispersed over TiO ₂	400 W Hg lamp	256
Reduction of nicotinamide coenzymes (NMN +, NAD +, NADP +) to NMNH, NADH and NADPH	TiO ₂	125 W Hg $lamp$ $(\lambda = 365 \text{ nm})$	257
Addition of pyrrolidenes to butenolides to form pyrrolidizine alkaloid	Benzophenone	120W Hg lamp $(\lambda = 350 nm)$	258

4. Summary

In summary, it may be stated that

The potential of photocatalytic routes for the production of chemicals has yet to be fully realized though the feasibility has been established. This transformation of these processes from laboratory carryout to industrial production though may not have reached the required maturity; it is only matter of time, when this can occur. When it takes place, the production of chemicals can become a neater process with acceptance from environmental concerns.

5. Acknowledgement

The authors wish to thank Department of Science and Technology, New Delhi, India for funding of the project and for Research Fellowship to one of the authors, G. Magesh.

6. References

- 1. http://www.answers.com/topic/petrochemical (accessed january 2007)
- Concepts in photobiology Photosynthesis and photomorphogenesis G.S. Singhal, G. Renger, S.K. Sopory, K.D. Irrgang, Govindjee, Narosa publishing house (New Delhi) (1999)
- 3. M. Calvin, Simulating photosynthetic quantum conversion (Chapter 1) in Photochemical conversion and storage of solar energy, Edited by John S. Connolly, Academic press inc (London) (1981)
- 4. http://138.192.68.68/bio/Courses/biochem2/Photosynthesis/Photosystem2.html (accessed december 2006)
- 5. http://www.biology.purdue.edu/people/faculty/cramer/Cramer/html/cytbf.html (accessed january 2007)
- 6. http://www.isc.fraunhofer.de/german/portal/index_tech_18.html (accessed december 2006)
- 7. B.Viswanathan.. Bull. Catal. Soc. India, 2 (2003) 71
- 8. http://www.quaschning.de/volker/articles/fundamentals1/index_e.html (Accessed December 2006)
- 9. S. Farhadi, A. Zabardasti, Z. Babazadeh, Tetrahedron Lett., 47 (2006) 8953
- 10. V.N. Filimonov, Doklady Akademii Nauk SSSR, 154(4) (1964) 922
- 11. K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun., 19 (2006) 2018
- 12. T. Yamakawa, T. Katsurao, S. Shinoda, Y. Saito, J. Mol. Catal., 42 (1987) 183
- 13. D. Brinkley, T. Engel, Surf. Sci., 415 (1998) L1001
- 14. K. Nomiya, Y. Sugie, T. Miyazaki, M. Miwa, Polyhedron, 5(7) (1986) 1267
- 15. S. Shinoda, A. Kobayashi, T. Aoki, Y. Saito, J. Mol. Catal., 38 (1986) 279
- 16. I. Moriguchi, K. Orishikida, Y. Tokuyama, H. Watabe, S. Kagawa, Y. Teraoka, *Chem. Mater.* 13 (2001) 2430
- 17. A. Sclafani, Marie-Noelle Mozzanega, P. Pichat, J. Photochem. Photobiol., A, 59 (1991) 181
- 18. B. Ohtani, Jun-ichi Handa, Sei-ichi Nishimoto, T. Kagiya, Chem. Phys. Lett., 120(3) (1985) 292
- 19. T. Matsubara, Y. Saito, T. Yamakawa, S. Shinoda, J. Mol. Cat., 67 (1991) 175
- 20. R. Irie, X. Li, Y. Saito, J. Mol. Catal., 18 (1983) 263
- 21. T. Yamakawa, T. Katsurao, S. Shinoda, Y. Saito, J. Mol. Catal., 42 (1987) 183
- 22. I. Ait-Ichou, M. Formenti, B. Pommier, S. J. Teichner, J. Catal., 91 (1985) 293
- 23. R. Irie, X. Li, Y. Saito, J. Mol. Catal., 23 (1984) 17
- 24. B. Ohtani, M. Kakimoto, S. Nishimoto, T. Kagiya, J. Photochem. Photobiol., A, 70 (1993) 265
- 25. Y. Kado, M. Atobe, T. Nonaka, Ultrason. Sonochem., 8 (2001) 69
- 26. A. Hiskia, E. Papaconstantinou, Polyhedron, 7(6) (1988) 477
- 27. S. Farhadi, M. Afshari, M. Maleki, Z. Babazadeh, Tetrahedron Lett., 46 (2005) 8483

- 28. O.S. Mohamed, A. El-Aal M. Gaber, A.A. Abdel-Wahab, J. Photochem. Photobiol., A, 148 (2002) 205
- 29. T. Ruther, A.M. Bond, W.R. Jackson, Green Chem., 5 (2003) 364
- 30. Y. Wu, Y. Li, Q. Zhuang, J. Photochem. Photobiol., A, 62 (1991) 261
- 31. M. Miyake, H. Yoneyama, H. Tamura, J. Catal., 58 (1979) 22
- 32. B. Pal, T. Torimoto, K. Iwasaki, T. Shibayama, H. Takahashi, B. Ohtani, J. Phys. Chem. B 108 (2004) 18670
- 33. H. Yamamoto, S. Shinoda, Y. Saito, J. Mol. Catal., 30 (1985) 259
- 34. K. Nomura, Y. Saito, S. Shinoda, J. Mol. Catal., 50 (1989) 303
- J. Zhenzheng, L. Qinglin, F. Liangbo, C. Zhengshi, Z. Xinhua, X. Chanjuan, J. Mol. Catal., 50 (1989) 315
- 36. S. Yamagata, B.H. Loo, A. Fujishima, J. Electroanal. Chem., 260 (1989) 447
- Z. Jin, Q. Li, X. Zheng, C. Xi, C. Wang, H. Zhang, L. Feng, H. Wang, Z. Chen, Z. Jiang, J. Photochem. Photobiol., A, 71 (1993) 85
- 38. T. Hirakawa, J.K. Whitesell, M.A. Fox, J. Phys. Chem. B, 108 (2004) 10213
- 39. K. Tennakone, U.S. Ketipearachchi, S. Punchihewa, J. Mol. Catal., 61 (1990) 61
- 40. X Li, S. Shinoda, Y. Saito, J. Mol. Catal., 49 (1989) 113
- 41. T. Takahashi, S. Shinoda, Y. Saito, J. Mol. Catal., 31 (1986) 301
- 42. R.P. Noceti, C.E. Taylor, J. R. D'Este, Catal. Today, 33 (1997) 199
- 43. C.E. Taylor, R.P. Noceti, Catal. Today, 55 (2000) 259
- 44. M.A. Gondal, A. Hameed, A.Suwaiyan, Appl. Catal., A, 243 (2003) 165
- 45. M.A. Gondal, A. Hameed, Z.H. Yamani, A. Arfaj, *Chem. Phys. Lett.*, 392 (2004) 372.
- 46. D. Shi, Y. Feng, S. Zhong, Catal. Today, 98 (2004) 505
- 47. Y. Mao, A. Bakac, J. Phys. Chem., 100 (1996) 4219
- 48. M.W. Grinstaff, M.G. Hill, J.A. Labinger, H. B. Gray, Science, 264 (1994) 1311
- 49. R.A. Sheldon, J.K. Kochi, *Metal-Catalyzed Oxidations of Organic Compounds, Academic* (New York) (1981)
- 50. A.L. Feig, S.J. Lippard, Chem. Rev., 94 (1994) 759
- 51. K. Nomura, Y. Saito, J. Mol. Catal., 54 (1989) 57
- 52. P. Ciambelli, D. Sannino, V. Palma, V. Vaiano, Catal. Today, 99 (2005) 143
- 53. H. Park, W. Choi, Catal. Today, 101 (2005) 291
- 54. Y. Mao, A. Bakac, Inorg. Chem., 35 (1996) 3925
- 55. www.aps-pub.com/proceedings/1433/Sinfelt.pdf (accessed December 2006)
- A. Molinari, R. Amadelli, A. Mazzacani, G. Sartori, A. Maldotti, *Langmuir*, 18 (2002) 5400
- 57. A. Maldotti, A. Molinari, G. Varani, M. Lenarda, L. Storaro, F. Bigi, R. Maggi, A. Mazzacani, G. Sartori, *J. Catal.*, 209 (2002) 210
- 58. A. Maldotti, L. Andreotti, A. Molinari, G. Varani, G. Cerichelli, M. Chiarini, *Green Chem.*, 3 (2001) 42
- 59. W. Mu, Jean-Marie Herrmann, P. Pichat, Catal. Lett., 3 (1989) 73
- 60. K. Wada, K. Yoshida, Y. Watanabe, T.Suzuki, App. Catal., 74 (1991) Ll
- 61. S.D. Jackson, S. Rugmini, P.C. Stair, Z. Wu, Chem. Eng. J., 120(1-2) (2006) 127
- 62. T. Tanaka, T. Ito, S. Takenaka, T. Funabiki, S. Yoshida, *Catal. Today*, 61 (2000) 109
- 63. L.V. Lyashenko, V.M. Belousov, F.A. Yampolskaya, *React. Kinet. Catal. Lett.*, 20(1-2) (1982) 59

- 64. K. Marcinkowska, S. Kaliaguine, P. C. Roberge, J. Catal., 90 (1984) 49
- 65. F. Amano, T. Ito, S. Takenaka, T. Tanaka, J. Phys. Chem. B, 109 (2005) 10973
- 66. Y.J. Zhu, J. Li, X.F. Xie, X.G. Yang, Y. Wu, J. Mol. Catal. A: Chem., 246(1-2) (2006) 185
- 67. G. Palmisano, M. Addamo, V. Augugliaro, T. Caronna, E.Garcıa-Lopez, V. Loddo, L. Palmisano, *Chem. Commun.*, 9 (2006) 1012
- 68. C. Bouquet-Somrani, A. Finiels, P. Geneste, P. Graffin, A.Guida, M. Klaver, Jean-Louis Olive, A. Saaedan, *Catal. Lett.*, 33 (1995) 395
- 69. T. Ohno, K.Tokieda, S. Higashida, M. Matsumura, App. Catal., A, 244 (2003) 383
- 70. P. Kluson, H. Luskova, L. Cerveny, J. Klisakova, T. Cajthaml, J. Mol. Catal. A: Chem., 242 (2005) 62
- V.I. Stepanenko, L.V. Lyashenko, V.M. Belousov, *React. Kinet. Catal. Lett.*, 21(1-2) (1982) 45
- 72. N. Somasundaram, C. Srinivasan, Tetrahedron Lett., 39 (1998) 3547
- 73. J. Rosenthal, T.D. Luckett, J.M. Hodgkiss, D.G. Nocera, J. Am. Chem. Soc., 128 (2006) 6546
- 74. M.A. Fox, A.A. Abdel-Wahab, J. Catal., 126 (1990) 693
- 75. K. Ohkubo, T. Nanjo, S. Fukuzumi, Catal. Today, 117 (2006) 356
- 76. N. Somasundaram, C. Srinivasan, J. Org. Chem., 61 (1996) 2895
- 77. S. Vijaikumar, N. Somasundaram, C. Srinivasan, App. Catal., A, 223 (2002) 129
- 78. N. Somasundaram, C. Srinivasan, J. Photochem. Photobiol., A, 99 (1996) 67
- 79. M.A.Fox, A.A. Abdel-Wahab, Tetrahedron Lett., 31(32) (1990) 4533
- 80. M.M.T. Khan, N.N. Rao, D. Chatterjee, J. Photochem. Photobiol., A, 60 (1991) 311
- 81. M. Gratzel, *Energy Resources through Photochemistry and Catalysis*, Academic Press, NewYork, 1983.
- 82. M. Calvin, Act. Chem. Res., 11 (1978) 369
- 83. J. Hawecker, J. M. Lehn, R. Ziessel, J. Chem. Soc., Chem. Commun., 56 (1985) 536
- 84. D. Mandler, I. Willner, J. Am. Chem. Soc., 109 (1987) 7884
- 85. M. Hailman, Nature, 275 (1978) 115
- 86. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 277 (1979) 637
- 87. J.L. Grant, K. Goswami, L.O. Spreer, J.W. Otvos, M. Calvin, J. Chem. Soc., Dalton Trans., (1987) 2105
- 88. R. Maidan, I. Willner, J. Am. Chem. Soc., 108 (1986) 8100
- 89. I. Willner, R. Maidan, D. Mandler, H. Durr, G. Dorr, K. Zengerie, J. Am. Chem. Soc., 109 (1987) 6080
- 90. K.R. Thampi, J. Kiwi, M. Gratzel, Nature, 327 (1987) 506
- 91. J.M. Lehn, R. Zeissel, Proc. Natl. Acad. Sci., U.S.A., 79 (1982) 709
- 92. M.M.T. Khan, N.N. Rao, D. Chatterjee, J. Photochem. Photobiol., A, 60 (1991) 311
- 93. Teng-feng Xie, De-jun Wang, Lian-jie Zhu, Tie-jin Li, Yong-jun Xu, Mater. Chem. Phys., 70 (2001) 103
- 94. B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue, O. Ishitani, *Inorg. Chem.*, 44(7) (2005) 2326
- 95. K. Ikeue, S. Nozaki, M.Ogawa, M. Anpo, Catal. Today, 74 (2002) 241
- 96. T. Mizuno, K. Adachi, K. Ohta, A. Saji, J. Photochem. Photobiol., A, 98 (1996) 87

- 97. Bi-Jin Liu, T. Torimoto, H. Matsumoto, H. Yoneyama, J. Photochem. Photobiol., A, 108 (1997) 187
- 98. I-Hsiang Tseng, J.C.S. Wu, Hsin-Ying Chou, J. Catal., 221 (2004) 432
- 99. H. Hori, F. P.A. Johnson, K. Koike, O. Ishitani, T. Ibusuki, J. Photochem. Photobiol., A, 96 (1996) 171
- 100. H. Hori, Y. Takano, K. Koike, Y. Sasaki, Inorg. Chem. Commun., 6 (2003) 300
- 101. S. Yamamura, H. Kojima, J. Iyoda, W. Kawai, J. Electroanal. Chem., 225 (1987) 287
- 102. Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, J. Chem. Soc., Faraday Trans., 94(13) (1998) 1875
- 103. K. Koike, H. Hori, M. Ishizuka, J.R. Westwell, K. Takeuchi, T. Ibusuki, K. Enjouji, H. Konno, K. Sakamoto, O. Ishitani, *Organometallics*, 16 (1997) 5724
- 104. P. Pathak, M.J. Meziani, L. Castillo, Ya-Ping Sun, Green Chem., 7 (2005) 667
- 105. J.C.S. Wu, Hung-Ming Lin, Chao-Ling Lai, App. Catal., A, 296 (2005) 194
- 106. J.C.S. Wu, Hung-Ming Lin, Int. J. Photoenergy, 7 (2005) 115
- 107. M. Halmann, V. Katzir, E. Borgarello, J. Kiwi, Solar Energy Mater., 10 (1984) 85
- 108. K. Hiranot, K. Inoue, T. Yatsu, J. Photochem. Photobiol., A, 64 (1992) 255
- 109. Jin-Soo Hwang, D. S. Kim, C.W. Lee, Sang-Eon Park, Korean J. Chem. Eng., 18(6) (2001) 919
- 110. T Hirose, Y. Maeno, Y. Himeda, J. Mol. Catal. A: Chem., 193 (2003) 27
- 111. F. Solymosi, I. Tombacz, Catal. Lett., 27 (1994) 61
- 112. T.S. Dzhabiev, B.B. Tarasov, A.M. Uskov, Catal. Today, 13 (1992) 695
- 113. Bi-Jin Liu, T. Torimoto, H. Yoneyama, J. Photochem. Photobiol., A, 115 (1998) 227
- 114. S.S. Tan, L. Zou, E. Hu, Catal. Today, 115 (2006) 269
- 115. K.Adachi, K. Ohta, T. Mizuno, Sol. Energy, 53(2) (1994) 187
- 116. O. Ishitani, C. Inoui, Y. Suzuki, T. Ibuzuki, J. Photochem. Photobiol., A, 72 (1993) 269
- 117. G.R. Dey, A.D. Belapurkar, K. Kishore, J. Photochem. Photobiol., A, 163 (2004) 503
- 118. H. Hori, J. Ishihara, K. Koike, K. Takeuchi, T. Ibusuki, O. Ishitani, J. Photochem. Photobiol., A, 120 (1999) 119
- 119.S. Yamamura, H. Kojima, J. Iyoda, W. Kawai, J. Electroanal. Chem., 247 (1988) 333
- 120. M. Anpo, K. Chiba, J. Mol. Catal. 74 (1992) 207
- 121. M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, J. Electroanal. Chem., 396 (1995) 21
- 122. Slamet, H.W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Catal. Commun., 7 (2005) 313
- 123. K. Teramura, T.Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, J. Phys. Chem. B, 108 (2004) 346
- 124. B.J. Liu, T. Torimoto, H. Yoneyama, J. Photochem. Photobiol., A, 113 (1998) 93
- 125. S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno, A. Saji, J. Photochem. Photobiol., A, 105 (1997) 59
- 126. S. Kaneco, H. Kurimoto, Y. Shimizu, K. Ohta, T. Mizuno, Energy, 24 (1999) 21
- 127. K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, J. Phys. Chem. B, 105 (2001) 8350

- 128. M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, *Catal. Today*, 44 (1998) 327
- 129. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, J. Phys. Chem. B, 101 (1997) 2632
- 130. S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, J. Photochem. Photobiol., A, 115 (1998) 223
- 131. H. Yamashite, A. Shiga, S. Kawasaki, Y. Ichihashi, S. Ehara, M. Anpo, *Engy. Convers. Mgmt.*, 36(6-9) (1995) 617
- 132. H. Hukkanen, T.T. Pakkanen, Inorg. Chim. Acta., 114 (1986) L43
- 133. S. Kuwabata, K. Nishida, R. Tsuda, H. Inoue, H. Yoneyama, J. Electrochem. Soc., 141(6) (1994) 1498
- 134. H. Hori, F.P.A. Johnson, K. Koike, K. Takeuchi, T. Ibusuki, O. Ishitani, J. Chem. Soc., Dalton Trans., 6 (1997) 1019
- 135. Y. Kohno, H. Hayashi, S. Takenaka1, T. Tanaka, T. Funabiki, S. Yoshida, J. *Photochem. Photobiol.*, A, 126 (1999) 117
- 136. S.M. Aliwi, J. Photochem. Photobiol., A, 67 (1992) 329
- 137. J.R. Premkumar, R. Ramaraj, Chem. Commun., 4 (1997) 344
- 138. P. Johne, H. Kisch, J. Photochem. Photobiol., A, 111 (1997) 223
- 139. Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, Chem. Commun., 9 (1997) 807
- 140. G. Guan, T. Kida, T. Harada, M. Isayama, A.Yoshida, App. Catal., A, 249 (2003) 11
- 141.S.M. Aliwi, K.F. Al-jubori, Solar Energy Mater., 18 (1989) 223
- 142. T. Yamase, M. Sugeta, Inorg. Chim. Acta., I72 (1990) 131
- 143. I-Hsiang Tseng, Wan-Chen Chang, J.C.S. Wu, App. Catal., B, 37 (2002) 37
- 144. G. Guan, T. Kida, A. Yoshida, App. Catal., B, 41 (2003) 387
- 145. J. Grodkowski, T. Dhanasekaran, P. Neta, P. Hambright, B.S. Brunschwig, K. Shinozaki, E. Fujita, J. Phys. Chem. A, 104 (2000), 11332
- 146. H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, *Catal. Today*, 45 (1998) 221
- 147. J.T.S. Irvine, B.R. Eggins, J. Grimshaw, Solar Energy, 45(1) (1990) 27
- 148. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, *Langmuir*, 14 (1998) 5154
- 149. K. Mochizuki, S. Manaka, I. Takeda, T. Kondo, Inorg. Chem., 35 (1996) 5132
- 150. Y. Shioya, K.Ikeue, M.Ogawa, M. Anpo, App. Catal., A, 254 (2003) 251
- 151.E. Fujita, B.S. Brunschwig, T. Ogata, S. Yanagida, *Coord. Chem. Rev.*, 132 (1994) 195
- 152. M.A. Malati, L. Attubato, K. Beaney, Sol. Energy Mater. Sol. Cells, 40 (1996) 1
- 153. Y. Ku, Wan-Hui Lee, Wen-Yu Wang, J. Mol. Catal. A: Chem., 212 (2004) 191
- 154. M.W. Raphael, M.A. Malati, J. Photochem. Photobiol., A, 46 (1989) 367
- 155. Q.H. Yang, X.X. Fu, Chin. Chem. Lett., 14(6) (2003) 649
- 156. X.V. Zhang, S.T. Martin, C.M. Friend, M.A.A. Schoonen, H.D. Holland, J. Am. Chem. Soc., 126 (2004) 11247
- 157. H. Miyama, N. Fujii, Y. Nagae, Chem. Phys. Letters, 73(3) (1980) 523
- 158. J.O. Dziegielewski, R. Gil-bortnowska, J. Mrzigod, J.G. Malecki, *Polyhedron*, 14(10) (1995) 1375
- 159. C. Yue, M.L Trudeau, D. Antonelli, Can. J. Chem., 83 (2003) 308
- 160. O. Rusina, O. Linnik, A. Eremenko, H. Kisch, Chem. Eur. J., 9(2) (2003) 561

- 161. O. Rusina, A. Eremenko, G. Frank, H.P. Strunk, H. Kisch, *Angew. Chem. Int. Ed.* 40(21) (2001) 3993
- 162. N.N. Rao, J. Mol. Catal. A: Chem., 93 (1994) 23
- 163. K.T. Ranjit, T.K. Varadarajan, B. Viswanathan, J. Photochem. Photobiol., A, 96 (1996) 181
- 164. M.M.T. Khan, R.C. Bhardwaj, C. Bhardwaj, N.N. Rao, J. Photochem. Photobiol., A, 68 (1992) 137
- 165. N.N. Rao, S. Dube, Manjubala, P. Natarajan, App. Catal., B, 5 (1994) 33
- 166. K. Tennakone, C.A.N. Fernando, S. Wickramanayake, M.W.P. Damayanthi, L.H.K. Silva, W. Wijeratne, O.A. Illeeperuma, S. Punchihewa, *Sol. Energy Mater.*, 17 (1988) 47
- 167. O.A. Ileperuma, C.T.K. Thaminimulla, W.C.B. Kiridena, Sol. Energy Mater. Sol. Cells, 28 (1993) 335
- 168. O.A. Ileperuma, W.C.B. Kiridena, W.D.D.P. Dissanayake, J. Photochem. Photobiol., A, 59 (1991) 191
- 169. M.M.T. Khan, D. Chatterjee, M. Krishnaratnam, M. Bala, *J. Mol. Catal.*, 72 (1992) 13
- 170. M.M.T. Khan, N.N. Rao, J. Photochem. Photobiol., A, 56 (1991) 101
- 171. K. Tennakone, C.T.K. Thaminimulla, J.M.S. Bandara, J. Photochem. Photobiol., A, 68 (1992) 131
- 172. K. Tennakone, O.A. Ileperuma, J.M.S. Bandara, C.T.K. Thaminimulla, *Sol. Energy Mater.*, 22 (1991) 319
- 173. C. Martin, I. Martin, V. Rives, L. Palmisano, M. Schiavello, *J. Catal.*, 134, (1992) 434
- 174. R. Jin, W. Gao, J. Chen, H. Zeng, F. Zhang, Z. Liu, N. Guan, J. Photochem. Photobiol., A, 162 (2004) 585
- 175. K.T. Ranjit, B. Viswanathan, J. Photochem. Photobiol., A, 107 (1997) 215
- 176. J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev., 78 (1978) 589
- 177. P.W. Moors, J. Inorg. Nucl. Chem., 37 (1975) 1089
- 178. Y. Li, F. Wasgestian, J. Photochem. Photobiol., A, 112 (1998) 255
- 179. H. Kato, A. Kudo, Phys. Chem. Chem. Phys., 4 (2002) 2833
- 180. K.T. Ranjit, B. Viswanathan, J. Photochem. Photobiol., A, 107 (1997) 215
- 181. K.T. Ranjit, T.K. Varadarajan, B. Viswanathan, J. Mater. Sci. Lett., 15 (1996) 874
- 182. K.T. Ranjit, B. Viswanathan, J. Photochem. Photobiol., A, 108 (1997) 73
- 183. K.T. Ranjit, T.K. Varadarajan, B. Viswanathan, J. Photochem. Photobiol., A, 89 (1995) 67
- 184. K.T. Ranjit, R. Krishnamoorthy, B. Viswanathan, J. Photochem. Photobiol., A, 81 (1994) 55
- 185. K.T. Ranjit, B. Viswanathan, J. Photochem. Photobiol., A, 154 (2003) 299
- 186. S. Tawkaew, S. Yin, T. Sato, Int. J. Inorg. Mater., 3 (2001) 855
- 187. B.A. Korgel, H.G. Monbouquette, J. Phys. Chem. B, 101(25) (1997) 5011
- 188. R.J. Gustafsson, A. Orlov, P.T. Griffiths, R.A. Cox, R.M. Lambert, *Chem. Commun.*, 37 (2006) 3936
- 189. S. Tawkaew, Y. Fujishiro, S. Yin, T. Sato, Colloids Surf., A, 179 (2001) 139
- 190. W. Gao, R. Jin, J. Chen, X. Guan, H. Zeng, F. Zhang, N. Guan, *Catal. Today*, 90 (2004) 331
- 191. R.L. Whetten, Ke-Jian Fu, E.R. Grant, J. Chem. Phys., 77(7) (1982) 3769

- 192. Y. Doi, S. Tamura, K.Koshizuka, J. Mol. Catal., 19 (1983) 213
- 193. Y. Doi, S. Tamura, K.Koshizuka, Inorg. Chim. Acta., 65 (1982) L63
- 194. M.J. Mirbach, D. Steinmetz, A. Saus, J. Organomet. Chem., 168 (1979) Cl3
- 195. P.L. Bogdan, P.J. Sullivan, T.A. Donovan, J.D. Atwood, J. Organomet. Chem., 269 (1984) C51
- 196. E. Samuel, J. Organomet. Chem., 198 (1980) C65
- 197. J.L. Graff, M.S. Wrighton, Inorg. Chim. Acta., 63 (1982) 63
- 198. H. Moriyama, A. Yabe, F. Matsui, J. Mol. Catal., 50 (1989) 195
- 199. C. Hoang-Van, P. Pichat, Marie-Noelle Mozzanega, J. Mol. Catal., 92 (1994) 187
- 200. Taka-aki Hanaoka, T. Matsuzaki, Y. Sugi, J. Mol. Catal., A: Chem., 149 (1999) 161
- 201. H. Tada, T. Ishida, A. Takao, S. Ito, Langmuir, 20 (2004) 7898
- 202. V. Brezova, P. Tarabek, D. Dvoranova, A. Stasko, S. Biskupi, J. Photochem. Photobiol., A, 155 (2003) 179
- 203. J.L. Ferry, W.H. Glaze, Langmuir, 14 (1998) 3551
- 204. J.L. Ferry, W.H. Glaze, J. Phys. Chem. B, 102(1998) 2239
- 205. T. Zhang, L. You, Y. Zhang, Dyes and Pigments, 68 (2006) 95
- 206. A. Maldotti, L. Andreotti, A. Molinari, S. Tollari, A. Penoni, S. Cenini, J. Photochem. Photobiol., A, 133 (2000) 129
- 207. V. Brezova, A. Blazkova, I. Surina, B. Havlinova, J. Photochem. Photobiol., A, 107 (1997) 233
- 208. H. Tada, K. Teranishi, Y. Inubushi, S. Ito, Langmuir, 16 (2000) 3304
- 209. A. Kameyama, K. Domen, K. Maruya, T. Endo, T. Onishi, J. Mol. Catal., 58 (199) 205
- 210. M. Suzuki, C.C. Waraksa, T.E. Mallouk, H. Nakayama, K. Hanabusa, J. Phys. Chem. B, 106 (2002) 4227
- 211. T. Okamoto, S. Oka, J. Mol. Catal., 23 (1984) 107
- 212. C. Radhakrishnan, M.K.F. Lo, M.V. Warrier, M.A. Garcia-Garibay, H. G. Monbouquette, *Langmuir*, 22 (2006) 5018
- 213. H. Tada, K. Teranishi, Y. Inubushi, S. Ito, Chem. Commun., 21 (1998) 2345
- 214. H. Tada, F. Suzuki, S. Yoneda, S. Ito, H. Kobayashi, *Phys. Chem. Chem. Phys.*, 7 (2001) 1376
- 215. K. Ohkubo, M. Fukushima, H. Ohta, S. Usui, J. Photochem. Photobiol., A, 98 (1996) 137
- 216. M. Fukushima, K. Tatsumi, S. Tanaka, H. Nakamura, *Environ. Sci. Technol.*, 32 (1998) 3948
- 217. R. Atkinson, Chem. Rev., 86 (1986) 69
- 218. H. Muraki, T. Saji, M. Fujihira, S. Aoyagui, J. Photochem. Photobiol., A, 115 (1998) 227
- 219. J. Premkumar, R. Ramaraj, J. Chem. Soc., Dalton Trans., 21 (1998) 3667
- 220. J. Premkumar, R. Ramaraj, J. Mol. Catal. A : Chem., 142 (1999) 153
- 221. V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun., 20 (2005) 2627
- 222. H. Mollerstedt, O. Wennerstrom, J. Photochem. Photobiol., A, 139 (2001) 37
- 223. M. Brink, H. Jonson, M. Sundahl, J. Photochem. Photobiol., A, 112 (1998) 149
- 224. F. Franceschi, M. Guardigli, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, *Inorg. Chem.*, 36 (1997) 4099

- 225. I.K. Lednev, E.N. Ushakov, M.V. Alfimov, Catal. Lett., 17 (1993) 167
- 226. R.L. Whetten, K. Fu, E.R. Grant, J. Chem. Phys., 77(7) (1982) 3769
- 227. Youn-Chul Oh, X. Li, J.W. Cubbage, W.S. Jenks, Appl. Catal., B, 54 (2004) 105
- 228. F. Wang, D.C. Neckers, J. Org. Chem., 68 (2003) 634
- 229. J. Th. M. Hvers, A. Mackor, Tetrahedron Lett., 26 (1978) 2321
- 230. H.D. Gafney, Shu-Ping Xu, Inorg. Chim. Acta, 240 (1995) 645
- 231. K.T. Jung, Y.G. Shul, M. Anpo, H. Yamashita, Korean J. Chem. Eng., 14(3) (1997) 213
- 232. G. Gao, Y. Deng, L.D. Kispert, J. Phys. Chem. B, 102 (1998) 3897
- 233. Sang-Chul Moon, M. Fujino, H. Yamashita, M. Anpo, J. Phys. Chem. B, 101 (1997) 369
- 234. C. Damm, J. Photochem. Photobiol., A, 181 (2006) 297
- 235. B. Chaturvedi, A.K. Srivastava, J. Photochem. Photobiol., A, 64 (1992) 183
- 236. S. Uemura, S. Tokuda, T. Nakahira, N. Kobayashi, Synth. Met., 119 (2001) 89
- 237. S. Uemura, T. Shimakawa, K. Kusabuka, T. Nakahira, N. Kobayashi, J. Mater. Chem., 11 (2001) 267
- 238. J. Pei, S. Jun, L. Chongxian, Z. Yihua, F. Kejian, Polym. Bull., 24 (1990) 135
- 239. J. Zhang, K. Fu, Polym. Bull., 32 (1994) 63
- 240. X. Wu, D.C. Neckers, Macromolecules, 32 (1999) 6003
- 241. R. Ojah, S.K. Dolui, J. Photochem. Photobiol., A, 172 (2005) 121
- 242. R. Ojah, S.K. Dolui, Sol. Energy Mater. Sol. Cells, 90 (2006) 1615
- 243. K.V.S. Rao, B. Srinivas, A.R. Prasad, M. Subrahmanyam, Chem. Commun., 16 (2000) 1533
- 244. K.V.S. Rao, V. Kandavelu, B. Srinivas, M. Subrahmanyam, K.R. Thampi, *Chem*, *Commun.*, 21 (2003) 2706
- 245.B. Ohtani, H. Osaki, Sei-ichi Nishimoto, T. Kagiya, *Tetrahedron Lett.*, 27(18) (1986) 2019
- 246. H. Minoura, N. Inayoshi, T. Sugiura, Y. Ueno, M. Matsui, K. Shibata, J. *Electroanal. Chem.*, 332 (1992) 279
- 247. E.A. Ustinovich, D.G. Shchukin, D.V. Sviridov, J. Photochem. Photobiol., A, 175 (2005) 249
- 248. H. Tada, M. Kubo, Y. Inubushi, S. Ito, Chem. Commun., 11 (2000) 977
- 249. T. Kawamoto, A. Aoki, K. Somomoto, A. Tanaka, J. Ferment. Bioeng., 67(5) (1989) 361
- 250. Z. Goren, N. Lapidot, I. Willner, J. Mol. Catal., 47 (1988) 21
- 251. T. Sakata, J. Photochem., 29 (1985) 205
- 252. V. P. Jain, A. Proctor, J. Agric. Food Chem., 54 (2006) 5590
- 253. R.A. Barber, P. de Mayo, K. Okada, J. Chem. Soc., Chem. Commun., 18 (1982) 1073
- 254. P. de Mayo, K. Muthuramu, W.K. Wong, Catal. Lett., 10 (1991) 71
- 255. G. Takei, T. Kitamori, H.B. Kim, Catal. Commun., 6 (2005) 357
- 256. B. Pal, S. Ikeda, H. Kominami, Y. Kera, B. Ohtani, J. Catal., 217 (2003) 152
- 257. E. Bojarska, K. Pawlicki, B. Czochralska, J. Photochem. Photobiol. A, 108 (1997) 207
- 258. E.S. de Alvarenga, J. Mann, J. Chem. Soc., Perkin Trans. 1, 18 (1993) 2141