RECENT TRENDS IN CATALYST DEVELOPMENT FOR PEMFC/DIRECT METHANOL FUEL CELLS

B. VISWANATHAN NATIONAL CENTRE FOR CATALYSIS RESEARCH DEPARTMENT OF CHEMISTRY

Indian Institute of Technology Madras, INDIA

Unsustainable Vs Sustainable development

ALTERNATIVE ENERGY TECHNOLOGIES

- Alternative energy technologies are needed to address the impending energy problem
 - Reduces our dependence on foreign oil
 - Fosters energy security and national security
 - Promotes a cleaner environment

Alternative Energy Technologies

- Fuel cells
- High energy density batteries
- Supercapacitors
- Solar energy
- Wind energy
- Geothermal energy

WHY FUEL CELLS?

Direct Energy Conversion Vs Indirect Technology

Thermal Energy \rightarrow Mechanical Energy \uparrow Fuel Cell \downarrow

Chemical Energy of Fuels → Electrical Energy ADVANTAGES

- ✓ Efficiency
- ✓ Reliability
- ✓ Cleanliness
- ✓ Unique operating characteristics
- ✓ Planning flexibility
- ✓ Future development potential

VARIOUS TYPES OF FUEL CELLS

 PEMFC: Leading contender for vehicular applications
 DMFC: Possible portable applications

Chemical and Electrochemical Data on Various Fuels

FUEL	ΔGº, kcal/mol	E ⁰ _{theor} (V)	E ⁰ _{max} (V)	Energy density (kWh/kg)
Hydrogen	-56.69	1.23	1.15	32.67
Methanol	-166.80	1.21	0.98	6.13
Ammonia	-80.80	1.17	0.62	5.52
Hydrazine	-143.90	1.56	1.28	5.22
Formaldehyde	-124.70	1.35	1.15	4.82
Carbon monoxide	-61.60	1.33	1.22	2.04
Formic acid	-68-20	1.48	1.14	1.72
Methane	-195.50	1.06	0.58	-
Propane	-503.20	1.08	0.65	-

Schematics of Operational PEMFC & DMFC

"What is a fuel cell"

The ultimate potential is generation of off-grid electricity from hydrogen produced from completely renewable, widely dispersed energy sources.

Grand Challenges & Needed Breakthroughs for Fuel Cells

PEM FC - The Whole Picture

How Does a PEM FC Work?

Anode: $2H_{2(g)} = 4H_{(aq)}^{+} + 4e^{-}$ Cathode: $O_{2(g)} + 4H_{(aq)}^{+} + 4e^{-} = 2H_2O_{(l)}$

Direct Methanol PEM FC

Anode: $CH_3OH_{(aq)} + H_2O_{(l)} ----> CO_{2(g)} + 6H^{+}_{(aq)} + 6e^{-}$ Cathode: $3/2O_{2(g)} + 6H^{+}_{(aq)} + 6e^{-} ---> 3H_2O_{(l)}$

DMFC MEA Raw Materials Cost Analysis

NanoStructured Thin Film Catalysts (NSTFC) for Next Generation PEM Fuel Cells

- High resistance to support oxidation at high potentials, start-stop, fuel starvation
- High resistance to Pt dissolution/agglomeration at high voltages, start-stop, etc.
- Robust, low cost process for fabrication
- Minimal ionic and electronic losses under dry conditions
- Cold start capable (wide RH range) and freeze tolerant

NanoStructured Thin Film Catalyst (NSTFC)

Electrode Design

- Electrode creates 'triple point':
 - Reaction at catalyst site
 - Supply of fuel/oxidant
 - Electron AND proton conductivity
 - Heat and Water removal

'Catalyst Coated Membrane' technology dominates:

- Pt nano-particles plated to high surface area carbon powder
- Via inks/dispersions deposited onto electrolyte (Wilson, Los Alamos)
- Nano-Tech Approaches:

.

- Larger surface areas on electrolyte interface
- Direct deposition of catalyst using thin film techniques
- Engineered nano-catalyst in place of present 'ink' based techniques

Ref: S. Litster, G. McLean PEM Fuel Cell Electrodes. J. Power Sources 2004

Carbon nanostructures as novel support materials in fuel cells

Advantages of SWCNTs

- High surface area
- Good electronic conductivity, excellent chemical and electrochemical stability
- Good mechanical strength

Goal

Effective utilization of carbon nanostructures for improving the performance of fuel cells

- To develop PEM assembly with CNT supports
- Improve the performance of electrocatalysts
- Minimize the catalyst content while maintaining the high power output
- Standardize the operation of nanotube based Fuel Cells

....towards the miniaturization of fuel cells

⁷ Carbon Nanotubes(CNT) – Fuel cell Electrodes

SWCNT based H₂-Fuel Cell

MEA was prepared by electrophoretic deposition of Pt black on varying amount of SWCNTs

J. Phys. Chem. B, 2004. 108 19960 - 19966 Langmuir, 2005. 21 8487 - 8494

Peak power density, 224 mWcm⁻²

Peak power density, 240 mWcm⁻²

WHY METHANOL ?

- ✓ High specific energy density
- ✓ Clean liquid fuel
- ✓ Larger availability at low cost
- \checkmark Easy to handle and distribute
- ✓ Made from Natural gas and renewable sources
- ✓ Possible direct methanol operation fuel cell
- ✓ Economically viable option

ADVANTAGES OF DMFC

- Elimination of the external Fuel Processor
- Elimination of complex humidification & thermal management systems
- Low costs for DMFC
- Can use existing infrastructure for gasoline

DIFFICULTIES IN DMFC

- Poor electrode kinetics
- Fuel crossover
- Electrocatalysts

Comparison of PEMFCs & DMFCs

Performance losses seen in a typical DMFC MEA operating with dilute MeOH & Air at 80°C, compared to those in a PEMFC

DMFC ANODE

PEMFC/DMFC CATHODE

OUR FOCUS

1. Identification of suitable catalyst

2. Improve/Tailor Carbon material \rightarrow desired electrochemical properties

 \rightarrow design a suitable support material

Identification of Suitable Catalyst

- Listing out & classification of reported catalysts
- Why these catalysts?
- Limitations in the present 'best' available catalyst
- Evolving logistics for a novel catalyst (modifying the present system/completely new one)

Logistics

- Model studies (atomic level interactions)
- Questions not answered in the present system
- Awareness of the limitations with the proposed system followed by trouble shooting possibilities
- Mechanism / Role of a catalyst

CATALYST DEVELOPMENT FOR PEMFC/DMFC

- Fundamental understanding of the reaction
- Formulation & Design of new catalysts
- Noble & Non-noble metal catalysts Associated Issues
- Optimization of catalytic properties of the electrodes
- Where to go?

Why Supported Catalyst?

What is the support? How to choose better Support ?

Tailoring Support

Support - Why Carbon?

Properties attractive to electrochemical applications...

Chemical properties

- Good corrosion resistance
- Availability in high purity
- Forms intercalation compounds
 Electrical properties
- Good conductivity

Mechanical properties

- Dimensionally & mechanically stable
- Low modulus of elasticity
- Light weight & adequate strength
- Availability in variety of physical structures
- Easily fabricated into composite structures

Carbon as Electrode Material

- Anisotropic electronic property
- Surface can adsorb wide range of materials
- Richer & more complex surface chemistry
- Strong covalent bond formation with variety of surface modifiers
- Wide useful potential window

Carbon is unique material

Tailoring carbon for its suitability as support in MOR &ORR – How?

- Knowledge of the interaction & location of the active phase with the support
- Surface groups on the support
- Anchorage sites for metal precursor
- Active centers due to acid-base or red-ox properties
- Possible modification procedures

Preparation of Hydrongen/Methanol Oxidation Catalysts with the Modified Supports in DMFC

Methanol oxidation Mechanism: addition of the secondary metal

1. Bifuntional mechanism

$Pt + CH_{3}OH \rightarrow Pt-(CH_{3}OH)_{ads}$	(1)
$Pt-(CH_{3}OH)_{ads} \rightarrow Pt-(CH_{3}O)_{ads} + H^{+} + e^{-}$	(2)
$Pt-(CH_{3}O)_{ads} \rightarrow Pt-(CH_{2}O)_{ads} + H^{+} + e^{-}$	(3)
$Pt-(CH_2O)_{ads} \rightarrow Pt-(CHO)_{ads} + H^+ + e^-$	(4)
$Pt-(CHO)_{ads} \rightarrow Pt-(CO)_{ads} + H^+ + e^-$	(5)
$M + H_2O \rightarrow M-(OH)_{ads} + H^+ + e^-$	(6) slow step
$Pt-(CO)_{ads} + M-(OH)_{ads} \rightarrow Pt + M + CO_2 + 2H^+ + 2e$	e (7) slow step
$\begin{array}{c c} O & H \\ I & Pt + H_2O \rightarrow \\ C & O & Ru + H_2O \rightarrow \end{array}$	Pt-OH + H ⁺ + e ⁻ (0.7V) Ru-OH + H ⁺ + e ⁻ (0.2V)
$-P_t - R'_u$	

2. Electronic mechanism

The secondary metal modifies the electronic properties of the catalyst, weakening the chemical bond b/w platinum & the surface intermediate.

Ref) A. Hamnett, Catal. Today, 38, 445 (1997).

3. Structural mechanism

The Pt(111) face has been shown to have a much higher activity than other faces with respect to methanol oxidation.

Ref) W. Chrzanowski et al., Langmuir, 14, 1967 (1998).

Choice of secondary metal depends on the affinity of metal for oxygen

When the bond strength b/w Pt and C of CO is same with that b/w 2nd metal and oxygen, it is easy to break the bond of Pt and CO and to form CO_2 .

The metal-oxygen bond dissociation energy [D_{9298K} (M-O)] in diatomic molecules as a function of grouping the period.

Ref) I.T. Bae et al., J. Phys. Chem., 297, 185 (1985).

Recent Research Routes

Active metals

- Binary catalysts: PtRu, PtW, PtNi, PtSn, PtMo, PtPd, PtFe, PtCr, PtNi etc.
- Ternary catalysts: PtRuW, PtRuMo, PtRuV etc.
- Quaternary catalysts: PtRuRhNi, PtRuSnW etc.

Supports

Carbon black: Acetylene black (SBET=50m²/g), Vulcan XC-72 (SBET=250m²/g), KETJEN black (SBET=1000m²/g) etc.
 Others: CNTs (carbon nanotubes), GNFs (graphite nanofibers), MCMBs (mesocarbon microbeads) etc.

Catalyst preparations

- Physical methods: Spray-drying, co-precipitation, sol-gel, sputtering etc.
- Chemical methods: Thermal decomposition, impregnation, colloid etc.
- Modified colloidal method, spontaneous deposition, implantation method using plasma etc.

• Others

- To increase voids \rightarrow addition of void forming, solvent having a high boiling point etc.
- To improve the structure of three-phase boundary of the electrode

Improve the utilization of methanol oxidation catalysts

Preparation of ionomer- coated carbon supports

(i) To reduce the micropore volume in carbon black particles(ii) To extend the area of the three-phase boundary

Ionomer- coated carbon supports : Pore-Size Distribution

- (a) Catalyst–ionomer interaction in electrode using plain carbon as a support
- (b) ionomer-coated carbon support
- (c) catalyst-ionomer interaction on ionomercoated carbon support.

BET surface area

Vulcan XC-72	(217 m ² /g)
1% IOC	(189 m²/g)
2% IOC	(178 m²/g)
5% IOC	(161 m ² /g)

Catalyst Preparation

Colloidal Method by Watanabe *et al*. [J. Electroanal. Chem., 229, 395 (1987)]

Fabrication of MEA (Electrode area = 10.89 cm²)

Electrode	Catalyst	Metal Loading	Ionomer/Catalyst
Cathode	46.5 wt.% Pt/C (Tanaka)	3 mg Pt/cm ²	0.3 (inner: 1/4, outer: 3/4)
Anode	<i>ca</i> . 40 wt.% Pt-Ru/C (Home-made & E-TEK)	3 mg Pt-Ru/cm ²	0.15, 0.3, and 0.6 (inner: 1/4, outer: 3/4)

Cyclic Voltammetries

Cyclic voltammograms of prepared catalysts for the electrooxidation of methanol in $0.5M H_2SO_4 + 1M CH_3OH$ with a scan rate of 25mV/s & scan cycle of 30.

Incorporation of ionomer into carbon increased the EAS

CATHODE RESEARCH – MAIN FOCUS

- Selective cathode catalyst and/or
- Methanol-tolerant catalyst for oxygen reduction

ORR: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ $E_r = 1.229 V$

ORR- At Fuel Cell Electrodes- Associated Issues

Acid Electrolyte Conditions

- Reaction takes place at high, positive potentials hence most metals dissolve
- Only noble metals and some of their alloys

Even with Pt!

- Formation of surface oxide
- **Complications PtO**₂ is a catalyst for H₂O₂ reduction
- Involvement of high potentials sintering

Essentially, Metal dissolution & oxide formation

Catalysts for oxygen electro-reduction

Noble metal catalysts

- Pt & certain Pt alloys
- Amounts allowable (for the air electrode) would not produce currents required for commercial success at the desired cell terminal voltage

Attempts

- (i) Improve the activity at high positive potentials
- (ii) Develop non-noble metal complex catalysts macrocyclic organometallic

chelates

State of the art cathode catalysts

Methanol tolerant catalyst

Metal phthalocynines, porphyrins, metal oxides,

metal carbides & chalcogenides

ORR activity & methanol tolerant capability, but the life-time still need to improve

V. Trapp et al., J. Chem. Soc., Faraday Trans. 21 (1996), 4311 R.W. Reeve et al., J. Electrochem. Soc. 145 (1998), 3463

H. Tributsch et al., Appl. Electrochem. 31 (2001), 739

To improve ORR activity

Pt-Alloy catalysts

Pt-Co/C, Pt-Cr/C, Pt-Ni/C, Pt-Fe/C and Pt-Cr-Co/C

E. Antolini. Mater. Chem. Phys. 78 (2003), 563 S. Mukerjee, et al., J. Electrochem. Soc. 142 (1995), 1409

Our Directions

Our Focus

Increasing air utilization in the cathode

Incorporation of oxygen storage materials

Why Ceria?

The ability of ceria to store, transport and release oxygen

 $\operatorname{CeO}_2 \leftrightarrow \operatorname{CeO}_{2-x} + (x/2) \operatorname{O}_2 \quad (0 \le x \le 0.5)$

Unique and delicate balance between structural (phase formation), kinetic (rate of shift between reduced and oxidized states ($Ce^{3+} \leftrightarrow Ce^{4+}$) and textural (presence of surface cerium sites) factors

Ceria functions as an oxygen buffer

Role of ceria in ORR at air

(a) Oxygen

(b) Air

(a) Oxygen

Art & Science of Catalyst Development

Fuel Cell Technology : R&D - Multidirectional!

- ✤ Multi-component (CH₃OH, H₂O, CO₂, O₂, etc.)
- Multi-phase (liquid, gas, solid)
- Multi-scale (nano, micro, macro)
- Multi-coupled (fluid flow, heat/mass transfer, electrochemical reactions)
- * *Multi- discipline* (electrochemistry, material, mechanical engineering, etc.)

Stylized Stages of Technological Development

Stage	Mechanism	Cost	Commercial Market Share	Status
Invention	Seeking & Stumbling upon new ideas, breakthroughs, basic research	High	0%	1
Innovation	Applied research, development, demonstration (R&D projects)	High, focused on promising ideas	0%	Radical ↓
Niche Market	Investments in field projects, learning by doing	High, but declining with standardization of productions	0-5%	1
Pervasive diffusion	Standardization and mass production, economies of scale, network building	Rapidly declining	Rapidly rising (5-50%)	Incremental ↓
Saturation	More efficient competitor's arrival, redefinition of performance requirements	Low, sometimes declining	Maximum (up to 100%)	1
Senescence	Domination by superior competitor	Low, sometimes declining	Declining	Mature ↓

Fuel Cells – Bird's Eye View!

Fuel cells are efficient, silent, reliable and clean!

Hurdles for Commercialization – Material Selection!

- Present FC prototypes often use materials selected more than 25 years ago.
- Commercialization aspects, including cost and durability have revealed inadequacies in some of these materials
- Pt is the most active material To reduce the cost nanoparticles of Pt on carbon
 → reduce loading from 2 → 0.5mg cm⁻² without impacting on performance & life time.
- Less expensive nanocatalysts have to be identified to replace expensive Pt catalysts.
- Development of fluorine free, less expensive membrane materials high conductivity, low swelling, low gas & methanol permeability & stability
- With advanced alternative materials, considerable R&D would be essential to optimize & manufacture new MEAs
- In PEMFCs, hydrogen production/storage/ transportation, & infrastructure issues in addition to manufacturing cost, durability, need to be addressed for the technology to be fully viable.

Thank you all for your kind attention

Non Noble metal catalysts as electrodes for Methanol fuel cells

B. Viswanthan

Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India

Non - noble metal catalysts

- **Overall objective:**
- Reduce catalyst cost for direct methanol fuel cells
- **Present objective:**
- Develop anode catalysts with enhanced activity.
- Identifying alternates to precious metal catalysts
- Developing noble and non noble metal combinations to reduce precious metal loading and enhance activity

Literature

Non-noble Metal electrodes adopted as anode for methanol oxidation

Metallic glasses such as Fe, Co, Ni, Zr and Pd in alkaline medium

Pd+Zr glass - 50 mA/cm² (apparent) at 0.3 V vs RHE

Cu+Zr glass - 40 mA/cm² at +0.2 V vs RHE

Cu+Ti glass - 10 mA/cm² at +0.5 V vs RHE

- significant activity but stability problem

K. Machida and M. Enyo, Bull. Chem. Soc., Jpn. 58 (1985) 2043

- Methanol oxidation on NiZr in acid solution
 - -reaction proceeds at surface O²⁻ ions neighboring a Ni³⁺ ion of a thicker passivating film; electron transfer from the surface to the electrode occurs diffusively by the nickel atoms of the film
- J. B. Goodenough et al J. Power Sources ., J.Power sources 45 (1993) 291
- Tungsten carbide, Molybdenum carbide⁸
- K. Machida and M. Enyo, J. Electrochem. Soc., 137 (1990) 871
- **SmCoO**₃ and Pt containing perovskites in PEM mode
- *J. H. Whites and A. F. Samells, J. Electrochem., Soc. 140 (1993)* 2167
- NiO exhibit activity in alkaline medium at high potentials
- I. A. El-Shafei, J. Electroanal. Chem., 447 (1998) 81 & , 471 (1999) 89.

NiO exhibit activity in alkaline medium at high potentials

- B. El-Shafei, J. Electroanal. Chem., 447 (1998) 81 & , 471 (1999) 89.
- S oxides of Ni-Cu

- exhibits low overvoltages at 303 K for methanol oxidation.

- good corrosion resitance towards electrolyte medium

T. shobha et al J. Solid State Electrochem., 137 (2003) 871

Si→Pd alloy

T. shobha et al Material chemistry and physics., 80 (2003) 656

Points to consider

\bigcirc Methanol adsorption follows very closely to the desorption of H₂ on

Pt leaving bare metal sites

The maximum methanol adsorption will take place in the double layer region.

Gasteiger, J. Phys. Chem. 97 (1993) 12020

Most of the transition metals other than Pt & Rh, the desorption of H_2 is

concomitant with the adsorption of oxygen like surface species thus inhibiting

methanol adsorption.

舒 Alternate material Oxide electrodes - a possible choice

Semiconductor Electrochemical Concepts adopted

Metal/Electrolyte Interface

 $1/C_{dl} = 1/C_{H} + 1/C_{GC}$

- The density of states is 10²² cm⁻³V⁻¹
- The space charge of the metal is all squeezed onto the surface.
- Field gradient is absent in the bulk of metal.

8

Electron transfer at Metal electrode/electrolyte interface

▶ Gurney's model : Electron passes from
 Oxidation → Filled donor state of redox species to the Fermi level of the metal
 Reduction → Fermi level of the metal to the empty acceptor states of an oxidant

• Electron transfer rate at Metal/electrolyte interface

The electron transfer occurs in an energy range close to the Fermi level

 not too far from equilibrium condition – does not to go to high overvoltages

Rate equation at Metal electrodes

Ox + (occupied state) - solid = Red solv + (vacant state) solid

Metal electrodes:

 $j^{-} \equiv e_{0} \cdot N_{ox} \cdot \sigma_{ox} \cdot \sigma_{el} \cdot v_{v} \cdot \kappa_{el} \times \int_{-\infty}^{\infty} W_{ox}(E) \cdot D_{occ}(E) dE$ $j^{+} = e_{0} \cdot N_{red} \cdot \sigma_{red} \cdot \sigma_{el} \cdot v_{v} \cdot \kappa_{el} \times \int_{-\infty}^{\infty} W_{red}(E) \cdot D_{vsc}(E) dE$

 $e_0 =$ electric charge of the electron

 $N_{\rm ox}, N_{\rm ted} = {\rm number \ of \ reactants \ cm^{-1}}$

 $\sigma_{ex}, \sigma_{red}, \sigma_{el}$ = reaction cross sections of the reaction partners at the interface

 v_s = averaged frequency of the nuclear modes in the activated complex of Ox⁺ or Red

$$_{d} = \frac{2\left[1 - \exp\left(-\frac{v_{d}}{2v_{s}}\right)\right]}{2 - \exp\left(-\frac{v_{d}}{2v_{s}}\right)} \quad \text{adiabaticity coefficient} \\ (v_{d} \ge v_{s} \text{ adiabatic process})$$

 $D_{\rm occ}(E), D_{\rm vac}(E) = {\rm density}$ of occupied and vacant electronic states in the solid

$$v_{el} = \frac{2|H_H|^2}{\hbar} \left(\frac{\pi}{2\lambda kT}\right)^{1/k}$$
 frequency factor for
electronic transitions
$$|H_H| = \text{coupling energy between initial and final state}$$
$$\lambda = \text{reorganization energy}$$
$$W_{ex}(E) = \exp\left(-\frac{(E_{ex}^0 - E)^2}{4\lambda kT}\right)$$
 probability distribution
of energy states in the
oxidized species
$$W_{red}(E) = \exp\left(-\frac{(E_{red}^0 - E)^2}{4\lambda kT}\right)$$
 probability distribution
of energy states in the
reduced species

▶ The integrals represents the currents for metal electrodes

 \rightarrow probability distribution of energy states in the Ox⁺ or Red species.

→ density of occupied or vacant electronic states in the solid

Semiconductor/Electrolyte Interface

$$1/C_{dl} = 1/C_{SC} + 1/C_{H} + 1/C_{GC}$$

The potential due to atmosphere of holes and electrons is given by

$$\chi = (8\pi\eta^{\circ}e_{o}^{2}/\epsilon kT)^{1/2}$$

 $\chi^{-1} \rightarrow$ Thickness of the Garrett-Brattain space charge inside a semiconductor.

Effect of potential on the Energy levels of the Semiconductor

The energy bands near the surface of the Semiconductor are

disturbed by the existence of the field.

The bending of the bands up or down depends on the sign

of

ð

the ionic charge populating the OHP.

- Field penetration exists inside the Semiconductor.
- Field gradient depends on
 - (i) Density of states
 - (ii) Surface states
 - (iii) Adsorption capacity

Electron transfer at Semiconductor electrode/electrolyte interface

Redox system 1 $\rightarrow E^{\circ}_{redox}$ close to CB edge

Accumulation layer

High rate of e⁻ exchange

can

 $\mathbf{O}\mathbf{x}^+$

Redox system 2 \rightarrow Depletion layer

Electron transition to species nor from reduced species reach the conduction band energy. Redox system $3 \rightarrow$ The barrier height for

electron is even higher

be expected

(close to E_g energy)

E^o_{redox} close to VB edge

e⁻ exchange is possible VB edge.

with

Reference: H. Gerischer, Electrochimica Acta, 35 (1990) 1677.

Electron transfer at the Semiconductor/electrolyte interface:

Current via the conduction band

ð

 $\mathbf{j}_{c} = \mathbf{k}_{c}^{+} \cdot \mathbf{N}_{c} \cdot \mathbf{N}_{red} - \mathbf{k}_{c}^{-} \cdot \mathbf{n}_{s} \cdot \mathbf{N}_{ox}$ $\mathbf{n}_{s} = \mathbf{n}_{o} \cdot \exp(\mathbf{e}_{o} \Delta \boldsymbol{\varphi}_{SC} / \mathbf{kT})$

where n_s is surface concentration of electrons

Current via the valence band

 $\mathbf{j}_{v} = \mathbf{k}_{v}^{+} \cdot \mathbf{p}_{s} \cdot \mathbf{N}_{ox} - \mathbf{k}_{v}^{-} \cdot \mathbf{N}_{v} \cdot \mathbf{N}_{ox}$ $\mathbf{p}_{s} = \mathbf{p}_{o} \cdot \exp(\mathbf{e}_{o} \Delta \boldsymbol{\varphi}_{SC} / \mathbf{kT})$

where p_s is surface concentration of holes

Equilibrium between the Semiconductor electrode and a redox
 system/depolarizer in solution can result in a situation where the Fermi level is
 located in the band gap of the semiconductor.

Considerable electron transfer can occur only if the redox potential of the redox system
 is located close to the band edges of a semiconductor.

 The rate of electron transfer across the semiconductor/depolarizer depends only the surface concentration of the charge carriers (density of states).

H. Gerischer, Electrochimica Acta, 35 (1990) 1677

A. M. Kuznetsov and J. Ulstrup, Electrochimica Acta, 45 (2000) 2339

Fermi level and Density of states

alters

concentration

The position of the Fermi level determines the chemisorption
 properties
 of the surface and controls the equilibrium
 population of the various
 species created by the adsorbed

By suitable doping of oxides with small amounts of foreign atoms the Fermi level which reflects the availability of carrier (density of states) at the surface.

→ accelerated by the rise of F.L – availability of
 electrons – n-class or acceptor reaction

→ accelerated by lowering of F.L – availability

of holes – p-class or donor reactions.

States without intervention of foreign atoms – broken bonds on the surface.

1.	Field gradient
	Insulators (10 ⁵ V/cm)
	Semiconductors
	Metals (10 ⁷ -10 ⁸ V/cm)
2.	Adsorption capacity depends on the nature of
	active site
	depolarizer
3.	Potential range of application
4.	Identifying the possible candidates

above condition to some extent

F

5

Rare Earth Cuprates as Anode Electrocatalysts

Why $La_{2-x}M_xCu_{1-y}M_{1-y}^*CuO_4$?

■ Oxide surface is coordinatively unsaturated hence covered with water molecules in aqueous solution

In order for the depolariser (methanol) to adsorb, the M-OH bond strength should be weak.

M-OH bond strength weak copper containing rare earth perovskite

J. O'M. Bockris and T. Otagawa, J. Electrochem. Soc., 131 (1984) 290.

Electrochemical studies on bulk Sr substituted Lanthanum cuprates

Anodic peak between +0.26 V - +0.5 V

 \Rightarrow Cu(2+) \rightarrow Cu(3+)

► Methanol oxidation starts at ~0.46 V vs Hg/HgO

▶ Methanol oxidation to CO₂ was confirmed by charging measurements and carbonate estimation.

V.Raghuveer, K.R. Thampi, N. Xanthapolous, H.J. Mathieu and B. Viswanathan, Solid State Ionics 140 (2001) 263

Cyclic Voltammogram of bulk cuprate in (a) 3 M KOH and (b) 1 M CH₃OH at a scan rate of 25 mVs⁻¹

Speculative Mechanism of Methanol Oxidation on the Oxide Surface							
O ²⁻ —Cu ²⁺ —O ²⁻	+	OH-	\rightarrow	O^{2} Cu^{2+} O^{2-}			
(1) OH^{-} O^{2-} Cu^{2+} O^{2-}	+		\rightarrow	^{-}OH $O^{2}-Cu^{3+}-O^{2-}$ + e ⁻ (2)			
-OH				-OCH ₃			
O ²⁻ —Cu ³⁺ —O ²⁻ -OCH ₃	+	CH ₃ OH	\rightarrow	$O^{2}-Cu^{3+}-O^{2-}$ + $H_{2}O$ (3)			
O^{2} Cu ³⁺ O ²⁻ OC	+	30H-	\rightarrow	$O^{2} - Cu^{3+} - O^{2-} + 3H_{2}O + 4e^{-} - (4)$			
O^{2-} Cu^{3+} O^{2-}		0 011	\rightarrow	O^{2-} Cu^{3+} r $+ CO_2 + 2e^{-}$ (5)			
O ²⁻ —Cu ³⁺ —ŗ	+	2OH-	\rightarrow	$O^{2-} - Cu^{3+} - O^{2-} + H_2O$ (6) OH ⁻			
O ²⁻ —Cu ³⁺ —O ²⁻	+	OH-	\rightarrow	$O^{2-} - Cu^{3+} - O^{2-}$ (7)			
OH^{-} O^{2-} Cu^{3+} O^{2-} +	C	H ₃ OH +	60	OH^{-} $OH^{$			

Sr Substituted Lanthanum Cuprates as Electrode For Methanol Oxidation and Its Comparison with Platinum

Electrocatalysts*	Tolerance	Specific	Cu(2+)	Cu(3+)	δ	Methanol	Activity I	Rate of
	factor	Conductivity				Oxidation Onset	$(mAcm^{-2})$ at	deactivation
		$(\Omega^1 \text{cm}^{-1})$				Potential (V)	+0.7 V	MAmin ⁻¹
La_2CuO_4	0.9034	0.28	1.0	0.0	0.0	0.46	5(10)	0.42 (12.3)
$La_1 \circ Sr_0 CuO_4$	0.9107	18.27	0.921	0.079	0.011	0.46	8(16)	0.36 (14)
						0.16		
$La_{1.8}Sr_{0.2}CuO_4$	0.9170	67.56	0.856	0.144	0.028	0.46	14(28)	-
La _{1.7} Sr _{0.3} CuO ₄	0.9119	16.97	0.938	0.062	0.098	0.46	0.68(1.4)	0.03 (173)
La Sr. CuO	0.0101	10.2	0.075	0.026	0.196	0.46	0.5(1)	0.05 (104)
La _{1.6} 51 _{0.4} CuO ₄	0.9101	10.5	0.975	0.020	0.100	0.40	0.5(1)	0.03 (104)
$La_{1.9}Ca_{0.1}CuO_4$	0.9058	24.11	0.965	0.035	0.033	0.51	3.3	-
$La_{10}Ba_{01}CuO_{4}$	0.9101	17.98	0.972	0.028	0.036	0.78	1.8	-
Eu1.9Eu0.1Cu04	0.9101	17.20	0.572	0.020	0.050	0.70	1.0	
$La_{1.9}Sr_{0.1}Cu_{0.9}Sb_{0.1}O_4$	0.9098	-	-	-	-	0.34	5.0	-
$La_{1.9}Sr_{0.1}Cu_{0.9}Ru_{0.1}O_{4}$	0.9112	-	-	-	-	0.76	1.0	-
1.9 0.1 0.9 0.1 1								
NH Cr. Cr.O	0.9907					0.25	12.0	
$INd_{1.8}Sr_{0.2}CuO_4$	0.8806	-	-	-	-	0.35	13.0	-
$Nd_{1.8}Sr_{0.2}Cu_{0.8}Sb_{0.2}O_4$	0.8909	-	-	-	-	0.30	12.0	-
Bulk Pt	ΝA	М	NA	NA	NΔ	0.6 ^µ	35	16.56
Duik I t	11/2	1V1	11/1	11/1	11/1	-0.0	55	10.50
Pt/C	NA	М	NA	NA	NA	-0.6 ^µ	106	5.2 (1)
•CCeramic method I) isk type elec	etrode Experim	ental Condi	tion · 3M K	OH and 1	М		
	Just type ele					1 A Y 1	1	

CH₃OH

. \mp at +0.08 V vs Hg/HgO